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Black hole entropy: some skin deep subtleties sans strings
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The entropy ncrease by a huge factor when a star collapses mnto e black hole remamns an enigma. In the
recent past 1n attempt to understand the physics involved 1n the large numbe- of microstates involved ag well
as other aspects hke Hawluing radiation 1t has become fashionabie to invoke exotic objects like superstrings,
D-branes, etc The black holes are assumed stuffed and stacked with the.. objects! Here an attempt has
been made to understand several of these subtle features of black hole entropy and decay, linking them to
‘slan deep' horizon properties We have also made connection with several remarkable recent experiments on
coherent optical informetion storage OQur braneless approach is mostly in the framework of famihar physical
and astrophysical phenomena associated with general relativity

1. Introduction

The understanding of black hole entropy has been a long standing puzzle. What makes the entropy
increase by such a huge factor [1] when a star collapses mto a black hole 18 hiterally a mystery
enshrouded 1n enigmas!

The difficulties in accounting for the vast number of states associated with the large increase
n entropy has led 1n the recent past to several currently popular suggestions hike packing the black
hole [2] with exotic objects hike superstrings, superbranes, D-branes etc (a black hole may not have
haur but 1t could be very braney!) Despite some measure of success with these ideas it nevertheless
appears rather strange that a massive star or cluster of stars made up of completely farmhar matter
(atoms, radiation, nuclei, etc ,) should suddenly trensform into some thing made up of totally dif-
ferent exotic entities (lLike strings or branes) after 1t enters 1ts Schwarzschild radius' In this context
1t may be pointed out that a 10° solar mass black hole while entering the honzon has an average
density less than ar One would not usually associate emigmatic states of matter at that density!
Having said all this, the one thing which 1s definite, 1s that that black hole entropy 18 proportional
to the area of the hornzon, thus scaling as the square of the black hole mass This imphes among
other tings that a star around a solar mass increases 1ts entropy by & factor of ~ 101° when 1t forms
a black hole, This association of entropy only with the area (surface) of the horizon 18 embodied 1n
the so called holographic principle [3, 4 This paper deals with the topic of black hole entropy with
subtle connections with information theory and thermodynamies together quantum effects

2. Black hole entropy and quantum effects on the horizon

Classically the black hole horizon is just characterized by its Schwarzschild radius 74, the temporal
component of the metric tensor being given by goo = (1 — ro/r) Thus at 7, = 7, we heve an
mfinte red shift (with no signal reaching the distant observer) However If one considers possible
quantum effects [5], the horizon need not be exactly at r = r, but could differ by a Planck length,
Le, 7 —1s = Ly, where L =~ VEG/c® =16 x 10~ %3em. Since r, >> Ly, we now have mnstead of
a vamshing goo (as 1n the classical case),

Ts _ (r—rs) _ L, )

900=1—?——r——:
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So that now a distant observer would nstead of an infinite red shift factor of gpy’ > = (r, JLp)'? =~
10'° for & solar mass black hole (for the classical case, instead of s (finite) L,; we would have Ly — 0,
and recover the nfinite red shift). ‘Pinching the Horizon skin' (membrane), by & skin depth
Ly has made this difference! The temperature as measured by a distant observer (To) would also
be red shifted by the same factor of 10'°, as in general relativity, we have

T(gou)* = Constant (2)

3
T ™ Th(gm);i. = Th(L?‘Pl) ) 3

((900)o0) =1

T, is the temperature at the horizon of the co-maving observer collapsing with the matter For
a solar mass star the matter heats locally to a temperature of Ty, =~ 10'2 Degree as 1t collapses This
can be seen as follows. An object of mass M collapsing on a time scale of ~ GM /c3, releases energy
at the rate of (i.e., has a luminosity of:) ~ Mc?/GM/c® =~ /G Dmiding by the area of the horizon
(% (GM/c?)?) this would 1mply a co-moving temperature for the collapsing matter estimated from

2 5
a(%) T~ 0
or
To= 2, (5)

(where B is a constant made up of G,c,0, etc) This for M = M, umplies T}, =~ 10'?Degree.
Combining eqns (3) and (5), we have

_ B (L.\"* D
()5

(as r, proportional to M), D being another constent In eq (6), D turns out to be ~ hc3/GkB,
thus Tinge, being just the Hawking Temperature T 1f the black hole [6], which for a solar mass 1s
= 10~7Degree (Tinfty x 1/M, scaling mversely as the black hole mass).

We now understand why the entropy has increased by a factor of 101° The temperature mea-
sured by the distant observer Ty, 51y (0rT}) is 10'® times lower and as entropy 1s = E/T, this implies
an increase in entropy by a factor of ~ 10'®. To give a famihar example the sun emits photons
whose average energy kT corresponds to T' =~ 6000K The earth absorbs this radiation, and radiates
1t back after a time in space 1n the infrared with average energy Tg =~ 300K So for every photon
absorbed by the earth, 6000/300 ~ 20 photons are emitted back into space The Earth loses 20
units of entropy, (for every unit absorbed from the sun) so that the net entropy of radiation has
gone up by a factor of 20! Surely, we do not associate anything exotic with this' The energy emitted
from the black hole (Hawking radiation) can then be deduced from (6) One can also see this from
Liuoville’s Theorem, (1 e, conservation of phase space) Thus if the red shift (or Doppler) factor
is f, then the source emits as if 1t were at a temperature of Tp/f {where Tp is the temperature
in the source frame) and the energy flux scales as f* So eq (6) would 1mply that Hawking flux
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scales as 1/M? (as f ~ \/r,/Ly which for & solar mass black hole implies an energy emission rate
of = 10~ ergs/sec. ie, c®/G(Lpi/7s)? = ¢*/G(Mp/M)?, My beng the Planck mass). We can
also link entropy and information via Shannon’s theorem [7]. In the present case, the bandwidth
of the radiation has been redshifted by a factor of r, /L;,/ 2, so that the information transformation
18 also reduced by the same factor as I o« Av, Av is the bandwidth This 18 tantamount to the
entropy increasing by the same factor which for a solar mass black hole is = 1018, We can consider
the entropy of Hawking's radiance as entropy (uncertainty sbout the state) of the nowe, which is
adulterating the signal conveying the information The radiance power E 1s the sum of the noise
and signal powers and the maximum rate at which information can be recovered from radiation by
a suitable detector is,

L5 _dE

™ g dt?
dS/dt 18 the maximum entropy rate possible for given E

Again the red shift factor increases (the wavelength) and decreases the energy of individual

photons (bits) by such a huge amount (~ 10'°) that they would not register on the detectors and
hence lead to an information black out The probability distribution for the black hole to sponta-
neously emut n quanta in mode [z, w] when substituted in Shannon’s formula can be shown to give
the right amount of information lost n the given mode (8]

3. Analogy with optical system

For closed systems in which the evolution of the quantum state 18 unitary between process and
measurement, there 18 an intrinsic time symmetry. On the contrary time symmetry no longer
holds in open systems into which information 18 irretrievably lost. The information loss rate in the
black hole case 1s ~ ¢®/GMMts/sec One subtle aspect 1s that for any black hole, the Hawking
Temperature implies at any given time one photon (of wavelength = r,) 1n the entire volume = r2
This can be converted into a surface integral by Gauss’ Theorem, which 1mplies an emission rate
of ~ 1/At ~ (c3/GM)ts/sec through the horizon surface. One can quantify this with a master
diffusion equation for quantum communication signals Why does the radiation (or information)
appear to take 5o long to diffuse out of a black hole? This can be understood as a transport process
on the horizon, each ‘step’ of random (Brownian) diffusion corresponds to Ly So tbe time taken
for the diffusion over the honzon 1s 4~ (r2/L,)c Now the velocity of hght in a gravitational field
18 less than 1ts vacuum (or distant observer) value ¢ This 18 verified mn the so called Shapiro time
delay As 1s well known as far as the propagation of hght [9] 18 concerned the gravitational field 1s
ke a refractive medium with a refractive index = goo So the velocity of light 1n the gravitational
field 18 ¢ = ¢p(1 — r,/7) If 7, = r, the light 1s completely ‘stopped’ and ¢=0. However 1if as above,
=71, = Ly then ¢ = co(Lyi/7,), the external observer would see photons slowed down in an intense
gravitational field Then the diffusion time t4 above 1s now given as [10]

ta 13/ (Lot coLn/rs) = 73/ (coLyy) = G* M [hc, 7

(substituting for L;‘;l and 73) Eq (7) 1s precisely the Hawking evaporation time scale for the black
hole For a solar mass black hole t4 = 107 sec and ¢ = 10~38¢g, 5o 1n this picture the horizon with
its skin depth ~ Ly, appears to an external observer to slow down Light which now diffuses over &
time ¢4

In this context 1t 15 of much interest to note that in recent experiments [11], the group veloaity of
light 1n specially prepared media was brought to almost zero value leading to observation of coherent
optical information storage (12] (in a very thin layer) In the Ly skin deep horzon layer we had
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c®10~%¢y ~ 10-2cm/sec. A similar formuls to that (modified for the gravitational case) used in
the above optical phenomena gives a value for the group velocity ~ cgLp/r, We can also evaluate
the total amount of information or (degrees of freedom) bits stored using sumlar formulae [12] and
[13] (i.e.i for the number of modes N), which in this case for a cut off (skin depth) of wave pumber
ke~ L;, is:

Vi
4872 (8)

Here V is volume of the thin layer given by V =~ Gr2 L,, With this eq (8), gives (substituting
for sy Lpt, ke, etc).

(2~

GM?
e @)

which is precisely the total number of microscopic states of the black hole

e

4. Concluding remarks

In the limit Ly — 0, T, — 0, {4 — oo, we have the classical black hole which 1s completely black.
In principle we could have higher powers of Lyi/rr m goo, but their contributions would be much
smaller as (L << 1,). In conclusion, we have been able to have an understanding of several aspects
of black hole entropy, decay, number of microstates etc, mn the framework of wel} tested physical
pictures and without invoking exotic (unknown) physical objects! (1.e , braneless and sans strings!)
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