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ABSTRACT

We employ fractal analysis to study the complexity of su-
pergranulation structure using the Solar and Heliospheric
Observatory (SOHO) dopplergrams. Our data consists
of 200 visually selected supergranular cells, for which
we find a broad, slightly asymmetric dispersion in the
size distribution, with the most probable size around 31.9
Mm. From the area-perimeter relation, we deduce a frac-
tal dimension D of about 1.25. This is consistent with
that for isobars, and suggests a possible turbulent origin
of supergranulation. By relating this to the variances of
kinetic energy, temperature and pressure, it is concluded
that the supergranular network is close to being isobaric
and that it has a possible turbulent origin.
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1. INTRODUCTION

High resolution observations of the solar photosphere
have long indicated that the solar surface is granular and
shows irregular polygonal brightness patterns surrounded
by dark lanes. These cellular velocity patterns are a visi-
ble manifestation of the sub-photospheric convection cur-
rents which contribute substantially to the outward trans-
port of energy from the deeper layers, thus maintaining
the energy balance of the Sun as a whole.

The solar convection zone, of thickness equal to 30% of
the solar radius, lies below the photosphere and is re-
vealed by two surface network patterns. On the scale of
1000 km it is the granulation, with a typical lifetime of 8-
10 min and on a scale of 30000 km, it is supergranulation
with a typical lifetime of 24 hr. Supergranules are ob-
served in the high photosphere as large convective eddies
with horizontal diverging flows from the cell centre and
subsiding flows at the cell borders. Horizontal currents
associated with each supergranule are believed to sweep
magnetic fields from the declining active regions into the
boundaries of the cell where they produce excess heating
resulting in the chromospheric network.

A dependence of the network size on the magnetic ac-
tivity has been suggested (Chandrashekar 1961). Sykora
(1970) and Raju et al. (1998) report a dependence of cell
size on solar latitude. Berrilli et al. (1999) find a 2%
anisotropy for the chromospheric network cell orienta-
tion and a 30% size reduction towards the poles. Lisle
et al. (2004) have noted a north-south alignment of su-
pergranulation, consistent with an underlying dynamical
cause at a larger scale, identified with giant cells. Sim-
ilarly a dependence of the calcium network cell size on
the solar cycle, with a smaller size at solar maxima, has
been reported by Singh and Bappu (1981). Singh et al.
(1994) have also reported a positive correlation between
cell sizes and cell lifetimes.

The bright chromospheric network observed in Ca II K
and Ha core filtergrams shows a dependence of autocor-
relation size of the cells on the latitude. The size shows
an approximate N-S symmetry with two minima at 20°
N and 20° S (Raju, Srikanth and Singh 1998). Active
cells close to the periphery of a plage are found to live
longer than those in the quiescent regions. The confining
properties of the magnetic field may be responsible for
the longer life of active cells.

Srikanth et al. (1999) have also found a positive corre-
lation between cell sizes and cell lifetimes. Diffusion-
like dispersion of the magnetic flux is the dominant fac-
tor in the large-scale evolution of the network. Convec-
tive motion and magnetic inhibition of the motion are
both stronger in active regions, thereby leading to similar
speeds in all regimes (Srikanth, Singh and Raju 1999). A
relationship between horizontal flow velocity and the size
of a supergranular cell has been established by Krishan et
al. (2002). The corresponding dependence of the lifetime
T of the supergranular cell on its horizontal flow velocity
is found to be v, o< T%5. Here T, also the eddy turn-
over time is estimated from the relation 7' = L /v, with
L as the distance from the centre to the edge of the cell
(Paniveni et. al 2004).

Fractal analysis is a valuable mathematical tool to quan-
tify the complexity of geometric structures and thus gain
insight into the underlying dynamics. For example, sta-
tistical analyses like studies of the size distribution of ac-
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tive regions or of the fractal dimension of solar surface
magnetic fields in the photosphere are useful for compar-
ing observations and models. They can shed light on the
turbulence of the magnetoconvective processes that gen-
erate the magnetic structures (Stenflo, Holzreuter 2003a;
Lawrence, Ruzmaikin, Cadavid 1993).

For our purpose, the fractal dimension D is characterized
by the area-perimeter relation of the structures (Mandel-
brot 1977). Self-similarity, or geometric scale-invariance,
is expressed by a linear relationship between log P and
log A (Eq. 1) over some range of scales.

Fractal analysis was first applied to a solar surface phe-
nomena by Roudier and Muller (1987), who measured
the fractal dimension of granular perimeters. From Pic
du Midi data, they find a fractal dimension D = 1.25
for granular diameters of size d < 1”.37 and D =~ 2 for
larger granules.

2. DATA ANALYSIS

We analysed 33 hour data of full disc Dopplergrams ob-
tained on 28th and 29th June 1996 by the Michelson
Doppler Interferometer (MDI) on board the Solar and He-
liospheric observatory (SOHO) (Scherrer et al. 1995).

The SOHO full disc dopplergram data has been obtained
with a resolution of 2" which is twice the granular scale.
Further, the dopplergrams are time averaged over inter-
vals of 10 min, which is about twice the 5-minute period
of oscillations. Thus the signal due to granular veloc-
ity is averaged out. Similarly the contributions due to
p-mode vibrations are reduced after the time averaging.
Our analysis rests on the implicit belief that time aver-
aging removes noise significantly, as judged from visual
inspection and also as seen in typical supergranular veloc-
ity profile for our data (cf.Fig. 1 of Paniveni et al.(2004)).
After the averaging, the supergranular network is brought
out with a fair clarity. This procedure yielded usually
six images per hour of the data. Corrections due to so-
lar rotation are applied to the dopplershifts. Two hun-
dred well accentuated cells lying between 15° and 60°
angular distance from the disc centre were selected. Re-
stricting to the above mentioned angular distance limits
helps us discount weak supergranular flows as well as
foreshortening effects. A previous study (Srikanth 1999)
noted a possible tendency for smaller supergranules to
have smoother, less corrugated boundaries than larger su-
pergranules, which was attributed to the weakening of
the supergranular outflow pressure with radial distance.
Nevertheless, we believe any such bias is minimal in our
study as all length-scales seem to be well represented, as
seen in Table 1.

3. SUPERGRANULAR CELL AREA AND
PERIMETER

The profile of a visually identified cell was scanned as
follows: we chose a fiducial y-direction on the cell and
performed velocity profile scans along the z-direction for
all the pixel positions on the y-axis. In each scan, the cell
extent is taken to be marked by two juxtaposed ‘crests’
(separated by a ‘trough’), expected in the dopplergrams.
This set of data points was used to determine the area
and perimeter of a given cell, and of the spectrum for
all selected supergranules. The area-perimeter relation is
used to evaluate the fractal dimension.

4. RESULTS AND DISCUSSION

The main results pertaining to the maximum, minimum,
mean, standard deviation and the skewness for cell area A
and cell perimeter P are summarized in Table 1. A large
dispersion in the area and perimeter was obtained. The
area distribution (Figure 1) shows an asymmetry, with a
steeper rise on the smaller scale and gentler fall on the
larger scale. It peaks at a characteristic size of around
8 x 10® km?, or a diameter 31.9 Mm assuming circularity.

We analyzed planar shapes by analyzing the area-
perimeter relation,

P o AP/? 1)

The log(A) vs log(P) relation is linear as shown in the
lower frame of Figure (2). A correlation co-efficient of
0.92 indicates strong correlation. Fractal dimension D,
calculated as (2/slope), is found tobe D = 1.34540.082.
If we interchange the log(A) and log(P) axes (upper
frame, Figure 2), fractal dimension D here is 2 X slope
and found to be D = 1.136 £ 0.070. The small differ-
ence in D values thus obtained may be because error bars
in P and A are not symmetric. The average over the two
methods is D = 1.24 £ 0.076. For smooth shapes such
as circles and squares P o< A'/2 and thus D = 1, the
dimension of a line. As the perimeter becomes more and
more contorted and tends to double back on itself filling
the plane, so that P o« A and D approaches the value
2, a maximum. The linear relation (Figure 2) suggests
that supergranules are self-similar and may be regarded
as fractal objects. Unlike the case of granules, we do not
find any multifractal structure. So it seems likely that
the entire distribution profile can be explained by a sin-
gle physical phenomenon. Since P «x AP/2, we may
expect D to be an important parameter characterizing the
processes which poduces the solar supergranulation.

The spectral distribution of the temperature, a passive
scalar, is related to the spectral distribution of kinetic
energy. It can be easily shown that the Kolmogorov
energy spectrum , K ~°/3 | both in two and three di-
mensional turbulence leads to a temperature spectrum of
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K —5/3 (Krishan 1991; 1996). Thus the temperature vari-
ance (02) varies as r2/3, as a function of the distance
(Tennekes and Lumley 1970). According to Mandelbrot
(1975), an isosurface has a fractal dimension given by
Dy = (Euclidean dimension) - 1/2 (exponent of the vari-
ance). Thus for two dimensional supergranulation D =
2 —(1/2 x2/3) = 5/3 = 1.66 for an isotherm. The
pressure variance (p?) on the other hand is proportional
to the square of the velocity variance i.e. (p?) oc 74/3
(Batchelor 1953). The fractal dimension of an isobar is,
therefore, found to be D, = 2 — (1/2 x 4/3) = 1.33.
Our data furnishes a fractal dimension D = 1.25 which
indicates that the supergranular network is close to being
an isobar. It is interesting to note that Roudier and Muller
(1987) obtained a similar dimension for smaller granules.

To characterize the shape of the distributions for the
area and perimeter, we computed skewness and kurtosis.
Skewness is a measure of the extent of departure from
the symmetry of the distribution about the mean. It is
positive here indicating that cell area and perimeter val-
ues are bunched at lower values than the mean. The er-
ror on this statistic is computed as \/6/N (Brown 1996),
where N = 200 is the number of cells. The respective
values for cell area and perimeter are given in Table 1.
Kurtosis is a measure of the peakedness of the distribu-
tion about the mean, with a normal distribution repre-
sented by zero kurtosis. We obtain a kurtosis value of
0.109 for the area and 0.474 for the perimeter distribu-
tions. For our data, the standard error in kurtosis is given
by 1/24/N = 0.346. Since twice this value is larger
than the absolute values we obtain for area and perimeter
kurtosis, we conclude that the values we have obtained
are within the expected range of chance fluctuations and
hence insignificant for our sample size and binning we
have chosen (Brown 1996). The standard error on stan-
dard deviation is computed as o /v/N.

The value of the fractal dimension derived from the
Dopplergram compares well with that derived from the
Ca K intensity data. It should be instructive to explore
the relative merits and results of the different data sets
such as Dopplergrams, magnetograms and intensity pat-
terns for a better understanding of the solar convective
phenomena.
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and skewness for area (A) and Perimeter ( P).
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Figure 1. Histogram of Area A in 108km? against num-
ber N of the cells.
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Figure 2. Plot of the natural logarithm of the supergranu-
lar area (in km?) against the natural logarithm of perime-
ter (in km) in the lower frame; and ordinate and coordi-

nate axes are interchanged in the upper frame.
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