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Global sausage and Kink modes in coronal Loops
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MHD Oscillations and thelr presence in the solar corona is known both from theoretical predictions and
observations such as TRACE (Transition Region And Coronal Explorer) and SOHO (SOlar and Helicspheric
Observatory). These modes have interesting consequences in coronal selsmology, for example in determining
the strength of the magnetic fleld. Magnetic field structures (with strong gradients) are known to exist in the
corona and they are often referred to es coronal loops. We model the loop to be made up of a cylindrical tube
of constant cross-section. The magnetic fleld, pressure and density are assumed to be different both inside
and outside the tube. The tube admits modes such as sausage (symmetric), kink (asymmetric), surface and
body modes. The dispersion relation of the modes for a cylindrical tube which is compressible, infinitely
conducting with uniform flows is presented. Limiting cases are discussed briefly. The phase speed of the
kink mode is used es a diagnaostic for determining the magnetic field of the corona. For different values of
the coronal parameters, the magnetic field ranges from a fow Gauss to 25 Gauss. The sausage mode does not
exist for all wavenumbers. The condition for this mode to exist is to do with the ratlo of the length of the
loop to its diameter, which in turn depends on the density ratio. An example of quasi-periodic pulsations
from radio observations found in the literature is presented. We hope to interpret some of the ob\mrvatlona
from the Gauribidanur Radiohellograph in terms of these global modes. The analysis is underway and will
be reported later.

1. Introduction

Theoretical aspects of magnetohydrodynamic (MHD) waves in the solar coronal plasma have been
investigated for decades, but it is only very recently, wit} the unambiguous detection of such os-
cillations, that those theories take on a new vigour. There have been several reports on coronal
oscillations, in radio wavelengths [1-4]. The theory of coronal loop oscillations has recently been
reviewed by [5-7]. However, it is evident that the subject is developing apace, led by the recent
observational discoveries which have prompted a re-examination of the theoretical aspects. Loops
may also carry upwardly propagating waves, detected with SOHO’s Extreme ultraviolet Imaging
Telescope (EIT) and Transition Region And Coronal Explorer (TRACE). The longitudinal intensity
oscillations are a commonly occurring phenomena in coronal loops[8]. Loops are not the only objects
to oscillate in the corona, prominence oscillations have long been studied and coronal plumes are
seen to support waves,

Coronal seismology became an efficient new tool that uses standing MHD waves and oscillations
as & tool to explore the physical parameters in the solar corona [9]. There are three basic branches
of solutions of the dispersion relation for propagating and standing MHD waves: the slow-mode
branch (with acoustic phase speeds), the fast mode branch and the Alfven branch (with Alfvenic
phase speeds). Furthermore, each branch has a symmetric and asymmetric solution, termed the
sausage and kink modes [10]. All of these MHD oscillation modes have been detected with imaging
observations. However, a recent study [11] pointed out that the dispersion relation and oscillation
period has been incorrectly applied to the data, because the highly dispersive nature of the phase
speed and the long-wavelength cutoff in the wavenumber has been ignored. A recent review on
coronal oscillations can be found in [12]. In this paper, we present the dispersion relation for the
different modes for a cylinder with uniform cross-section (straight) with lows. We discuss some of
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the limiting cases. The application of kink modes for determining the magnetic field is presented in
the next section. Sausage mndes are interpreted as quasi period structures for some radio observa-

tions found from the Nobeyama Observatory, Japan recently. We also hope to interpret some of the
obeervations from Gauribidanur RadioHeliograph in terms of these global modes.

2. The model

The coronal loop is assumed to be a straight cylindrical tube (as a firat approximation). The plasma
ingide and outside the tube are assumed to have different densities, magnetic field (though uniform),
which is compressible, infinitely conducting. We assume a uniform flow ‘Uj of the plasma inside the
tube of radius ‘a’ as shown in the Figure 1.
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Figure 1: The Model
3. Dispersion relation

The equations of motion governing the electromagnetic and hydrodynamic properties of a compress-
ible, infinitely conducting and moving plasma inside the cylinder of radius ‘a’ is linearized using the
normal mode approach to derive the dispersion relation. The wave equation for the total pressure
(gns pressure + magnetic pressure) is derived by algebraic simplifications. For the modes that vary
“ -

f(r. ¢, 2,t) = f(r)ezplt(kz + 1¢ — wt))], (1)

where k is the axial wavenumber, 1 is the azimuthal wavenumber and w is the angular frequency,
it can be shown that the radial dependence of the flow variables satisfies the Bessel differential
equation.

By simple algebraic simplifications, the dispersion relation can be shown to be [13,14]

pﬂ[‘z2 - kzcio]me + pe[wz - kzcie]mOFm("lO|mei ma) = 01 (2)
where 2 = w — kU is the Doppler shifted frequency and

Kon(mea) T3, (mo0) @

Fn(mo, me, ma) = K! (mea)Im(moa)’
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Ci0,C»e are the sound speeds inside and outside the tube, respectively. Cao,Ca. are the Alfven
velocities inside and outside the tube while Cryg, Cr. are the tube speeds, respectively.

4. Limiting cases
In the absence of a basic flow Up = 0, which implies 1 = w, the dispersion relation reduces to

polw? — kColme + pe[w? — k2Ch JmoFm(mo, me, a) =0. (6)

The expression for m3 is modified accordingly, with 0 being replaced by w. In the absence of a
magnetic field (Bg) = Bpa = 0), the dispersion relation with 1 = 0 reduces to

po13m, + pew?mo F(mo, me,a) = 0. )

For an incompressible flow, Co and Ca. — 00 80 that mj and m2 — k2. In this case the dispersion
relation can be solved analytically with

Fn(mo,me,a) = Frn(ka). @)

e Fou(ka) = Km(ka) I (ka) .
m(ke) = tr (ka)Ln(ka)’ (9)

w _ V[(1+nF(ka))(1+ a?Fo(ka)) — V3nFy(ka)]/? o

KVao 1+ nFo(ka)] - (10)

where a = Bm/Bm,V = Uo/CAo and n= pg/po.
In the limit ka — 0, the above equation reduces to

(7}
kCao

It follows that for values V' < 1, there exists only one positive value for w/kC49. For V > 1, there
are two branches. In the limit ka — oo, Fo(ka) — 1 so that equation (10) becomes,

=V+1 (11)

_w__Vz[1+9)(1+e?) - Vigt/2 -
L (1+n) '

For Uy = 0 and a — 0o, the cylindrical geometry reduces to the case of an infinite fluid with a single
interface. In this case the dispersion relation is given by,

1 (w, k)(m2 + 17)/2 4 gy(w, k) (mG +17)1/% = 0, (13)

where
Y12(w, k) = p12(k?C}; 5 — ?). (14)
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5 Kink osclllations

The observed properties of these oscillations unambiguously indicate to their interpretation as a kink
fast magnetoacoustic mode. The theory of this mode has been developed by [15]. It is known that
coronal loops are anchored in the dense plasma of the photosphere, so it is reasonable to assume
that any motions in the corona are effectively zero at the base of a loop. A typical picture of the
loop oacillation is presented in Figure 2. The first observation of kink oscillations was after the flare
on the 14th July 1998 at 12.55 UT [16]. The oscillation was identified as a global mode, with the
maximum displacement situated near the loop apex and the nodes near the footpoints.

Figure 2: A loop oscillation

Assume the plasma 3 << 1. The pressure balance condition is given by,

Bg -BE
=0 _ —e 1
Po + 2% Pe + 2 ( 5)

Define : a = pe/po, € = Up/Cag, 2 = w/kCao.
For low 2 plasma, it can be shown that

mo = K[l - (z — €)*]'/* = m}, (16)
me = k[1 — az?]'/? = m?, (17)

The dispersion relation for low beta plasma with flow can be written as

[(z—€)? - 1)(1 — az®)/? + a(z® - 1)[1 - (z - €)?)1/3F(my, m},a) = 0, (18)
» - — Km(m:a')I:n(m.a)
F(mg,m;,a) = K,’.,,(m;a)Im(mga)' (19)

The above relation is highly transcendental and will have to be solved numerically However, for
ka << 1, one can show that F(m{,m:,a) = 1 so that the dispersion relation would reduce to

[z — €)? — 1](1 — az®)Y? + a{z? - 1)[1 - (z — €)*]"/? =0. (20)
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For long wavelengths, the phase speed of the kink mode is about equal to the so-called kink speed
Cy which, in the low-g plasma is

2
1+n,./ng
where ng and n, are the plasma concentrations inside and outside the loop, respectively, and C4q

is the Alfven speed inside the loop. It was shown by!® that the formula for the kink speed can be
utilized to determine the magnetic field as follows :

/2
VAL ool + pel). @)

Cr = { P/3C 0, (21)

Bo = (47pa)/3Cag =

The dependence of the magnetic field on the density (number) is shown in Figure 3 for difterent
coronal parameters. It is evident from equation (22) for determination of the magnetic field By in
the corona, that the strength of the magnetic field depends on L (length between the foot points
of the loop), P (the period) and the ratio of the plasma densities. This puts a certain constraint
on the determination of the field accurately. However, one can deduce the strength if one has good
observations of L, P and the ratio of the densities. One can in principle assume a certain density
model and work out. It is evident from the figure that the strength of the magnetic field is dependent
on the periods of these waves significantly.

6 Sausage oscillations

The fast magnetoacoustic mode (sausage mode), associated with perturbations of the loop cross-
section and plasma concentration, has been used to interpret periodicities in the range 0.5-5 s, which
are usually observed as modulation of coronal radio emission. Quasi periodic oscillations of shorter
period (0.5-10 s) may be associated with sausage modes of higher spatial harmonics. There have
been quasi periodic pulsations in the periods 14 - 17 s, which oscillate in phase at a loop apex and its
foot points which have been observed at radio wavelengths. These modes have a maximum magnetic
field perturbation at loop apex and nodes and at the foot points.

The dispersion relation for magneto acoustic waves in cyhndrical magnetic flux tubes has many
types of long wavelength solutions in the fast mode branch (n = 0, 1, 2, ...) with the lowest ones
called the sausage mode (n=0) and kink mode (n=1). Kink mode solutions extends all the way to
the long wavelength limit (k2 — 0) while the sausage mode has a cut off at & phese speed

Uph = VAe, (23)
which has no solutions for' wavenumbers ka < k.a. The cutoff wavenumber k. is given by
_ (B +v4) (Wi - &) 172,00
b=, - o) - ) ) @4

Under coronal conditions the sound speed cp = 150 — 260km/s and Alfven speed is v4 = 1000 km/s.
Therefore
Cy << VA (25)

Here tube speed is similar to sound speed

CT = Cy
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Figure 3: The variation of the magnetic field for different coronal parameters

The expression for the cutoff wavenumber reduces to
1
e 25 (2 (26)

a) [(vae/vao)? - 1]1/2

1
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Figure 4: Dependence of the cut-off wavenumber of the sausage mode

For a typical density ratio in the solar corona (0.1 - 0.5), the cut off wavenumber k.a fall in the range
0.8 < kca < 2.4. Therefore the long wavelength sausage mode oscillation is completely suppreased
for the slender slopes. The occurrence of Global sausage modes therefore requires special conditions
: 1) very high density contrast pg/pe, 2) relative thick loops to satisfy k > k.. The high density ratio
Po/Pe >> 1 or vae/vao >> 1 yields the following simple expression for the cut off wavenumber k..

kea = j0(vao/vae) = Jo(pe/po)*/?
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This is depicted in the Figure 4. The cutoff wavenumber condition & > k. implies a constraint
between the loop geometry ratio (2a/L) and the density contrast ratio (pe/pp) which turns out to

be
L
32 = 0.65v/p0/pe-
Also it can be shown that the period of the sausage mode satisfies the condition
2ra 2.62a
Feavs Jovao = VA0 (37)
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Figure 5: The time profile and the Fourier power spectra of the pulsations
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7. An observational example

It is a common belief that microwave bursts are generated by the gyro synchrotron emission which
is very sensitive to the magnetic field in tha radio source. Causes of microwave flux pulsations with
periods P = 1 — 20s are believed to be some kind of magnetic field fluctuations that modulate the
gyro synchrotron radiation leading to acceleration of particles. The observational proof of the exis-
tence of global sausage mode should be based upon the determination of the oscillation period, the
longitudinal and transverse size of the magnetic loop and the spatial distribution of the oscillation
amplitude along the loop. A good candidate for such a proof is a solar flare which happened on
the 12th of January 2000, and observed by Nobeyama Radicheliograph, Japan at two frequencies.
Details of the observation can be found in [17]. The following figure (Figure 5) gives the time profile
of the 17 GHz flux integrated over the source in the limb on January 12, 2000 and also the radio
flux variations for various parts of the flaring loop. It is clear from the figure that these variations
are quasi periodic in nature and may be interpreted in terms of sausage oscillations.
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8. Conclusions

In this paper we have presented the different modes that are possible in coronal loops. Two modes in
particular, the sausage (symmetric) and kink (asymmetric) modes are discussed in detail. The kink
mode can be used as a diagnostic for determining the magnetic field of the corona, while the sausage
mode can be interpreted as quasi periodic pulsations from radio observations for a flaring loop. We
are analyzing the data obtained from the Gauribidanur Radioheliograph and hope to interpret some
of the obseervations in terms of these global modes.
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