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ABSTRACT

In this thesis titled “Many-body theory of Electric Dipole Moments of Atoms

and its Implications for the Standard Model of Particle Physics”, we have car-

ried out theoretical studies of the electric dipole moments (EDMs) of closed-shell atoms

arising from the violations of P and T symmetries. It has been proved experimentally

that parity is not a conserved quantity of nature. Weak interactions violate parity. CP

violation was observed in the decay of neutral kaons, which means from the validity of the

CPT theorem that there must be a violation of the time-reversal symmetry if the CPT

is to be a conserved quantity. There has been no direct evidence of the time-reversal

violation till the most recent experiments on the B0 − B̄0 decays. Existence of a nonzero

EDM on a non-degenerate physical system would be a direct unambiguous evidence of

independent violations of the parity and time-reversal symmetries. In physical systems

having degeneracy, there can be a non-zero EDM due to the mixing of opposite parity

states. Such an EDM is not due to any discrete symmetry violation. An atom being a

non-degenerate physical system, can have a nonzero EDM arising from various sources

— parity and time-reversal violating electron-nuclear, electron-electron, interactions. In

addition to this, an atomic EDM can also arise from the parity and time-reversal violat-

ing interactions at the nuclear, nucleon and the quark levels. Measurement of an atomic

EDM and its comparison with the theoretical calculations of the enhancement factor

R = datom

Cptv
, where Cptv is the coupling constant associated with the parity and time-

reversal violating interactions and datom is the atomic EDM, gives information about the

xvi



coupling constants which can be used to set stringent limits on the CP violating param-

eters at the fundamental level predicted by various models of particle physics - SUSY,

left-right symmetric, multi-Higgs, etc. The connection between the atomic EDM and the

fundamental CP -violating parameters at the quark-gluon level, involves nuclear shell-

model and quantum chromodynamical calculations. Our calculation of the enhancement

factor, being model independent, has the potential to test various particle physics models

that describe physics beyond the Standard Model.

In the present work, we have calculated the EDM of 199Hg (Z = 80), which is one

of the most promising candidates experimentally. It has a nuclear spin I = 1/2 and

hence it’s nucleus is a rich source of CP violating interactions arising at the nuclear,

nucleon and at the elementary particle levels. This is due to the fact that the dominant

interactions responsible for CP violation at various sectors in closed-shell atoms are

highly sensitive to the nuclear spin. For example, the dominant source of 199Hg atomic

EDM is the nuclear Schiff moment which arises from the CP violation in the hadronic

sector at the elementary particle level and the nuclear Schiff moment is related to the

nuclear spin I.

In the present work, the various underlying many-body effects playing a crucial role

in the atomic EDM of 199Hg have been highlighted. We have calculated the enhance-

ment factor for the EDM induced by the tensor-pseudotensor (coupling constant CT )

and the nuclear Schiff moment (coupling constant Q) using a very powerful relativistic

many-body theory, the Coupled-Cluster theory (CCT). This is has been applied for the

calculation of EDMs of closed-shell atoms for the first time.
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Coupled-cluster theory to all levels of excitation to all orders, is equivalent to all

order many-body perturbation theory. Beyond second order it is very difficult to cal-

culate atomic properties like EDM, etc because of the proliferation of terms in higher

orders of the many-body perturbation theory. On the other hand, coupled-cluster the-

ory contains, at a given level of order of excitation of the cluster operators, those effects,

which would otherwise have occured at a higher order in perturbation theory. We have

applied coupled-cluster theory for the first time, to calculate closed-shell atomic elec-

tric dipole moments. The atomic EDM induced by nuclear Schiff moment (Q) and the

tensor-pseudotensor interactions have been calculated using the coupled-cluster singles

and doubles approximation, where only the correlations arising from singly and doubly

excited cluster amplitudes are treated to all orders in the residual Coulomb interaction.

We have also calculated the atomic polarizability of Hg and our results lie within the

error bars of the measurement. Our EDM calculations give an improved limit on CT ,

compared to an earlier calculation, where the correlation effects arising only from a few

kinds of excitations, of 2-hole — 2-particle type have been treated to all orders. These

effects form only a subset of the effects we have included in our present calculation. In

the framework of the Standard Model of Particle Physics, the parameter CT is zero and

our calculated values of Q and CT can be used to obtain new limits on quark-chromo

EDMs and other fundamental coupling constants including the QCD vacuum angle. In

other words, our values of CT and Q can be used to test the Standard Model of Particle

Physics.
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Chapter 1

Introduction

1.1 Atomic Electric Dipole Moments(EDM)

The three discrete symmetry operations under which the laws of physics were thought to

be invariant till the year 1957 are parity (P ), time-reversal (T ) and charge conjugation

(C). The search for violations of these symmetries could have profound implications for

our understanding of particle physics. Of the three symmetries, P violation was observed

by Wu.et al.[1] in 1957. Some years later, CP violation was observed in the neutral kaon

system [2]. The three symmetries are linked by the CPT theorem [3] 1 from which it

can be inferred that CP -violation implies T violation.

The origin of parity violation can be discerned within the frame work of the Standard

Model (SM) of particle physics through the weak interactions, but there is no clear

understanding of the origin of time-reversal violation in nature. The presence of a nonzero

electric dipole moment on a nondegenerate physical system is a direct signature of parity

(P ) and time-reversal (T ) symmetry violations [4]. The total angular momentum of a

physical system is related to its intrinsic EDM given by, D = d J, where J is the total

angular momentum, D and d represent the intrinsic EDM its magnitude respectively.

Table 1.1 illustrates the consequences of P and T violations on the intrinsic EDMs.

Under a parity transformation D being a vector changes sign and J being a pseudo

vector doesn’t change sign, whereas under a time-reversal transformation J changes sign

and D does not. The above table demonstrates in a simple way that for a system to

1Any quantum theory, formulated on flat space time is symmetric under the combined action of CPT
transformations, provided the theory respects (i) Locality (ii) Unitarity (i.e., conservation of probability)
and (iii) Lorentz invariance.

1



Chapter 1. IntroductionChapter 1. Introduction

Quantity Parity Time-reversal
D D = −D D = D
J J = J J = −J

Table 1.1: P ,T violation for a nonzero EDM

have a nonzero EDM, both P and T have to be simultaneously violated. This can

be rigorously proved for a nondegenerate physical system using some important ideas

of quantum mechanics and is presented in Appendix A. Hence, it follows that atoms

being nondegenerate physical systems can possess a nonzero intrinsic EDM if there are

violations of P and T symmetries. They offer advantages from an experimental point of

view, of being electrically neutral and hence can be subjected to external electric fields. In

addition, atoms are rich sources of EDMs as we shall explain later in this chapter. They

allow studies of CP or T violations in the leptonic, semi-leptonic and hadronic sectors.

Searches for an atomic EDM can be broadly classified into the following categories - EDM

of paramagnetic atoms (atoms having open-shell structure), EDMs of dia-magnetic atoms

(atoms with closed electronic structure) and EDMs of nucleons, particularly EDM of the

neutron. In this thesis, we discuss only the EDMs of diamagnetic atoms. Theoretical

studies involve the parameterization of the atomic EDMs in terms of the CP -violating

coupling constants at various levels as shown in Fig. 1.1 [5]. Some of the extensions of the

Standard Model, like the multi-Higgs, Supersymmetry (SUSY) and left-right symmetric

models, predict CP -violation at the level of elementary particles. The atomic EDMs

can hence be expressed in terms of these coupling constants, with the knowledge of the

CP -violating parameters of the intermediate - nuclear, nucleon and elementary particle

sectors as shown in Fig. 1.1. As shown in the chart 1.1, we begin with the EDM of

electron and quarks as well as the P and T violating interactions between electrons and

quarks and quarks and quarks, which are predicted by certain extensions of the Standard

Model [6]. Their manifestations at the levels of the nucleon and the nucleus are shown in

Fig. 1.1. The P and T violating electron-nucleus interactions of of two types. As shown

in the chart, one of them arises from the scalar-pseudoscalar currents and the other from

2
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the tensor-pseudotensor currents, the former contributes to the EDM of an open-shell

atom and the latter to the EDM of a closed-shell atom. In the present work, we focus on

the EDMs arising in closed-shell atoms. The most dominant source of the closed-shell

atomic EDMs is the nuclear Schiff moment (NSM) which is related to dN through the

nuclear spin.

level
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molecularnuclear 

level
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level
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particle 
level

de parad
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P & T _q q
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Figure 1.1: Origin of atomic EDM [5]. The chart shows the connection between the observable
atomic EDMs (the atomic, molecular level) and the underlying CP violating interactions that
produce them.
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1.1.1 Closed and Open-Shell Atomic EDMs and their Implica-

tions

The permanent EDM of a physical system is aligned along its total angular momen-

tum. This can be inferred from the Wigner-Eckart theorem [7]2. Since the EDM of

a closed-shell atom has zero total angular momentum from the electronic sector, the

atomic EDM must lie along the nuclear spin. This EDM arises primarily from the CP -

violating electron-nuclear interactions and the NSM. The electron-nuclear interactions,

which violate T and P are the tensor-pseudotensor (T-PT)3 or the scalar-pseudoscalar

(S-PS) interactions. In this thesis, we study atomic EDMs of closed-shell atoms which

arise mainly from the T-PT electron-nuclear interactions and the nuclear Schiff moment.

At the elementary particle level, the origin of closed-shell atomic EDMs is attributed to

the P and T violating electron-quark interactions and quark-quark interactions which

are predicted by the lepto-quark models [5]. The limits on the T-PT coupling constant

(CT ) has been obtained from the comparison of the most recent experimental result of

199Hg atomic EDM [8, 9],

d(199Hg) = (−1.06 ± 0.49 ± 0.40) × 10−28e cm

and the enhancement factor (ratio of atomic EDM to the coupling constant of the inter-

action in question) calculated by [10], using the coupled-perturbed Hartree-Fock theory,

d(199Hg) = −6.0 × 10−22CTσNe m

where σN is the nuclear spin, which gives the limit on CT ,

CT =

(

1.77 ± 0.82 ± 0.67

)

× 10−9σN

A nonzero value of CT would imply physics beyond the Standard Model. The source

of uncertainity in dHg is purely experimental, where the contribution comes from the

2Essentially which states that any vector pertaining to a system, must align with respect to the
direction of the internal property of the system.

3In ēe−N̄N interaction, we treat the electron and the nuclear currents as the tensor and pseudotensor
currents respectively, given by Ψ̄eσµνΨe and Ψ̄Nσµνγ5ΨN .
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systematic and the statistical errors. The uncertainity in CT arises from the theoretical

value of the ratio datom/CT as well as the experimental result for datom. The uncertainity

in the theoretical estimate of datom/CT depends on the method used for the determination

of CT . Higher is the order of the Coulomb perturbation incorporated into the theory,

higher is its accuracy. The accuracy of the calculations of enhancement factors would

lead to a more stringent limit on CT . Coupled-perturbed Hartree-Fock theory accounts

for two-particle, two-hole kind of electron correlations to all orders in perturbation. In

addition to these correlation effects, it is important to include the correlation effects

that have not been accounted for by the coupled-perturbed Hartree-Fock theory. A

more accurate atomic theory should be able to treat all kinds of electron correlations to

all orders in perturbation, which includes four-particle, four-hole, three-particle—one-

hole, etc effects. It is a challenge for many-body atomic theorists to be able to account

for these important correlation effects and in this thesis, we have attempted to address

this problem.

The NSM (denoted by operator S) is related to the EDM of the nucleus through

the nuclear spin and can be caused by the nucleon-nucleon interactions or a nucleon

EDM, which at the elementary particle level could arise from the interaction between

the quarks and the chromo electric dipole moments of the quarks. The coupling constants

associated with these interactions can be predicted by theories like multi-Higgs, SUSY

[5, 11]. The dependence of the T-PT and NSM interactions on the nuclear spin makes

closed-shell atoms, in particular, those having nonzero nuclear spin the best candidates

to look for atomic EDMs sensitive to the nuclear sector. Closed-shell atoms can also give

information on the electron EDM and scalar-pseudoscalar electron-nuclear interaction

by considering the hyperfine interaction as a perturbation [12], but the limits on the

corresponding coupling constants would not be as sensitive as those obtained from the

paramagnetic atomic EDMs. For 199Hg, the EDM induced by the NSM is calculated and

parameterized in terms of the Schiff moment operator S. The most recent calculation

by [13, 14] gives,

dHg = −2.8 × 10−17

(
SHg

efm3

)

e cm

5
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where SHg corresponds to the Schiff operator for 199Hg. At the nucleon level, the op-

erator S can be obtained in terms of the pion-nucleon coupling constants; pions being

the dominant mediators of the nucleon-nucleon interactions (more detailed analysis is

presented in Section 5.5 with our results) [15, 16]:

dHg = 3.92 × 10−25ηnp e cm

where ηnp is an intermediate parameter that is related to the CP violating pion-nucleon

coupling constant ḡπNN . This calculation involves nontrivial nuclear many-body physics,

and it gives [17],

dHg = −3.92 × 10−25 ×
(
GFm

2
π√

2

)

gπNN ḡπNN e cm

where gπNN is the CP conserving pion-nucleon coupling constant. From the above, the

observable atomic EDM can be expressed in terms of the chromo EDMs of quarks by

[17],

dHg = −3.92 × 10−25 ×
(
GFm

2
π√

2

)

gπNN × 2

(

d̃u − d̃d

)

e cm

where d̃d and d̃u are chromo EDMs of the d and the u quarks respectively which are

predicted by SUSY and the left-right symmetric models. The constant ḡπNN is also

related to θQCD, the QCD vacuum angle [18] by,

ḡπNN ≈ −0.027 θQCD

This allows us to constrain the value of θQCD through the 199Hg atomic EDM.

1.2 Experiments on Atomic EDMs

The atomic calculations involve the calculation of ‘enhancement factor’ which is the

atomic EDM parameterized in terms of the P and T violating coupling constants (R =

datom/Cptv), where Cptv is the coupling constant associated with any P and T violating

interaction. Comparing with the measured value of the atomic EDM, the value of Cptv

6
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can be extracted. Atoms are very excellent candidates for the search for atomic EDMs.

In particular, heavy atoms are the preferred choices as the EDM scales as Z2 or Z3. If

a physical system has an intrinsic EDM d, then its interaction with the external electro-

magnetic field, in analogy with the interaction of the magnetic dipole moment µ is,

Hint = −
(

d ~E + µ~B
)

·
~J

J

where ~J is the total angular momentum of the system. In the presence of external electric

and magnetic fields, the EDM d and the magnetic dipole moment µ precess about the

field axes. This precession is referred to as the Larmor precession. The basic idea in

an EDM experiment is to measure the difference in the Larmor precession frequency

corresponding to the parallel and anti-parallel configurations of ~E with respect to ~B [4],

ω1 =
2µ| ~B| + 2d| ~E|

~

ω2 =
2µ| ~B| − 2d| ~E|

~

δω = ω1 − ω2 =
4d| ~E|

~

Therefore,

d =
~ δω

4| ~E|
Owing to the precision to which the frequency is to be measured, the EDM experiments

are susceptible to a number of systematic effects like the motional magnetic fields, which

is one of the most important sources of error. Atoms moving in an external electric field

experience magnetic field in their rest frame, known as the motional magnetic field, given

by, Bm = v × E/c. This field is odd in P and can mimic an EDM signal. The second

important systematic effect comes from the leakage currents induced by the electric field.

The leakage currents caused by high voltage are difficult to control and account for. Laser

cooled atoms are excellent candidates for an EDM experiment. They offer the following

advantages over the conventional beam and cell apparatus :

1. The environment is relatively perturbation free due to extremely low temperatures.

7
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2. The average velocity of the atoms in the sample is nearly zero and hence there is

zero, or negligible motional magnetic field effect.

3. They allow high coherence times as the atoms can maintain spin coherence for a

relatively long time.

4. Low leakage currents.

5. It is possible to apply high electric fields as high as 100 kV/cm, as the sample

region is small.

1.3 Present Status of the EDM Experiments on Closed-

Shell Atoms

To date, the EDM experiment on 199Hg gives the most sensitive limits on P and T

violating coupling constants [8, 9]. 199Hg has a nonzero nuclear spin, I = 1/2 and

hence is very sensitive to the P and T violating interactions in the nuclear sector as

both the nuclear Schiff moment, and the tensor-pseudotensor interactions, depend on

the nuclear spin. Also, with Z = 80 it is sufficiently heavy which would enhance the

relativistic effects, in turn enhancing the EDM. Any nonzero result for the 199Hg EDM

would indicate physics beyond the Standard Model. To set limits on specific models of

CP violation, using atomic theory, the atomic EDM must be related to the CP violating

parameters at the level of elementary particles. Our aim in this work is to improve the

present limits for T-PT coupling constant and the Schiff moment which would in turn

help in obtaining more accurate limits for the P and T violating coupling constants at

the level of quarks and electrons. Limits on S can also be used to set further limits on

the nucleon EDMs [19]. The Table 1.3 summarizes the on-going EDM experiments on

closed-shell atoms. For experiments on various other atomic systems, see [20].

With the present apparatus the EDM of 199Hg was measured to be [8, 9]

d(199Hg) = (−1.06 ± 0.49 ± 0.40) × 10−28e cm

8
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Atomic system Present limit of EDM measured Laboratory
| (datom) | (e cm)

199Hg < 2.1 × 10−28 Univ. of Washington, Seattle
Xenon (0.7 ± 3.3 ± 0.1) × 10−27 Princeton University
Radium In progress Argonne National Laboratory

Ytterbium In progress Kyoto University
Radon isotopes In progress University of Michigan

Table 1.2: Ongoing experiments on closed-shell atoms

There is further scope of improving the sensitivity of the measurement by a factor of 4,

which could further improve the above result.

9



Chapter 2

Closed-shell Atomic Electric Dipole

Moments

Atomic EDM can arise from one/more of the following sources :

• EDM of an electron de.

• P ,T - odd electron-nucleon interactions which could be ‘scalar’ (scalar-pseudoscalar),

‘tensor’ (tensor-pseudotensor) or ‘pseudo-scalar’ (pseudoscalar-scalar) couplings.

• P ,T - odd electron-electron couplings (this interaction gives a negligible contribu-

tion as its strength cannot be as large as the electron-nucleus interaction where the

contributions to the electron-electron interactions do not add up coherently and

hence do not scale as Z2 or Z3, where Z is the atomic number).

• EDMs originating in the nucleus (NSM) due to the presence of P and T violating

interactions at the level of quarks.

Electric dipole moments of closed-shell atoms arise predominantly from the ‘tensor’ kind

of the electron-nucleus interaction and the NSM produced by the P and T violating inter-

actions in the nucleus[5]. This is mainly due to the electronic and nuclear structure and

related effects in closed-shell atomic systems [4], which will be discussed in subsequent

sections.

10
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2.1 Atomic EDM Induced by Tensor-Pseudotensor

Electron-Nucleus Interaction

Consider the atomic EDM arising from P ,T - odd electron-nucleon interactions and treat

the nucleus nonrelativistically. The interaction Hamiltonian has the form,

HEDM,T
e−N = iGFCT

√
2
∑

i

σN · γiρN (r) (2.1)

where, GF is the Fermi’s coupling constant, CT represents the T-PT coupling constant,

ρN(r) is the nuclear density and γi = βαi represent Dirac matrices. The operator σN

is the nuclear spin which is sometimes written in terms of the nuclear spin I in this

thesis. This interaction is responsible for the mixing of opposite parity electronic states

producing a nonzero atomic EDM and it is this dependence of the HEDM,T
e−N on the nuclear

spin that makes closed-shell atoms having nonzero nuclear spin to be more sensitive to

this interaction. The above form can be arrived at, starting from the second quantized

form of the HEDM operator,

HEDM =
iCTGF√

2

[
Ψ̄NσµνΨN

] [
Ψ̄eγ

5σµνΨe

]
(2.2)

Consider the term,
(
Ψ̄NσµνΨN

)
. We have, Ψ̄N = Ψ†

Nγ0. Hence,

γ0 σµν = γ0
i

2
[γµγν − γνγµ]

= 0 if µ = ν

= i γ0γµγν if µ 6= ν (2.3)

Using {γµ, γν} = 0, we have,

i γ0γµγν = i γ0 [γ0γi + γiγν](i6=ν)

= i γi + i γ0γiγν

= i γi + iαiγν

= i (γi + αiγν) (2.4)

11
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Substituting the expression for γ0σµν from Eq. (2.4) in Eq. (2.2),

HEDM =
iCTGF√

2

[

i Ψ†
N (γi + αiγν)(i6=ν) ΨN

] [
Ψ̄eγ

5σµνΨe

]
(2.5)

Consider the second term of Eq. (2.5),

Ψ̄eγ
5σµνΨe = Ψ†

eγ0γ5 (iγµγν)Ψe

= i Ψ†
eγ0γ5γµγνΨe

= − i Ψ†
eγ5γ0γµγνΨe

= − i Ψ†
eγ5 (γi + αiγνΨe) (2.6)

where
[
ν = 0, αiγ0 = −γ0αi = −γ0γ0γi = −γi

]
Now, Eq. (2.5) becomes,

HEDM =
iCTGF√

2

[
Ψ†

N

(
γi + αiγν

)

(i6=ν)
ΨN

] [
Ψ†

eγ5 (γi + αiγν) Ψe

]

=
iCTGF√

2

[
Ψ†

N

(
γi + αiγ0 + αiγj

)
ΨN

] [
Ψ†

eγ5

(
γi + αiγ0 + αiγj

)
Ψe

]

=
iCTGF√

2

[

Ψ†
N αiγjΨN

] [
Ψ†

eγ5 αiγjΨe

]

=
iCTGF√

2

[
Ψ†

N βγiγjΨN

] [
Ψ†

eγ5 βγiγjΨe

]

=
iCTGF√

2

[

Ψ†
N αiβαjΨN

] [
Ψ†

eγ5 αiβαjΨe

]

=
iCTGF√

2

[

Ψ†
NβαiαjΨN

] [
Ψ†

eγ5βαiαjΨe

]

(2.7)

Consider

αiαj =
(

0 σi
σi 0

)

×
(

0 σj
σj 0

)

=
(
σiσj 0
0 σiσj

)

= σiσj I (2.8)
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where I is the identity matrix and σi are the Pauli spin matrices. Consider,

γ5αk =
(

0 −I
−I 0

)

×
(

0 σk
σk 0

)

=
(−σk 0

0 −σk

)

= −
(
σk 0
0 σk

)

= i εijk γ
5 αk

= i
(

2 I
)

(2.9)

Treating the nucleus nonrelativistically,

HEDM =
iCTGF√

2

[
2 I
][

Ψ†
eγ5β γ5 αkΨe

]
ρN (r)

=
2iCTGF

√
2

2
β α I ρN (r)

= (i CT GF )
(√

2
)

( β α · I ) ρN (r) (2.10)

For an N-electron system, the above equation becomes,

HEDM = (i CT GF )
(√

2
)∑

i

( γi · I ) ρN (r) (2.11)

Note that the nuclear density ρN (r) is proportional to the atomic number Z. The

product of the Dirac matrices, (β & α) is an off-diagonal matrix, hence the matrix ele-

ment of theHEDM between the spinors which are proportional to
√
Z, and the dependence

of the β matrix on Z, finally results in the scaling of the enhancement factor (the ratio

datom/Cptv, Cptv is the P and T violating coupling constant) as 2 Z3. This suggests that

heavy atoms are preferred candidates for EDM experiments.

2.2 Atomic EDMs Arising from the Nuclear Schiff

Moment

According to Schiff’s theorem [21], the EDM of a point like nucleus is completely screened

by the atomic electrons and hence it cannot be measured [22]. If a set of charged particles

2See Appendix D for HEDM matrix elements
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with EDMs, are in equilibrium under their mutual electrostatic forces, the first order

correction to the energy due to the interaction of EDM with external electric field is

zero. Consider an atom as a set of quantum mechanical charged particles, placed in an

external electric field. The atom gets polarized and hence this induced charge distribution

produces an internal field to cancel the external electric field. Hence, there can be no net

force on the atom or the nucleus. This cancellation of the internal and external fields

is exact for a point nucleus, but not for a finite one. The s1/2 and the p1/2 electrons

have nonzero densities inside the nucleus. The nuclear Schiff moment arises due to the

P and T odd nuclear interactions. The interaction of this P and T odd potential with

the electron is responsible for the mixing of the opposite parity atomic wavefunctions

and gives rise to an atomic EDM.

The electrostatic potential produced by the Schiff moment is of the form [15]

ΦSM(~R) = 4π~S · ~∇δ(~R)

for nonrelativistic electrons, where ~R is the electron coordinate, ~S is the Schiff moment

operator and δ(~R) is the Dirac-delta function. Now the contact interaction −eΦSM mixes

the s and p1/2 orbitals and produces EDMs in atoms. Using integration by parts and

property of Dirac delta function, the matrix element between the s and p1/2 atomic states

is given by
〈

S

∣
∣
∣
∣
−eΦSM

∣
∣
∣
∣
P

〉

= 4πe~S ·
(
∇Ψ†

sΨp

)

R=0
= constant

is finite. The general P , T odd electrostatic potential inside the nucleus, is derived by

[23] and a detailed derivation is presented in the Appendix F. A more rigorous expression

for the nuclear potential arising from the nuclear Schiff moment is given by [23]:

ΦSM(~R) = − 3
~S · ~R
B

ρ(R) (2.12)

where B =
∫
R4ρ(R)dR. The Hamiltonian of the interaction of electrons with this

potential is

HSM = 3 e
~S · ~R
B

ρ(R) (2.13)
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If ρ(R) is considered as the normalized density function, which is 1 for R < RN − δ and

R > RN +δ, where RN is the nuclear radius, then the dimension of B is L5. Substituting

in Eq. (2.13), we obtain the dimension of S as QL3. If ρ(R) is considered as the usual

nuclear density (dimension L−3), then the dimension of B becomes = L4 ×QL−3 × L =

QL2. Substituting the dimensions of all quantities in Eq. (2.13), the dimension of S now

becomes = Q2

L
× L3

Q
× L2

L
= Q L3. Further, considering the quantization direction as ẑ,

the Eq. (2.13) can be reduced to

HSM = 15
S z

R5
N

e

We retain the quantity ρ(R) throughout our calculation. Hence, we use

ΦSM(~R) = − 3
~S · ~R
B

ρ(R)

= − 3
S R cos θ

B
ρ(R)

in spherical polar coordinates. The matrix elements of HSM in terms of the single particle

orbitals are given by3,

〈

Φks1/2

∣
∣
∣
∣
HSM

∣
∣
∣
∣
Φmp1/2

〉

= ( 3 S e)

(

−1

3

)

∞∫

0

[

Pa (r) Pb (r) + Qa (r) Qb (r)

]
ρ(R)

B
R dR (2.14)

The matrix element 〈Φmp1/2
|HSM|Φks1/2

〉 can be derived in a similar way and is found to

be exactly the same as Eq. (2.14).

3See AppendixE for derivation
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Chapter 3

Coupled Cluster Theory and its

Application to Atomic EDMs

Calculation of physical properties of many-body quantum systems primarily involves the

calculation of many-body wavefunctions. The accuracy of such a calculation hence, de-

pends upon the accuracy of the many-body wavefunctions. Consider an atomic system

composed of N particles. Let |Ψ0〉 be the ground state exact wavefunction of the system

and E be its total exact energy. The reference state of a system corresponds to the

ground state configuration of the system. The exact state and the exact energy can be

determined starting from the reference state of the physical system, constructed from the

single particle wavefunctions of the N constituents. The best choice of a many-particle

reference state is the Slater determinant, |Φ0〉. For an atom, the Slater determinant

describes the Fermi vacuum (core) state, constructed from the set of occupied orbitals.

These single particle orbitals are solutions of the Hartree-Fock equation in the indepen-

dent particle model and satisfy the Pauli’s exclusion principle, described in detail in [24].

A more realistic picture is that the particles are not moving independently due to their

mutual interactions, termed as the electron-electron correlation. Coupled-cluster (CC)

theory [25, 26, 27, 28] is a way to treat these correlations systematically, in which the

exact atomic state is realized as the state of the atom where all possible electron corre-

lations to all orders in terms of exciting clusters are accounted for. The operators that

describe these excitations are known as the cluster operators. It can be imagined that

two particles in the occupied space interact with each other via Coulomb interaction and

get excited to unoccupied space. This can be mathematically described by the action of
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an operator T2 on the reference state |Φ0〉, to produce a state T2|Φ0〉. The new state is

formed by a double excitation in the reference state giving rise to two ‘holes’ and conse-

quently creating two ‘particles’ outside the reference state. A similar process can occur

where, two pairs of particles excite themselves independently. This can be achieved by

acting T2 twice on the reference state |Φ0〉, with the inclusion of a statistical weighing

factor of
(

1
2!

)
to avoid counting pairs twice. The resulting contribution to the exact state

from the two double excitations is now
(

1
2!

)
T 2

2 |Φ0〉. This process of excitation of indepen-

dent pair of particles from the reference state is obtained by
(

1
m!

)
Tm

2 |Φ0〉, which describes

the amplitude of excitation of m independent pairs. All the double excitation amplitudes

can be superposed to give the total amplitude
∑∞

m=0

(
1

m!

)
Tm

2 |Φ0〉 = exp(T2)|Φ0〉. Simi-

larly, the amplitudes for the simultaneous excitation of three particles can be described

by T3|Φ0〉 and the total contribution of all triple excitations can be obtained by summing

over all the independent triplets,
∑∞

p=0

(
1
p!

)

T p
3 |Φ0〉. Also, the simultaneous independent

excitation of m pairs and p triplets is given by 1
p!m!

Tm
2 T

p
3 |Φ0〉. Summing over p and

m, the total amplitude is given by exp(T2 + T3)|Φ0〉. Proceeding as above, for an N

electron system, all possible single, double, triple and so on to ntuple excitations can be

obtained from the wavefunction exp(T1 +T2 +T3 + · · ·+ TN)|Φ0〉. The operator exp(T1)

produces single particle excitations and hence the total exact atomic wavefunction can

be described by the wavefunction |Ψ〉 = e(
PN

n=1 Tn)|Φ0〉. This is the exact atomic state

in the coupled-cluster formulation and T is known as the cluster operator. Throughout

the thesis we consider only the correlations giving rise to single and double excitations,

to all orders and the exact atomic Hamiltonian is the approximate relativistic Dirac-

�� ���� �� ������	
 �� 
���
���� �� ���� �������������� ��� � !" #$

%& '(
)* +, -�-.�. /012 34 567�78�8 9�9:�:

;<
=> ?�?@ ABC�CD E�EF

GH IJ K�KL�L
M�MNO�OP�P

(a) (b) (c) (d)

Figure 3.1: Physical realization of the coupled-cluster wavefunction - (a) represents Fermi vac-
uum, (b),(c),(d) represent single (T1), double (T 2

1 /2!, T2) and triple (T 3
1 /3!, T1T2, T3) excitations

respectively [25].

Coulomb Hamiltonian described in the next section. Also, the above formulation of the

17
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many-body exact state is valid precisely for a closed-shell atomic system. The exact

wavefunction of an atom of open-shell structure is obtained by partitioning the excita-

tions into three parts - excitations from the core to virtual, core to valence and valence

to virtual shells, described by an additional operator S. The many-body exact state

now becomes, |Ψ〉 = eT eS|Φ0〉. This thesis deals only with the coupled-cluster theory

applied to closed-shell atomic systems. CC theory applied to open-shell atomic systems

is explained in [29].

3.1 Coupled-Cluster Theory for Closed-Shell Systems

3.1.1 Unperturbed Coupled-Cluster Equations

The starting point of setting up the coupled-cluster equations is the relativistic atomic

Hamiltonian in the Dirac-Coulomb approximation,

H =

N∑

i

[

cαi · pi +

(

βi − 1

)

c2 + VN(ri)

]

+

N∑

i<j

1

rij
(3.1)

where, c is velocity of light, α and β are the Dirac matrices, 1/rij is the Coulomb

potential energy between two electrons, in atomic units (me = 1, |e| = 1 and ~ = 1)

and VN(ri) is the nuclear potential. In the above Hamiltonian, the rest mass energy

is subtracted from the total energy eigenvalues. This is the Hamiltonian of an atomic

system considering only the inter electron electrostatic interactions. The single particle

equations are obtained by approximating the two-electron term in Eq. (3.1) by a central

field potential UDF(i), known as the Dirac-Fock potential [24, 30], then

HDC =
N∑

i

[

cαi · pi +

(

βi − 1

)

c2 + VN(ri) + UDF(i)

]

+ Ves (3.2)

Define the residual Coulomb interaction Ves as,

Ves =

( N∑

i<j

1

rij
− UDF(i)

)
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The above Hamiltonian in Eq. (3.2) can be rewritten as,

HDC = H0 + Ves

where

H0 =
N∑

i=1

h0(i)

and

Ves = −
N∑

i=1

ui +

N∑

i<j

r−1
ij

The non-central (or) correlation effects are included by treating Ves as a perturbation.

The single electron wavefunctions satisfy the relativisitc many-particle Schrödinger equa-

tion [24, 30]

[

cαi · .pi +

(

βi − 1

)

c2 + VN(ri) + UDF(i)

]∣
∣
∣
∣
ψa

〉

= εa

∣
∣
∣
∣
ψa

〉

(3.3)

where |ψa〉 are the single electron wavefunctions in the two component form,

〈

r

∣
∣
∣
∣
ψa

〉

=
1

r

(
Pnaκa

(
r
)
χκama

(
θ, φ
)

i Qnaκa

(
r
)
χ−κama

(
θ, φ
)

)

(3.4)

where Pnaκa(r) and Qnaκa(r) are the large and small components of the single electron

wavefunction respectively and the angular part is a product of the orbital and spin

angular momenta of the electrons, given by

χκama(θ, φ) =
∑

ml
a,ms

a

∣
∣
∣
∣
la m

l
a

〉

×
∣
∣
∣
∣
sa m

s
a

〉〈

la, m
l
a, sa, m

s
a

∣
∣
∣
∣
Ja,Ma

〉

where la and sa are the orbital and the spin angular momenta of the electron respectively,

angular momenta, ml
a, m

s
a are their projections, Ja, Ma, the total angular momentum

and its projection. Here, a denotes the quantum numbers needed to specify the electron.

The quantity 〈la, ml
a, sa, m

s
a|Ja,Ma〉 are the Clebsch-Gordan coefficients. The orbital

part are the spherical harmonics and the terms involving spin are the Dirac spinors.

These single electron wavefunctions are simultaneous eigen functions of J , Jz, L and S.
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κ, the relativistic quantum number, is the eigenvalue of the operator K = −1 − 2L · S,

given in terms of j and l, κ = −
(
j + 1

2

)
a, where a = +1 for l =

(
j − 1

2

)
and a = −1

for l =
(
j + 1

2

)
[31, 32]. The many-electron wavefunction of an atomic system with the

Hamiltonian given in Eq. (3.2), is the Slater determinant obtained by constructing the

linear combinations of the single particle wavefunctions respecting the Pauli’s exclusion

principle, and is given by

∣
∣
∣
∣
Ψ

〉

=

√

1

N !

∣
∣
∣
∣
∣
∣
∣
∣

ψa(1) ψa(2) · · ·ψa(N)
ψb(1) ψb(2) · · ·ψb(N)
· · · · · · · · ·
· · · · · · · · ·
ψn(1) ψn(2) · · ·ψn(N)

∣
∣
∣
∣
∣
∣
∣
∣

(3.5)

where the coefficient
√

1/N ! is the normalization constant, and a single particle orbital

ψi(j) represents the wavefunction of electron with the space coordinate j and specified by

the set of quantum numbers i. Throughout the thesis, we denote a, b, c, · · · for occupied

orbitals (holes) and p, q, r, s, · · · for unoccupied orbitals (particles). The challenging

problem in atomic many-body theory is to solve the Hamiltonian Eq. (3.2) with Ves

as perturbation to all orders. Solving Eq. (3.3) variationally by minimizing the energy

functional with respect to the form of orbitals and by imposing orthonormality condition

[24], the Hartree-Fock equation is obtained as

(

h0 + g0 − ε0a

)∣
∣
∣
∣
ψ0

a

〉

= 0; (3.6)

where h0 and g0 are the single and two-particle operators respectively in Eq. (3.2),

together termed as the Fock operator f 0. The subscript 0 refers to the equation without

the EDM perturbation. The operator g0 is the central field approximation of the two-

electron Coulomb interaction

g0

∣
∣
∣
∣
ψ0

a

〉

=
Nocc∑

b=1

[〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b

〉∣
∣
∣
∣
ψ0

a

〉

−
〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ0

b

〉]

where v = 1/rij = 1/r12 is the two-electron operator and the sum runs over all occupied

orbitals. Substituting for g0, the Eq. (3.6) becomes

h0

∣
∣
∣
∣
ψ0

a

〉

+
Nocc∑

b=1

[〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b

〉∣
∣
∣
∣
ψ0

a

〉

−
〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ0

b

〉]

− ε0a

∣
∣
∣
∣
ψ0

a

〉

= 0 (3.7)
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Eq. (3.7) is the Hartree-Fock equation. The perturbed equations are obtained by

introducing the P and T violating tensor-pseudotensor interaction Hamiltonian in addi-

tion to the residual Coulomb interaction. The wavefunctions and the Hamiltonian are

perturbed by the HEDM interaction thereby giving the perturbed Hartree-Fock equations

demonstrated in the next few pages.

The many-body Schrödinger equation of the Dirac-Coulomb Hamiltonian for an

atomic system, in a state |Ψ〉 in the CC formalism is given by

H

∣
∣
∣
∣
Ψ

〉

= E

∣
∣
∣
∣
Ψ

〉

⇒ HeT (0)

∣
∣
∣
∣
Φ0

〉

= EeT (0)

∣
∣
∣
∣
Φ0

〉

where the superscript on T (0) is used to distinguish the unperturbed cluster operator

from the the EDM perturbed cluster operator, introduced in the subsequent sections of

this thesis. Operating from left side by e−T (0)

e−T (0)

HeT (0)

∣
∣
∣
∣
Φ0

〉

= E

∣
∣
∣
∣
Φ0

〉

Expressing H in normal ordered form, H = HN + EDF, where EDF = 〈Φ0|H|Φ0〉 −
〈Φ0|HN |Φ0〉 is the Dirac-Fock energy. Then,

e−T (0)

(

HN + EDF

)

eT (0)

∣
∣
∣
∣
Φ0

〉

= E

∣
∣
∣
∣
Φ0

〉

(3.8)

Projecting Eq. (3.8) with singly and doubly excited states 〈Φr
a| and 〈Φrs

ab| respectively

and restricting the cluster operator T (0) to T (0) = T
(0)
1 + T

(0)
2 , the single and double

excitation cluster amplitude equations are obtained. The second quantized form of the

cluster operators is given by

T
(0)
1 =

∑

a,p

a†p aa tp
a

∣
∣
∣
∣
Φ0

〉

T
(0)
2 =

∑

a,p,b,q

1

2!
a†p a

†
q ab aa tpq

ab

∣
∣
∣
∣
Φ0

〉

(3.9)

and

N∑

i=1

h0(i) =
∑

i

a†iaiεi

V = −
∑

ij

a†iaj

〈

i

∣
∣
∣
∣
u

∣
∣
∣
∣
j

〉

+
1

2

∑

ijkl

a†ia
†
jalak

〈

ij

∣
∣
∣
∣
r−1
ij

∣
∣
∣
∣
kl

〉

(3.10)
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Each term in the above equations can be represented diagrammatically described in

detail in the later sections and in this thesis all subsequent calculations are performed

using the diagrammatic approach. Expanding

(

e−T (0)
HNe

T (0)

)

using Campbell-Baker-

Hausdorf expansion,

e−T (0)

HN eT (0)

= HN+

[

HN , T
(0)

]

+
1

2!

[[

HN , T
(0)

]

, T (0)

]

+
1

3!

[[[

HN , T
(0)

]

, T (0)

]

, T (0)

]

+
1

4!

[[[[

HN , T
(0)

]

, T (0)

]

, T (0)

]

, T (0)

]

(3.11)

Examining the Eq. (3.11), the first term HN is a connected 1 term as it contains only

one vertex of HN . The second term
[
HN , T

(0)
]

is also connected using
[
HN , T

(0)
]

=
{

HNT
(0)

}

−
{

T (0)HN

}

, where the curly brackets refer to normal ordering 2. Considering

a general term,
[
HN , T

(0)
](n)

=
[[
HN , T

(0)
](n−1)

, T (0)
]

. Any nth commutator would

consist of all connected terms, provided the (n − 1)th commutator is connected. Hence

the term
(

e−T (0)
HN eT (0)

)

is built only from connected terms. Using

{

T (0)HN

}

= 0,

we get,

e−T (0)

HNe
T (0)

= HN +

{

HNT
(0)

}

+

{

HNT
(0) T (0)

}

+

{

HNT
(0) T (0) T (0)

}

+

{

HNT
(0) T (0) T (0) T (0)

}

(3.12)

=

(

HNe
T (0)

)

c

where, the curly brackets in the above equation represent normal ordering of the opera-

tors within the brackets, the symbol above the operators represents contraction and the

subscript c representes completely connected terms. Two operators, under this symbol

1For any two objects HN and T (0), we have HNT (0) = HNT (0) −
{

HNT (0)

}

2Two operators A and B in second quantization form are said to be normal ordered if the creation
operator associated with a core (a†

core) or the annihilation operator associated with the virtual (avirtual)
appears on the right side of the rest of the operators in the product AB.

22



Chapter 3. Coupled Cluster Theory and its Application to Atomic EDMsChapter 3. Coupled Cluster Theory and its Application to Atomic EDMs

are said to be contracted if their respective creation and annihilation operators contract

with each other, always in pairs of one creation and one annihilation operator, in all

possible ways. Substituting the above in Eq. (3.8) and projecting from left hand side by

singly and doubly excited determinantal states,

〈

Φr
a

∣
∣
∣
∣

{(

HNe
T (0)

)

c

}∣
∣
∣
∣
Φ0

〉

= 0 (3.13)

〈

Φrs
ab

∣
∣
∣
∣

{(

HNe
T (0)

)

c

}∣
∣
∣
∣
Φ0

〉

= 0 (3.14)

Expanding

(

HNe
T (0)

)

c

,

〈

Φr
a

∣
∣
∣
∣

{

HNT
(0) +HNT

(0) T (0) +HNT
(0) T (0) T (0) +HNT

(0) T (0) T (0) T (0)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

〈

Φrs
ab

∣
∣
∣
∣

{

HNT
(0) +HNT

(0) T (0) +HNT
(0) T (0) T (0) +HNT

(0) T (0) T (0) T (0)

}∣
∣
∣
∣
Φ0

〉

=

−
〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.15)

Note that the maximum number of T (0) operators contributing to the contraction in the

above equation is four, due to the two-body nature of HN . Since we use the approxima-

tion T (0) = T
(0)
1 + T

(0)
2 , Eq. (3.15) can be written in the matrix form as,




H11(T

(0)
1 , T

(0)
2 ) H12(T

(0)
1 , T

(0)
2 )

H21(T
(0)
1 , T

(0)
2 ) H22(T

(0)
1 , T

(0)
2 )








T

(0)
1

T
(0)
2



 =

( −H10

−H20

)

(3.16)

where the terms on the right hand side are independent of T
(0)
1 and T

(0)
2 and the dressed

Hamiltonian matrix elements on the left hand side are dependent on the T (0) amplitudes.

In the above equation, the size of the column vector is N , which is equal to the sum of

the single and the double excitations and the matrix on the left hand side is of dimension

N ×N .
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Combining the above equations,

A(T (0))T (0) = C (3.17)

where A is dependent on T (0) and C is independent of T (0). This is a nonlinear matrix

equation which should be solved in a self-consistent way to obtain the unperturbed cluster

amplitudes.

3.1.2 EDM Perturbed Coupled-Cluster Equations

The HEDM operator is a single-particle EDM operator and has the same diagrammatic

representation as the electric dipole operator and the one-body part of V (Eq. (3.10)).

Consider the HEDM perturbed Schrödinger equation for the atomic Hamiltonian H.

(

H̃

)∣
∣
∣
∣
Ψ

〉

=

(

E

)∣
∣
∣
∣
Ψ

〉

(3.18)

where H̃ = H + λHEDM and |Ψ〉 = eT |Φ0〉 = eT (0)+λT (1)|Φ0〉. Taking terms upto one

order in λ,

H̃eT (0)

(

1 + λT (1)

)∣
∣
∣
∣
Φ0

〉

= EeT (0)

(

1 + λT (1)

)∣
∣
∣
∣
Φ0

〉

Substituting for H̃ in the above equation,

(

H + λHEDM

)

eT (0)

(

1 + λT (1)

)∣
∣
∣
∣
Φ0

〉

= EeT (0)

(

1 + λT (1)

)∣
∣
∣
∣
Φ0

〉

Comparing λ0 and λ1 terms on both sides,

(

HeT (0)

)∣
∣
∣
∣
Φ0

〉

= EeT (0)

∣
∣
∣
∣
Φ0

〉

(3.19)

and
(

HeT (0)

T (1) +HEDMe
T (0)

)∣
∣
∣
∣
Φ0

〉

= EeT (0)

T (1)

∣
∣
∣
∣
Φ0

〉

(3.20)

Multiplying Eq. (3.19) by T (1) on both sides,

T (1)HeT (0)

∣
∣
∣
∣
Φ0

〉

= ET (1)eT (0)

∣
∣
∣
∣
Φ0

〉

(3.21)
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Using the normal ordered form of H = HN + EDF, Eq. (3.20) becomes,

(

HNe
T (0)

T (1) +HEDMe
T (0)

)∣
∣
∣
∣
Φ0

〉

=

(

∆Ecorre
T (0)

T (1)

)∣
∣
∣
∣
Φ0

〉

(3.22)

since T (0) and T (1) commute and Ecorr = E −EDF. Operate Eq. (3.22) on both sides by

e−T (0)
,

(

HNT
(1) +HEDM

)∣
∣
∣
∣
Φ0

〉

= ∆EcorrT
(1)

∣
∣
∣
∣
Φ0

〉

(3.23)

Operating by e−T (0)
on Eq. (3.21) and converting H into normal form,

T (1)HN

∣
∣
∣
∣
Φ0

〉

= ∆EcorrT
(1)

∣
∣
∣
∣
Φ0

〉

(3.24)

subtracting Eq. (3.23) from Eq. (3.24),

[

HN , T
(1)

]∣
∣
∣
∣
Φ0

〉

= −HEDM

∣
∣
∣
∣
Φ0

〉

(3.25)

where O = e−T (0)
ÔeT (0) where Ô is any operator. The equation for the coupled-cluster

perturbed singles and doubles can be derived from the basic equation, Eq. (3.25) by

projecting on both sides of the equation with singly and doubly excited determinantal

states.

〈

Φr
a

∣
∣
∣
∣

[

HN , T
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

〈

Φrs
ab

∣
∣
∣
∣

[

HN , T
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.26)

which are equivalent to

〈

Φr
a

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

〈

Φrs
ab

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.27)

These equations are the HEDM perturbed coupled-cluster equations and are termed as

CCEDM equations in this thesis. Further expanding T (1), these equations can be recast

in the form of a system of linear matrix equations,

H11T
(1)
1 +H12T

(1)
2 = −H10

H21T
(1)
1 +H22T

(1)
2 = −H20 (3.28)
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where H11, H12, H21, H22 are dressed Hamiltonian matrix elements and H10 and H20 are

the dressed HEDM matrix elements. The above equation can be expressed more compactly

as AT (1) = C, where the matrices A and C are independent of the T (1) amplitudes. The

Eq. (3.28) is classified into four blocks, T1-T1, T1-T2, T2-T1 and T2-T2 ; where T1-T1

and T1-T2 contain the diagrams contributing to the T
(1)
1 equation through singles and

doubles respectively, and T2-T1 and T2-T2 contain the diagrams contributing to the

T
(1)
2 equation through singles and doubles respectively. The diagrams contributing to

the CCEDM equations with zero orders in T (0) are shown in Fig. 3.3, 3.4, 3.5, 3.6. The

diagrams 3.7 and 3.8 represent the terms present on the right hand side of the CCEDM

equations. The diagrammatic representation of the operators is shown in Fig. 3.2.

VN

( 0 )
T2

D

( 1 )

2T

f N

HEDM

T1

( 0 )

T
( 1 )

1

Figure 3.2: Notation. fN and VN denote the one- and two- electron parts of HN respectively.
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Figure 3.3: Diagrams contributing to T1-T1 block.
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Figure 3.4: Diagrams contributing to T2-T1 block
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Figure 3.5: Diagrams contributing to T1-T2 block
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Figure 3.7: Diagrams contributing to the right hand side of the singles CCEDM equation.
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Figure 3.8: The diagrams contributing to the right hand side of the doubles CCEDM equation.
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3.1.3 Reduction of the Perturbed Coupled-Cluster Equations

to Unperturbed Coupled-Cluster Equations

In the absence of an external perturbation such as the EDM interaction, the EDM

perturbed CC equations given by Eq. (3.27) can be reduced to the unperturbed CC

equations given by Eq. (3.14). Hence, the unperturbed cluster amplitudes assume the

role of the perturbed cluster amplitudes and the CC equation can be solved to obtain

the unperturbed cluster amplitudes. This exercise can serve as a good check for the

CCEDM code. This can be implemented at two stages — linear and nonlinear in the

T (0) operator. The calculation of the unperturbed amplitudes from CCEDM equations

in the limit HEDM → 0 at the linear level is discussed in the next few pages. Consider

the CC equations (Eq. (3.14)) with upto one order in T (0) (linearised CC equations),

〈

Φr
a

∣
∣
∣
∣

{

HN +HNT
(0)

}∣
∣
∣
∣
Φ0

〉

= 0 (3.29)

〈

Φrs
ab

∣
∣
∣
∣

{

HN +HNT
(0)

}∣
∣
∣
∣
Φ0

〉

= 0 (3.30)

(Note that in the present section, we have renamed T in Eq. (3.14) as T (0).) Since we

use the approximation T (0) = T
(0)
1 + T

(0)
2 ,

〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

+

〈

Φr
a

∣
∣
∣
∣

{

HNT
(0)
1 +HNT

(0)
2

}∣
∣
∣
∣
Φ0

〉

= 0 (3.31)

〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

+

〈

Φrs
ab

∣
∣
∣
∣

{

HNT
(0)
1 +HNT

(0)
2

}∣
∣
∣
∣
Φ0

〉

= 0 (3.32)

The above equations can be written in the form,

H11T
(0)
1 +H12T

(0)
2 = −H10 (3.33)

H21T
(0)
1 +H22T

(0)
2 = −H20 (3.34)

where the right hand side of the above equations is independent of T (0). The above

equations can be combined to give,

AT (0) = C (3.35)
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where A and C are independent of T. This is a linear matrix equation. Now, consider

the CCEDM equations (Eq. (3.27)),

〈

Φ∗

∣
∣
∣
∣

[

HN , T
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φ∗

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.36)

where |Φ∗〉 is a singly or doubly excited Slater determinant. The linearised CCEDM

equations are obtained by approximating, HN ≈ HN and HEDM ≈ HEDM. This gives for

singles,
〈

Φr
a

∣
∣
∣
∣

[

HN , T
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.37)

where T (0) assume the role of of T (1). In the absence of the EDM perturbation, on the

right hand side of the Eq. (3.37), HEDM is replaced by HN. Also, the T (0) amplitudes

take the role of the T (1) amplitudes. Hence the singles equation becomes,

〈

Φr
a

∣
∣
∣
∣

{

HNT
(0)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.38)

In the left hand side of the Eq. (3.38), the terms of {HNT
(0)} contributing to the singles

and linear in T (0) arise only from the (2-hole — 2-particle) (diagrams CS3, CS4 Fig. 3.3),

(3-particle — 1-hole) (diagrams CS7, CS8 Fig. 3.5), (3-hole — 1-particle) (diagrams CS9,

CS10 Fig. 3.5) and particle-particle (CS1, Fig. 3.3) and hole-hole (CS2 Fig. 3.3) form

of the residual Coulomb operator. With the inclusion of only these diagrams and under

the linear approximation, in the absence of the HEDM perturbation, Eq. (3.38) becomes

mathematically equivalent to the unperturbed CC equations, Eq. (3.32). Similar changes

for the CCEDM equation for doubles gives,

〈

Φrs
ab

∣
∣
∣
∣

{

HNT
(0)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.39)

For the doubles, the diagrams contributing to the left hand side are (4-hole) (diagram

CD6 Fig. 3.6), (4-particle) (diagram CD3 Fig. 3.6), (3-particle — 1-hole) (diagrams

CD1, CD2 Fig. 3.4), (2-particle — 2-hole) (diagrams CD4, CD5, CD9, CD10 Fig. 3.6)

and particle-particle (CD7) and hole-hole (CD8) (Fig. 3.6). The Eq. (3.38) and Eq.
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(3.39),

〈

Φr
a

∣
∣
∣
∣
HNT

(0)

∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.40)

〈

Φrs
ab

∣
∣
∣
∣
HNT

(0)

∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.41)

are the ‘unperturbed’ deduced from the linear CCEDM equations in the limit of HEDM →
0 and can be represented in terms of elements of a matrix as

H ′
11T

(0)
1 +H ′

12T
(0)
2 = H ′

10 (3.42)

H ′
21T

(0)
1 +H ′

22T
(0)
2 = H ′

20

where H ′
10 and H ′

20 are the Coulomb matrix elements on the RHS of Eq. (3.41) and (3.41)

respectively and H ′
11, H

′
12 and H ′

21, H
′
22 represent the matrix elements on the LHS of

Eq. (3.41) (3.41) respectively. These are equivalent to the coupled-cluster equations Eq.

(3.34). The term 〈Φr
a|HN|Φ0〉 = 0 on the right hand side of Eq. (3.41), due to Brillouin’s

theorem 1. The singles equation after substituting T (0) = T
(0)
1 + T

(0)
2 becomes,

〈

Φr
a

∣
∣
∣
∣
HNT

(0)
1 +HNT

(0)
2

∣
∣
∣
∣
Φ0

〉

= 0

For the initial guess, set the matrix elements of T
(0)
2 = 0 and hence

〈

Φr
a

∣
∣
∣
∣
HNT

(0)
1

∣
∣
∣
∣
Φ0

〉

=
∑

I

〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
ΦI

〉〈

ΦI

∣
∣
∣
∣
T

(0)
1

∣
∣
∣
∣
Φ0

〉

= 0

For a given value of I, the matrix elements of T
(0)
1 = 0. The initial guess values for the

doubles cluster amplitudes are obtained from the doubles equation by setting T
(0)
1 = 0,

〈

Φrs
ab

∣
∣
∣
∣
HNT

(0)
2

∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

(3.43)

The matrix elements on the right hand side of Eq. (3.43) reduce to

〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

=

〈

rs

∣
∣
∣
∣
v

∣
∣
∣
∣
ab

〉

−
〈

rs

∣
∣
∣
∣
v

∣
∣
∣
∣
ba

〉

1This states that the Hamiltonian HN does not connect the determinantal states which differ by a
single excitation and hence there can be no first order mixing of such states
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and the initial guess for T
(0)
2 becomes,

= −

[〈

rs

∣
∣
∣
∣
v

∣
∣
∣
∣
ab

〉

−
〈

rs

∣
∣
∣
∣
v

∣
∣
∣
∣
ba

〉]

εa + εb − εp − εq

The Eq. (3.41) are then solved for the unknown T (0) amplitudes. Appropriate changes

corresponding to the reduction of the perturbed CC equations to the unperturbed CC

equations are made to the linear CCEDM program to calculate the unperturbed cluster

amplitudes and the correlation energy.

3.1.4 Non-Linear EDM Perturbed Coupled-Cluster Equations

Consider the HEDM perturbed singles and doubles cluster amplitudes equation (the prime

denotes that the reference state and the excited Slater determinants are opposite in parity

due to the parity odd perturbation)

〈

Φr
a
′

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a
′

∣
∣
∣
∣

{

HEDM

}∣
∣
∣
∣
Φ0

〉

〈

Φrs
ab

′

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

′

∣
∣
∣
∣

{

HEDM

}∣
∣
∣
∣
Φ0

〉

(3.44)

Expanding HN in the equation for singles,

〈

Φr
a
′

∣
∣
∣
∣







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T (1)

∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a
′

∣
∣
∣
∣

{

HEDM

}∣
∣
∣
∣
Φ0

〉

(3.45)

Using T (1) = T
(1)
1 + T

(1)
2 ,

〈

Φr
a
′

∣
∣
∣
∣







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
1

+







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
2

∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a
′

∣
∣
∣
∣

{

HEDM

}∣
∣
∣
∣
Φ0

〉
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Similarly the double excitations satisfy the equation

〈

Φrs
ab

′

∣
∣
∣
∣







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
1 (3.46)

+







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
2

∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

′

∣
∣
∣
∣

{

HEDM

}∣
∣
∣
∣
Φ0

〉

writing the equation for singles in terms of matrix elements,

A11(T
(0))T

(1)
1 + A12(T

(0))T
(1)
2 = −(HEDM)1

0 (3.47)

where

A11(T
(0))T

(1)
1 =

〈

Φr
a
′

∣
∣
∣
∣







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
1

∣
∣
∣
∣
Φ0

〉

,

A12(T
(0))T

(1)
2 =

〈

Φr
a
′

∣
∣
∣
∣







HN +HNT
(0) +

1

2!
HNT

(0) T (0) +
1

3!
HNT

(0) T (0) T (0)







T
(1)
2

∣
∣
∣
∣
Φ0

〉

Similarly for the double excitations,

A21(T
(0))T

(1)
1 + A22(T

(0))T
(1)
2 = −(HEDM)2

0 (3.48)

where the matrices A21(T
(0)) and A22(T

(0)) are the coefficients of T
(1)
1 and T

(1)
2 operators

in the doubles Eq. (3.46) respectively. The Eq. (3.47), Eq. (3.48) are nonlinear in T (0),

but linear in T (1) and can be combined and written as

[
A11 A12

A21 A22

]


T

(1)
1

T
(1)
2



 =

[
B1

B2

]

(3.49)

where

B1 = −(HEDM)1
0 =

〈

Φr
a
′

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉
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and

B2 = −(HEDM)2
0 =

〈

Φrs
ab

′

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

These equations can be recast as,

A(T (0))T (1) = B (3.50)

which are solved, to get the perturbed cluster amplitudes, where the T (0) amplitudes are

assumed to be known. Splitting the matrix A(T (0)) in the above equation into diagonal

and off-diagonal parts,

Adiag(T
(0))T (1) + Aoffdiag(T

(0))T (1) = B

gives an equation of the form

T (1) =
1

Adiag(T (0))

[

B − Aoffdiag(T
(0))T (1)

]

(3.51)

This equation is solved iteratively until the self-consistently is achieved for the unknown

T (1) amplitudes. That is, starting from an initial guess for the T (1)’s, a new set of

T (1)’s are calculated, each time with the latest iterates. This process is repeated until

convergence of the ith and the (i − 1)th iterates. More details of the iterative scheme

are presented in Section 4.2.

3.1.5 Selection Rules for the Cluster Operators

The tensor-pseudotensor electron-nucleus interaction Hamiltonian has the form (Eq.

(2.1)),

HEDM,T
e−N =

iGFCT√
2

∑

i

σN · γiρN (r) (3.52)

The operator in the electron space (γi) is a vector of rank 1. The perturbed cluster

amplitudes are associated with the electron space, which can be noted from the second

quantization representation of the cluster operators (see Eq. (3.9)). The rank of the
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interaction Hamiltonian must be incorporated into the cluster amplitudes and the dia-

grams representing them. Consider the diagrammatic representation of T
(1)
1 shown in

Fig. 3.9(a) . In terms of the multipole components

T1
(1) =

∑

q

(T1
(1))

1

q (3.53)

Algebraically, T
(1)
1 can be written as

T
(1)
1 =

∑

a,p

a†paa tpa (3.54)

where, p is a particle, hence represented by an out-going line, and a is a hole represented

by an incoming line, and tpa is the corresponding cluster amplitude. The rank of T (1) is

denoted by k2 = 1.

k2 = 1

a p
1 2

2 = 1

a p

λ

k

λ
b q

(b)(a)

Figure 3.9: Diagram representing T (1) - (a) T
(1)
1 (b) T

(1)
2

The vertex formed by the orbital lines (a, p, k2) in the T
(1)
1 diagram corresponds to

the matrix element 〈p|T (1)
1 |a〉, and satisfies the triangular condition 3,

|Ja − 1| ≤ Jp ≤ Ja + 1,

and the magnetic quantum numbers satisfy,

ma +mp + q = 0,

where the Ji’s and mi’s represent the total angular momenta and their projections re-

spectively. The operator T (1) is odd under parity therefore,

(−1)la + lp = −1

3as dictated by the Wigner Eckart theorem for the matrix element of T
(1)
1
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where li is the orbital angular momentum of the ith orbital. Consider the diagram

representing T
(1)
2 operator. The vertices formed by the orbital indices (a, p, λ1), (b, q, λ2)

and (λ1, λ2, k2) satisfy the triangular conditions

|Ja − Jp| ≤ λ1 ≤ Ja + Jp

|Jb − Jq| ≤ λ2 ≤ Jb + Jq

|λ1 − λ2| ≤ k2 ≤ λ1 + λ2

and the vertices satisfy,

(−1)la+lp = (−) (−1)lb+lq

Note that for the unperturbed cluster operator T (0) and the residual Coulomb operators

preserve parity and hence, we have,

(−1)la+lp = (−1)lb+lq

3.2 Application of CC Theory to Atomic Electric

Dipole Moments

The EDM of the atom in the exact state |Ψ′〉 is

Da =

〈

Ψ′

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ′

〉

〈

Ψ′

∣
∣
∣
∣
Ψ′

〉 (3.55)

where D is the electric dipole operator and |Ψ′〉 is given by,

∣
∣
∣
∣
Ψ′

〉

=

∣
∣
∣
∣
Ψ0

〉

+ λ

∣
∣
∣
∣
Ψ

(1)
0

〉

where |Ψ0〉 is the unperturbed state, λ is the perturbation parameter and |Ψ(1)
0 〉 is

the first order correction to the unperturbed state due to the EDM perturbation. The

exact state can be written in terms of the cluster operators as
∣
∣
∣
∣
Ψ′

〉

= eT (0)+λT (1)

∣
∣
∣
∣
Φ0

〉
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where |Φ0〉 is the reference state. Retaining terms upto order λ,

∣
∣
∣
∣
Ψ′

〉

= eT (0) (
1 + λT (1)

)
∣
∣
∣
∣
Φ0

〉

Substituting the above expression for |Ψ′〉 in Eq. (3.55) and keeping terms only of order

λ, we obtain the expression for EDM 4,

Da =

〈

Φ0

∣
∣
∣
∣

[

DT (1) + T (1)†D

]∣
∣
∣
∣
Φ0

〉

〈

Ψ0

∣
∣
∣
∣
Ψ0

〉 (3.56)

which can also be written as,

Da =

〈

Φ0

∣
∣
∣
∣

[

DT (1) +T (1)†D

]∣
∣
∣
∣
Φ0

〉

〈

Ψ0

∣
∣
∣
∣
Ψ0

〉 (3.57)

where D = eT (0)†
DeT (0)

, using the fact that T (1) and D operators are odd and T (0)

operator is even under parity, the bra and the ket vectors in the above expression must

have the same parity. To simplify the calculations, we expand D in the following manner,

D =

(

1 + T (0)† +
T (0)†

2

2!
+ · · ·

)

D eT (0)

This can be written as [33]

D = DeT (0)

+
∞∑

n=1

1

n!

(

T (0)†
)n

DeT (0)

(3.58)

The diagrams representing the electric dipole operator are shown in Fig. 3.10.

In Eq. (3.58), the one-body nature of the electric dipole operator D restricts the

maximum possible contractions with T (0) to just two. Define

∣
∣
∣
∣
Φ1

〉

= T (1)

∣
∣
∣
∣
Φ0

〉

=
(

T
(1)
1 + T

(1)
2

)
∣
∣
∣
∣
Φ0

〉

,

4The symbol of contraction appears using DT (1) = DT (1) +

{

DT (1)

}

, where the curly brackets refer

to normal ordering and the expectation value of normal ordered operator between the vacuum states is
zero
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b. c. d.a.

Figure 3.10: Diagrams representing the electric dipole operator

then

Da =

〈

Φ0

∣
∣
∣
∣
D

∣
∣
∣
∣
Φ1

〉

+

〈

Φ1

∣
∣
∣
∣
D

∣
∣
∣
∣
Φ0

〉

〈

Ψ0

∣
∣
∣
∣
Ψ0

〉 = 2

〈

Φ1

∣
∣
∣
∣
D

∣
∣
∣
∣
Φ0

〉

〈

Ψ0

∣
∣
∣
∣
Ψ0

〉 (3.59)

The last step follows as the two terms are the complex conjugates of each other and give

equal contributions. Substituting the expanded form of D

Da = 2

〈

Φ1

∣
∣
∣
∣

[

DeT (0)

+

∞∑

n=1

1

n!

(

T (0)†
)n

DeT (0)

]∣
∣
∣
∣
Φ0

〉/〈

Ψ0

∣
∣
∣
∣
Ψ0

〉

= 2

[〈

Φ1

∣
∣
∣
∣
DeT (0)

∣
∣
∣
∣
Φ0

〉

+

〈

Φ1

∣
∣
∣
∣

∞∑

n=1

1

n!

(

T (0)†
)n

DeT (0)

∣
∣
∣
∣
Φ0

〉]/〈

Ψ0

∣
∣
∣
∣
Ψ0

〉

(3.60)

The complexity of the above expression can be mitigated by exploiting the fact that not

all the terms containing the T (0)† operators contribute to the infinite summation. In

this scheme, the zeroth order Da is terms without T (0)† operator, first order Da is terms

having one order of T (0)†, and so on. The unlinked terms of the numerator cancel with

the denominator and only linked terms contribute in the numerator.

3.2.1 Zeroth Order EDM

Consider the zeroth order contribution

D0
a =

〈

Φ1

∣
∣
∣
∣
DeT (0)

∣
∣
∣
∣
Φ0

〉

Expanding 〈Φ1|

〈

Φ1

∣
∣
∣
∣
DeT (0)

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
1

†
DeT (0)

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

Z1

+

〈

Φ0|T (1)
2

†
DeT (0)

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

Z2

. (3.61)
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The level of excitation (l.o.e) is the excitation number, assigned to a diagram taking into

account the hole and particle creation and annihilations at the vertices of one and two-

body diagrams. For example, the operators, T1 and T2 have l.o.e = 1 and 2 respectively

since T1 involves the annihilation of a hole a and the creation of a particle p and T2

involves annihilation of two holes and creation of two particles. Then, T †
1 and T †

2 have

l.o.e equal to −1 and −2 respectively. Since the operators T
(1)
1 and T

(1)
2 have fixed levels

of excitation of +1 and +2 respectively, the possible terms contributing to the dressed

dipole operator are restricted in Eq. (3.61). In other words, the term Z1 is nonzero only

when
(
DeT (0))

1
has l.o.e = 1 (indicated by the subscript). Similarly, for a nonzero Z2

contribution
(
DeT (0))

2
must have a l.o.e = 2. Hence the terms finally contributing to

zeroth order EDM can be read off as,

(

DeT (0)
)

1
=

1

2!
DT

(0)
1

2
+DT

(0)
2 +DT

(0)
1 +D (3.62)

(

DeT (0)
)

2
=

1

3!
DT

(0)
1

3
+DT

(0)
1 T

(0)
2 +

1

2!
DT

(0)
1

2
+DT

(0)
2 +DT

(0)
1 (3.63)

The diagrams of (DeT (0)
)1 and (DeT (0)

)2 are shown in Fig. 3.11 and Fig. 3.12 respec-

tively. The linked diagrams of (DeT (0)
)1 are connected, but for (DeT (0)

)n≥2, disconnected

diagrams also contribute.

( D eff ) Z1

a. b. c.

f.e.d.

1.

Figure 3.11: Diagrams contributing to
(
DeT (0))

1
. The diagram named (Deff)Z1 is the effective

operator obtained by summing the diagrams (a,b,c,d,e,f). All diagrams are connected.

In Fig. 3.12, among the (DeT (0)
)2 diagrams, (a), (c), (g) and (j) are connected and

the remaining are disconnected,

(DeT (0)

)2 =
(

DeT (0)
)conn

2
+
(

DeT (0)
)discon

2
, (3.64)
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2.

+ 

a.

d.

c.

f.e.

b.

g. h. i. j.

Z1 Z2 (A)T
(0)
1 = ( D      )

Z2 (B)effeffeff( D      ) ( D      )

Figure 3.12: Diagrams contributing to
(
DeT (0))

2
.

where the first and second terms represent the connected and disconnected terms. The

connected terms resemble the diagrams contributing to the doubles on the right hand side

of the CCEDM equation, again with the HEDM operator replaced by D (see Fig. 3.8).

The topology of the diagrams shows that diagrams of
(
DeT (0))

2
arise from

(
DeT (0))

1
×T (0)

1

and
(
DeT (0))conn

2
diagrams. That is

(

DeT (0)
)discon

2
=
(

DeT (0)
)

1
× T

(0)
1 (3.65)

All the diagrams having same number of free lines and components are grouped together

to obtain effective diagrams shown in Fig. 3.13(II). The diagrams contributing to the

zeroth order EDM in Eq. (3.60) are shown in Fig. 3.14 and are obtained from the

contraction of the effective dressed electric dipole operator with the perturbed cluster

operator.
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I .

a. b.

II .

Effective diagram

for doubles

sfor singles 

Effective diagram

( D     )eff ( D     )eff Z2 (B)Z2 (A)
Z1( D     )eff

Figure 3.13: Effective diagrams for singles and doubles for zeroth order

3.2.2 First Order EDM

Next, consider the n = 1 term in Eq. (3.60), it is the first order in T (0)†

〈

Φ1

∣
∣
∣
∣
T (0)†DeT (0)

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣

[

T
(1)
1

†
+ T

(1)
2

†
]

T (0)†DeT (0)

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
1

†
T (0)†DeT (0)

︸ ︷︷ ︸

F1

∣
∣
∣
∣
Φ0

〉

+

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
T (0)†DeT (0)

︸ ︷︷ ︸

F2

∣
∣
∣
∣
Φ0

〉

We now determine the terms contributing to F1 and F2, expanding T (0)† in F1

〈

Φ0

∣
∣
∣
∣
T

(1)
1

†
T (0)†DeT (0)

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
1

†
(

T
(0)
1

†
DeT (0)

)

1

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

F1(A)

+

〈

Φ0

∣
∣
∣
∣
T

(1)
1

†
(

T
(0)
2

†
DeT (0)

)

1

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

F1(B)

Further, expanding DeT (0)
in F1(A),

(

T
(0)
1

†
DeT (0)

)

1
= T

(0)
1

†
(

DeT (0)
)

2

= T
(0)
1

†
[

1

3!
DT

(0)
1

3
+DT

(0)
1 T

(0)
2 +

1

2!
DT

(0)
1

2
+DT

(0)
2 +DT

(0)
1

]

2

= T
(0)
1

†
[(

DeT (0)
)conn

2
+ (DeT (0)

)1 × T
(0)
1

]

(3.66)

As discussed in the zeroth order case, the (DeT (0)
)2 diagrams arise from (DeT (0)

)1 × T
(0)
1

and the actual (DeT (0)
)conn
2 diagrams. We saw that the effective diagrams listed in Fig.

3.13 are sum of all the diagrams arising from (DeT (0)
)1 × T

(0)
1 and (DeT (0)

)2. Hence,
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T
1

( 0 )

D
eff

EDM

T
1

( 0 )

Deff

EDM

D
eff

EDM

D
eff

EDM

1. 2. 3.

4. 5.
D

eff

EDM

Figure 3.14: Diagrams contributing to EDM from the effective diagrams at zeroth order

eff( D    )F1(A)

a. b. c. d.

Figure 3.15: Effective diagrams at first order contributing to F1(A)

the effective diagrams of (T
(0)
1

†
DeT (0)

)1 are contraction of the effective diagrams in Fig.

3.13 and T
(0)
1

†
, these are shown in Fig. 3.15. To calculate the contribution from F1(B),

consider

(

DeT (0)
)

3
=

[
1

4!
DT

(0)
1

4
+

1

2!
DT

(0)
2

2
+

1

2!
DT

(0)
1

2
T

(0)
2 +

1

3!
DT

(0)
1

3
+

DT
(0)
1 T

(0)
2 +

1

2!
DT

(0)
1

2
+DT

(0)
2

]

3

=
(

DeT (0)
)conn

3
+
(

DeT (0)
)conn

2
× T

(0)
1 +

(

DeT (0)
)

1

[
1

2!
T

(0)
1

2
+ T

(0)
2

]

(3.67)

Similar to the previous cases, (DeT (0)
)3 is the sum of (DeT (0)

)1 × T
(0)
1

2
, (DeT (0)

)1 × T
(0)
2

and (DeT (0)
)conn
2 × T

(0)
1 . In the present calculation, we do not include the (DeT (0)

)conn
3 ,
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which are true three body diagrams. That is, we define

(

DeT (0)
)

3
=
(

DeT (0)
)conn

2
× T

(0)
1 +

(

DeT (0)
)

1

[
1

2!
T

(0)
1

2
+ T

(0)
2

]

. (3.68)

The diagrams in Fig. 3.16 represent the sum of all the diagrams arising from these

terms. The effective diagrams at first order can be obtained by the action of T
(0)
2

†
on

a.

c.

b.

Figure 3.16: Open diagrams at first order for the term (DeT (0)
)3. Multiplication of T

(0)
2

†
with

these diagrams gives the effective diagrams contributing to F1(B)

the diagrams listed in Fig. 3.16, then

(

T
(0)
2

†
DeT (0)

)

1
= T

(0)
2

†
[(

DeT (0)
)conn

2
× T

(0)
1 +

(

DeT (0)
)

1

(
1

2!
T

(0)
1

2
+ T

(0)
2

)]

. (3.69)

The contribution to EDM are then obtained by the contraction of these terms with T
(1)
1

†
.

Adding Eq. (3.66) and Eq. (3.69), define an effective operator of D as

D
1

1 =
(

T
(0)
1

†
DeT (0)

)

1
+
(

T
(0)
2

†
DeT (0)

)

1
, (3.70)

where the subscript represents the one-body character of the operator and superscript

indicates the order of T (0)†.

Similar to F1, expanding F2

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
T (0)†DeT (0)

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
1

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

F2(A)

+

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
2

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

F2(B)

(3.71)
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Consider F2(A), expanding the term within the parenthesis
〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
1

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
T

(0)
1

†
(

DeT (0)
)

3

∣
∣
∣
∣
Φ0

〉

. (3.72)

From the definition of (DeT (0)
)3 in Eq. (3.68)

=

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
T

(0)
1

†
[(

DeT (0)
)conn

2
× T

(0)
1 +

(

DeT (0)
)

1

(
1

2!
T

(0)
1

2
+ T

(0)
2

)]∣
∣
∣
∣
Φ0

〉

. (3.73)

As mentioned earlier, the open diagrams contributing to (DeT (0)
)3 are listed in Fig. 3.16.

The D diagrams are then the contraction of T
(0)
1

†
with (DeT (0)

)3, these are shown in Fig.

3.17. Fig. 3.18 shows the effective diagrams arising from summing the diagrams listed

1. 2.

4. 5. 6.

3.

7. 8. 9.

10. 11.

Figure 3.17: Effective diagrams at first order for F2(A) - T
(0)
1

†
(DeT (0)

)3

in Fig. 3.17.

Figure 3.18: Effective diagrams at first order for F2(A) - T
(0)
1

†
(DeT (0)

)3

Now, consider the F2(B),
〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
2

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

=

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
T

(0)
2

†
(

DeT (0)
)

4

∣
∣
∣
∣
Φ0

〉

. (3.74)
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Similar to (Det(0))3, we can define

(

DeT (0)
)

4
=
(

DeT (0)
)conn

2

[
1

2!
T

(0)
1

2
+ T

(0)
2

]

+
(

DeT (0)
)

1

[
1

3!
T

(0)
1

3
+ T

(0)
2 T

(0)
1

]

. (3.75)

We can define effective D diagrams of (T
(0)
1

†
DeT (0)

)2 and (T
(0)
2

†
DeT (0)

)2. However, unlike

D
1

1 these terms have connected as well as disconnected diagrams

D
1

2 = D
1conn

2 +D
1discon

2 =
(

T
(0)
1

†
DeT (0)

)

2
+
(

T
(0)
2

†
DeT (0)

)

2
, (3.76)

where D
1conn

2 and D
1discon

2 are the connected and disconnected contributions respectively.

The EDM contribution from second order T (0)† can be calculated from D
2

1 and D
2

2.

Substituting n = 2 in Eq. (3.58), we get the second order contribution to EDM from the

terms,

D
2

=
T (0)†

2

2!
DeT (0)

=




T

(0)
1

†2

2!
+
T

(0)
2

†2

2!
+

2

2!
T

(0)
1

†
T

(0)
2

†



DeT (0)

where T (0) = T
(0)
1 +T

(0)
2 . Diagrammatically, the effective diagrams of F2(B) are obtained

by the multiplication of T
(0)
2 by diagrams of

(

DeT (0)
)

4
as shown in Fig. 3.19.

Action of T2

(0)
on

1. 2.

4. 3.

Figure 3.19: Effective diagrams at first order for F2(B) - T
(0)
2

†
(DeT (0)

)4. As shown, the action

of T
(0)
2

†
on the diagrams labelled 1 to 4, give rise to the effective diagrams of F2(B).

The results presented in the thesis correspond to the contributions of zeroth and the

F1 terms. Following are the terms contributing to the EDM expectation value at the
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linear level :

Datom =

〈

Φ0

∣
∣
∣
∣
DT (1) + T (1)†D

∣
∣
∣
∣
Φ0

〉

where

D = eT (0)†
DeT (0)

.

At the linear level,

=

(

1 + T (0)

)†

D

(

1 + T (0)

)

= D +DT (0) + T (0)†D = D +DT
(0)
1 +D +DT

(0)
2 + T

(0)
1

†
D + T

(0)
2

†
D

Now the EDM expectation value becomes,

Datom = 2

〈

Φ0

∣
∣
∣
∣

[

T
(1)
1

†
D+T

(1)
1

†
DT

(0)
1 +T

(1)
1

†
DT

(0)
2 +T

(1)
2

†
DT

(0)
2 +T

(1)
2

†
DT

(0)
1

]∣
∣
∣
∣
Φ0

〉

(3.77)

3.3 Comparison of Coupled-Perturbed Hartree-Fock

and Coupled-Cluster Theories

3.3.0.1 The Coupled-Perturbed Hartree-Fock Equations

In this section, we give an outline of the coupled-perturbed Hartree-Fock (CPHF) equa-

tions and explain how the diagrams arising from the CPHF theory can be related to the

diagrams present in coupled-cluster theory. The results of the numerical comparison are

presented in Chapter.5. Consider the Hartree-Fock equation Eq. (3.6),

(

h0 + g0 − ε0a

)∣
∣
∣
∣
ψ0

a

〉

= 0 (3.78)

The introduction of P and T violating interaction, hEDM, as a perturbation, modifies the

Hamiltonian and the single particle wavefunctions

∣
∣
∣
∣
ψ0

a

〉

→
∣
∣
∣
∣
ψ0

a

〉

+ λ

∣
∣
∣
∣
ψ1

a

〉

, and h0 → h0 + λhEDM

where λ is the perturbation parameter and |ψ1
a〉 is the first order correction to wave-

function. The operator hEDM is used to distinguish from HEDM operator at the single
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and many-particle levels respectively. There is no first order energy correction as the

perturbing Hamiltonian hEDM is an odd parity operator. We then get the perturbed

Hartree-Fock equation

(

h0 + λhEDM

)(∣
∣
∣
∣
ψ0

a

〉

+ λ

∣
∣
∣
∣
ψ1

a

〉)

+
Nocc∑

b=1

[〈

ψ0
b + λψ1

b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b + λψ1
b

〉∣
∣
∣
∣
ψ0

a + λψ1
a

〉]

−
Nocc∑

b=1

[〈

ψ0
b + λψ1

b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a + λψ1
a

〉∣
∣
∣
∣
ψ0

b + λψ1
b

〉]

− ε0a

∣
∣
∣
∣
ψ0

a + λψ1
a

〉

= 0 (3.79)

Keeping only the terms linear in λ,

(

h0

∣
∣
∣
∣
ψ1

a

〉

+ hEDM

∣
∣
∣
∣
ψ0

a

〉)

+

Nocc∑

b=1

〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ1

b

〉∣
∣
∣
∣
ψ0

a

〉

+

〈

ψ1
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b

〉∣
∣
∣
∣
ψ0

a

〉

+

〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b

〉∣
∣
∣
∣
ψ1

a

〉)

−
(〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ1

a

〉∣
∣
∣
∣
ψ0

b

〉

+

〈

ψ1
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ0

b

〉

+

〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ1

b

〉)

− ε0a

∣
∣
∣
∣
ψ1

a

〉

= 0

(3.80)

Rearranging
(

h0 + g0 − ε0a

)∣
∣
∣
∣
ψ1

a

〉

=

(

−hEDM − g1

)∣
∣
∣
∣
ψ0

a

〉

(3.81)

where the perturbed Hartree-Fock potential is given by

g1

∣
∣
∣
∣
ψ0

a

〉

=

Nocc∑

b=1

[〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ1

b

〉∣
∣
∣
∣
ψ0

a

〉

−
〈

ψ0
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ1

b

〉

+

〈

ψ1
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

b

〉∣
∣
∣
∣
ψ0

a

〉

−
〈

ψ1
b

∣
∣
∣
∣
v

∣
∣
∣
∣
ψ0

a

〉∣
∣
∣
∣
ψ0

b

〉]

(3.82)

The Eq. (3.81) is the CPHF equation. Expanding the perturbed orbitals as a linear

combination of the opposite parity unperturbed orbitals

∣
∣
∣
∣
ψ1

a

〉

=
∑

p

Cpa

∣
∣
∣
∣
ψ0

p

〉

where Cpa are the mixing coefficients, then

∑

p

(

h0 + g0 − ε0a

)

Cpa

∣
∣
∣
∣
ψ0

p

〉

=

(

−hEDM − g1

)∣
∣
∣
∣
ψ0

a

〉

Projecting the above equation by 〈ψ0
m|,

(

ε0p − ε0a

)

Cpa =

〈

ψ0
p

∣
∣
∣
∣

(

−hEDM − g1

)∣
∣
∣
∣
ψ0

a

〉
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Similarly, expanding |ψ1
b 〉 =

∑

q Cqb|ψ0
q 〉 in g1 (Eq. (3.82)), the mixing coefficients are

the solutions of the linear algebraic equations

Cpa

(

ε0p − ε0a

)

+
∑

bq

[

ṼpqabC
∗
qb + ṼpbaqCqb

]

+

〈

p

∣
∣
∣
∣
hEDM

∣
∣
∣
∣
a

〉

= 0 (3.83)

where Ṽpqab =

(

〈pq|v|ab〉 − 〈pq|v|ba〉
)

and Ṽpbaq =

(

〈pb |v| aq〉 − 〈pb |v| qa〉
)

.

The wavefunctions |ψ0
p〉, |ψ0

a〉, |ψ0
b 〉 and |ψ0

q〉 are represented by the orbital indices

(p, a, b, q) respectively and hereafter we follow this notation for the single particle orbitals.

The zeroth order contribution to the coefficients is

C(0,1)
pa = −

〈

p

∣
∣
∣
∣
hEDM

∣
∣
∣
∣
a

〉

(

ε0p − ε0a

) (3.84)

The superscripts on the coefficient denotes the order of the residual Coulomb interac-

tion and that of the hEDM perturbation respectively. The diagrammatic representation

of this term is given in Fig. 3.20(a).

p

p p

q

a. b. c.

d. e.

p

q

p
a

a

q

a

a

q

a

b b

b b

Figure 3.20: CPHF diagrams at zero and one order residual Coulomb interaction. The
diagrams (d,e) are called normal CPHF diagrams and (b,c) are the pseudo CPHF diagrams.
The dotted line is the residual Coulomb interaction and the line attached with � is the EDM
interaction.

The Eq. (3.83) is expressed in the form of a linear matrix equation,

∑

qb

Apa qbCqb = −Bpa (3.85)
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where Apa qb = Ṽpqab + Ṽpbaq +
(
ε0p − ε0a

)
δpqδab and Bpa = 〈p|hEDM|a〉. This equation is

solved iteratively starting with the initial guess for the mixing coefficients given by Eq.

(3.84). The coefficients of the kth iteration are obtained from,

C(k,1)
pa = − Bpa

ε0p − ε0a
−
∑

bq

[
(

Ṽpqab

) C
(k−1,1)
qb

∗

ε0p − ε0a
+

(

Ṽpbaq

) C
(k−1,1)
qb

ε0p − ε0a

]

(3.86)

With one order in residual Coulomb interaction, we get,

C(1,1)
pa = − Bpa

ε0p − ε0a
−
∑

bq

[
(

Ṽpqab

) C
(0,1)
qb

∗

ε0p − ε0a
+

(

Ṽpbaq

) C
(0,1)
qb

ε0p − ε0a

]

(3.87)

The diagrams arising from the above equation are shown in Fig. 3.20.

Substituting the expression of C
(0,1)
qb

C(1,1)
pa = − Bpa

ε0p − ε0a
−
∑

bq

[
(

Ṽpqab

) (Bqb)
†

(ε0b − ε0q)(ε
0
p − ε0a)

+

(

Ṽpbaq

) Bqb

(ε0b − ε0q)(ε
0
p − ε0a)

]

(3.88)

The contribution of the normal CPHF diagrams for one order in residual Coulomb in-

teraction is,

(
C(1,1)

pa

)

normal = −
∑

bq

[(

Ṽpbaq

) Bqb

(ε0b − ε0q)(ε
0
p − ε0a)

]

(3.89)

This expression is used later to compare with similar expression arising in CCEDM.

Consider the two pseudo diagrams of CPHF. Writing only the pseudo diagrams,

(
C(1,1)

pa

)

pseudo = −
∑

bq

[
(

Ṽpqab

) (Bqb)
†

(ε0b − ε0q)(ε
0
p − ε0a)

+

]

(3.90)

These terms are diagrammatically represented by Fig. 3.20(b,c).
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3.3.0.2 CCEDM Equations

Consider the CCEDM equations,

〈

Φp
a
′

∣
∣
∣
∣

[

HNT
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φp
a
′

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.91)

〈

Φpq
ab

′

∣
∣
∣
∣

[

HNT
(1)

]∣
∣
∣
∣
Φ0

〉

= −
〈

Φpq
ab

′

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.92)

In the CCEDM equation for singles, set HN = HN and HEDM = HEDM and ignore the

doubles for the present.

〈

Φp
a
′

∣
∣
∣
∣
HNT

(1)
1

∣
∣
∣
∣
Φ0

〉

= −
〈

Φp
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.93)

using HNT
(1) =

{

HNT
(1)

}

. Introducing a complete set of singly excited states,

∑

bq

〈

Φp
a
′

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φq

b
′

〉 〈

Φq
b
′

∣
∣
∣
∣
T

(1)
1

∣
∣
∣
∣
Φ0

〉

= −
〈

Φp
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(3.94)

we get
∑

bq

(HN)ap,bq

(

T
(1)
1

)

bq
= − (HEDM)ap (3.95)

where (HN )ap,bq = Vpb,aq −Vpb,qa + fpq − fba considering only the terms of HN which have

a CPHF counterpart. The operator, HN = fN + VN , where fN and VN are the normal

ordered one- and two-body operators respectively. The one-body terms contribute to the

single particle orbital energies. In terms of single-particle wavefunctions, the CCEDM

equation becomes

∑

bq

[〈

pb

∣
∣
∣
∣
V

∣
∣
∣
∣
aq

〉

−
〈

pb

∣
∣
∣
∣
V

∣
∣
∣
∣
qa

〉

−
〈

a

∣
∣
∣
∣
f

∣
∣
∣
∣
b

〉

+

〈

p

∣
∣
∣
∣
f

∣
∣
∣
∣
q

〉]

×
〈

q

∣
∣
∣
∣
t(1)
∣
∣
∣
∣
b

〉

=

〈

p

∣
∣
∣
∣
−hEDM

∣
∣
∣
∣
a

〉

⇒
∑

bq

[

Ṽpb,aq t
q
b
(1)

]

+

(

ε0p − ε0a

)

tpa
(1) =

〈

p

∣
∣
∣
∣
−hEDM

∣
∣
∣
∣
a

〉

The perturbed cluster amplitudes are hence given by,

tp(1)
a =

(

−Bap −
∑

bq

Ṽpb,aqt
q(1)
b

)/(

ε0p − ε0a

)

(3.96)

51



Chapter 3. Coupled Cluster Theory and its Application to Atomic EDMsChapter 3. Coupled Cluster Theory and its Application to Atomic EDMs

Where the matrix Bap is given by,

Bap =

〈

p

∣
∣
∣
∣
hEDM

∣
∣
∣
∣
a

〉

Expressing the above equation in an iterative form,

tp(k,1)
a =

(

−Bap −
∑

bq

Ṽpb,aqt
q(k−1,1)
b

)/(

ε0p − ε0a

)

(3.97)

The perturbed cluster amplitudes are solutions of the Eq. (3.97), where the initial guess

is given by,

tp(0,1)
a =

−
〈

p

∣
∣
∣
∣
hEDM

∣
∣
∣
∣
a

〉

(

ε0p − ε0a

)

For one order in residual Coulomb interaction, k = 1 and get,

tp(1,1)
a =

(

−Bap −
∑

bq

Ṽpb,aqt
q(0,1)
b

)/(

ε0p − ε0a

)

(3.98)

Substituting for t
q(0,1)
b , we get,

tp(1,1)
a =

〈

p

∣
∣
∣
∣
−hEDM

∣
∣
∣
∣
a

〉

(

εp − εa

) −
∑

bq

(〈

pb

∣
∣
∣
∣
V

∣
∣
∣
∣
aq

〉

−
〈

pb

∣
∣
∣
∣
V

∣
∣
∣
∣
qa

〉)

〈

q

∣
∣
∣
∣
−hEDM

∣
∣
∣
∣
b

〉

(

ε0q − ε0b

)(

ε0p − ε0a

) (3.99)

The second term of the above equation is exactly equivalent to the equation for the

CPHF mixing coefficient, Eq. (3.89). The diagrammatic representation of the terms

in Eq. (3.89) and the second term of Eq. (3.99) are shown in Fig. 3.20 (d-e). This

establishes the equivalence of normal CPHF diagrams and the corresponding diagrams

arising in the coupled-cluster theory. A detailed comparison of the mixing coefficients

of CPHF and the cluster amplitudes from coupled-cluster theory is performed and is

demonstrated numerically for atomic mercury. The results of the comparison are sum-

marized in Chapter.5. Now consider the contribution of the atomic EDM in terms of the

CPHF mixing coefficients,

EDM =
∑

ap

〈

ψ0
a

∣
∣
∣
∣
D

∣
∣
∣
∣
ψ0

p

〉

C(∞,1)
pa + Cpa

∗(∞,1)

〈

ψ0
p

∣
∣
∣
∣
D

∣
∣
∣
∣
ψ0

a

〉
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The zeroth order contribution to EDM is,

EDM = 2
∑

ap

〈

ψ0
a

∣
∣
∣
∣
D

∣
∣
∣
∣
ψ0

p

〉〈

ψ0
p

∣
∣
∣
∣
hEDM

∣
∣
∣
∣
ψ0

a

〉

(

ε0a − ε0p

)

since C∗
pa = Cpa. The diagrams contributing to atomic EDM in CPHF theory are shown

in Fig. 3.21. The atomic EDM in terms of the cluster operators is

EDM =

〈

Φ0

∣
∣
∣
∣
T (1)†D +DT (1)

∣
∣
∣
∣
Φ0

〉

(3.100)

where D = eT (0)†

DeT (0)
. The same diagrams in coupled-cluster theory (Fig. 3.22(III))

arise from the term D
(

T
(1)
1

)

eff
at the level of the final EDM matrix element. The

effective operator
(

T
(1)
1

)

eff
results from the contraction of singles cluster amplitude

operator (T1
(1)†) and the residual Coulomb interaction.

p a
p a

q b

p a

bq

p a

b q

(a) (b) (c) (d) (e)

pa

bq

Figure 3.21: CPHF diagrams contributing to EDM

As shown in Fig. 3.22, the CPHF diagrams of the kind shown in Fig. 3.21 (b,c)

are obtained by summing the two MBPT diagrams Fig. 3.22(I(a,b) & II(a,b)). These

diagrams seem to be arising from the terms
(

D(T
(1)
1 )eff + T

(1)
1

†
DT

(0)
2

)

where (T
(1)
1 )eff is

the effective diagram arising from the contraction of the cluster amplitude T
(1)
1

†
and the

residual Coulomb interaction. The diagrams listed under (III) are directly present in the

coupled-cluster theory, but (I) and (II) can be shown to be present only indirectly. The

CPHF coefficients computed during the first iteration of the CPHF equation contain one

order residual Coulomb interaction. The EDM computed using these coefficients can be

compared with the coupled-cluster terms as indicated above.
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p a
q b ba p

q

)
( 1 )

1 eff
D ( T

p a

b q

T
1

(1)
D )( eff

(1)
2
( 0 )

T
  

1 D  T

)
( 1 )
1 effT(D 1

(1)

2D  T
( 0 )

T

p a

b q

(a)

q b

a p

(b)

II.

p a

qb

p a

q b

I.

   

p a

bq

(a) (b)

III.

Figure 3.22: Diagrams contributing to EDM - Solid interaction lines in I(a)&(b), II(a)&(b)

and III(a)&(b) represent the Coulomb interaction treated to all orders. The operator
(

T
(1)
1 eff

)

is a result of the contraction T
(0)
2 T

(1)
1

†
, which, when contracted with the electric dipole operator

(D), gives the diagram contributing to Da. Here, the diagrams (I) and (II) are the pseudo
diagrams of CPHF. We extract the corresponding terms in coupled- cluster theory.
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3.4 Comparison of Coupled-Cluster Theory with Con-

figuration Interaction

Before we move on to the calculation of atomic EDMs using CC theory, we make a com-

parison between the coupled-cluster, the Configuration Interaction (CI) and the many-

body perturbation methods. The exact atomic wavefunction in coupled-cluster theory

is expressed as

|ΨCC〉 = eT |Φ0〉

where |Φ0〉 is the reference state and T is the hole-particle excitation operator and |ΨCC〉
is the exact atomic state. In the present discussion let T = T1 =

∑

a,p a
†
paat

p
a. This gives

|ΨCC〉 =

[

1 + T1 +
T 2

1

2!
+ · · ·

]

|Φ0〉 (3.101)

and

T1|Φ0〉 =
∑

a,p

a†paa|Φ0〉 tpa =
∑

a,p

|Φp
a〉tpa

tpa is the amplitude for the excitation from a to p. Consider the CI wavefunction,

|ΨCI〉 = C0|Φ0〉 +
∑

s

Cs|Φs〉 + Cd

∑

d

|Φd〉 + · · · (3.102)

where |Φ0〉, |Φs〉 (set of all single excitations), |Φd〉 (set of all double excitations) and so

on form a complete set of basis vectors in Hilbert space. Comparing Eq. (3.101) and

Eq. (3.102),

T1|Φ0〉 =
∑

a,p

|Φp
a〉tpa =

∑

s

Cs|Φs〉

Hence, T1 is equivalent to the set of all the single excitations as given by the CI wavefunc-

tion. From Eq. (3.101) and Eq. (3.102) it can also be noted that for double excitations, it

is necessary to include them explicitly in the CI wavefunction, but the CC wavefunction

can give the same through T 2
1 term at a lower level of truncation of the exponential. The

|Φs〉 of the CI is identical to |Φp
a〉 of CC theory. Now consider the exact wavefunction as

described in the many-body perturbation theory,

|Ψ〉 = |Φ0〉 + |Φ1
0〉 + |Φ2

0〉 + · · · (3.103)
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where |Φ0〉 is the unperturbed wavefunction and others are the higher order corrections

to |Φ0〉. We have,

|Φ1
0〉 =

∑

I 6=0

|ΦI〉
〈ΦI |H ′|Φ0〉
E0 − EI

where for |Φ1
0〉, ‘I’ stands for all the single excited intermediate states and H ′ is the

perturbation. |Φ1
0〉 can be expanded in terms of the complete set,

|Φ1
0〉 =

∑

s

C1
s |Φs〉 +

∑

d

C1
d |Φd〉 + · · ·

Similarly,

|Φ2
0〉 =

∑

s

C2
s |Φs〉 +

∑

d

C2
d |Φd〉 + · · ·

The exact wavefunction |Ψ〉 can now be written as

|Ψ〉 = |Φ0〉 +
∑

s

[
C1

s + C2
s + · · ·

]
|Φs〉 +

∑

d

[
C1

d + C2
d + · · ·

]
|Φd〉 + · · · (3.104)

|Φ1
0〉 has one order of the residual Coulomb interaction(perturbation), |Φ2

0〉 has two orders,

and so on. This implies that there are infinite number of residual Coulomb interactions

giving rise to a single excitation, infinite Coulomb interactions giving rise to double

excitations and so on, where C1
s , C

2
s etc. represent one order in the residual Coulomb

interaction with one intermediate state(I), two orders in residual Coulomb interaction

with two intermediate states (I,J) respectively. Comparing Eq. (3.101) and Eq. (3.104),

we get

T1|Φ0〉 =
∑

s

[
C1

s + C2
s + · · ·

]
|Φs〉 (3.105)

which indicates that T1 contains infinite orders of Coulomb interaction corresponding

to all possible single excitations. The above T1 refers to the unperturbed cluster oper-

ator T
(0)
1 . The HEDM perturbed operator T

(1)
1 contains, in addition to infinite orders in

Coulomb perturbation, one order in HEDM. The above equations also demonstrate that

under a given approximation of singles and doubles, the summation over the correspond-

ing mixing coefficients is equivalent to treating the perturbation to all orders. Hence, the

calculations of the coupled-cluster amplitudes tpa and tpq
ab is equivalent to the calculation

of the mixing coefficients to all orders using the many-body perturbation theory.
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3.5 Size Consistency and Size Extensivity

Size consistency : A method is ‘size consistent’ if the corresponding energy of two well-

separated (in the limit of infinite separation) subsystems A and B is equal to (EA + EB),

the sum of the energies of the two systems computed independently.

Consider a CI wavefunction |ΨCI〉, which is expanded in terms of a linear excitation

operator, unlike the CC wavefunction,

|ΨCI〉 = (1 + C) |Φ0〉

where C is a linear combination of various excitation operators,

C = Cs + Cd + Ct + · · ·

which can be represented in a second quantized form as,

C =
∑

i,a

cai a
†
a ai +

1

4

∑

ij,ab

cab
ij a

†
aa

†
baiaj + · · · (3.106)

Truncation of the operator C to singles and double excitations (CISD) leads to a

wavefunction with exactly same number of amplitudes ca
i and cab

ij , as that needed for

the CC singles and doubles (CCSD) approximation, tai and tab
ij . However, the CCSD

theory implicitly includes the higher excitations like triples, quadruples, through the

inclusion of higher powers of T which arise inherently due to the CC exponential ansatz.

Both the full CI and full CC produce exact wavefunctions. Consider the structure of

the CC and CI wavefunctions for a system involving two non-interacting and infinitely

separated components, A and B. It is possible to dissociate the cluster operators for the

two components, assuming that the orbitals used to define T and C are localized on each

of the two components,

T = TA + TB and C = CA + CB

Hence,

|ΨCC〉 = eT |Φ0〉 = eTAeTB |Φ0〉
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Under the localized orbital description, the reference determinant |Φ0〉 is factorizable into

independent determinants of each fragment, the total CC wavefunction can be written

as a product of CC wavefunctions of each fragment. The resulting energies would then

be a sum of energies of each of the fragments and would be the same as that computed

for the system as a whole. In other words,

ECC = EA
CC + EB

CC

This property is known as size consistency. Since for CI, multiplicative separability is

not possible,

|ΨCI〉 = (1 + C) |Φ0〉 = (1 + CA + CB) |Φ0〉

the sum of the energies of the separate fragments is not equal to the energy of the system

computed as a whole,

ECI 6= EA
CI + EB

CI

If CI is nontruncated, then it is possible to write the full CI wavefunction as a product

of wavefunctions for separate fragments by transforming the linear operator into an

exponential. For a Hydrogen molecule, there are only two electrons to be correlated and

hence CCSD and CISD are exact for this system. But the CCSD gives correct total

energy and CISD doesn’t due to the inseparability of the CI wavefunction.

Size extensivity : A method is said to be ‘size extensive’, if the energy calculated

thereby scales linearly with the number of particles. The SCF and the CC methods

are both ‘size extensive’. Size consistency applies only to non-interacting molecular

fragments, but size extensivity is a more general mathematical concept that applies to

any point on the potential energy surface.

Consider the structure of the CI Shroedinger equation,

HN

(

1 + C1 + C2 + · · ·
)∣
∣
∣
∣
Φ0

〉

=

(

ECI − E0

)(

1 + C1 + C2 + · · ·
)∣
∣
∣
∣
Φ0

〉

where HN is the normal ordered Hamiltonian and intermediate normalization5 is as-

5〈Φ0|Ψ〉 = 1, where |Ψ〉 > is the exact state.

58



Chapter 3. Coupled Cluster Theory and its Application to Atomic EDMsChapter 3. Coupled Cluster Theory and its Application to Atomic EDMs

sumed. Projecting the reference state from the left,

(ECI − E0) = 〈Φ0|HN (C1 + C2) |Φ0〉

where CI expansion is truncated using Slater rules. By the application of the Wick

theorem, this equation can be written in algebraic form as,

(ECI − E0) =
∑

i,a

fiac
a
i +

1

4

∑

ij,ab

〈ij|v|ab〉cab
ij

For the HF choice of the single particle orbitals, the first term is zero due to the Brillouin

theorem. Assuming a localized orbital basis, for a given orbital |φi〉, the two-electron

integral will be zero, unless the orbitals |φj〉, |φa〉 and |φb〉 are reasonably close to |φi〉
due to the relatively short range nature of the inter-electronic potential.

Full CI is a size extensive and size consistent theory, but most truncated CI methods

are neither size extensive nor size consistent.
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Chapter 4

Computational Aspects of CC

Theory of Closed-shell Atomic

EDMs

In this chapter some important steps in the implementation of the coupled-cluster pro-

gram to compute closed-shell atomic EDMs are discussed. The program is written in

FORTRAN-77. The basic skeleton of the program is presented in Appendix C. The

number of diagrams contributing to the EDM perturbed CC amplitudes in Eq. (3.27)

are ntotal = 154 with nsing = 42 and ndbl = 102 where nsing and ndbl are the number of

diagrams representing the single and the double excitations respectively. The additional

10 diagrams arise from the right hand side of Eq. (3.27) from singles and doubles. The

program is composed of 54 subroutines. Details of the diagrams, the angular factors,

description of the program etc. can be obtained from the documentation [33].

4.1 Conventions and Symbols

The coupled-cluster equations consist of the matrix elements of the dressed residual

Coulomb operator, the cluster amplitudes and the EDM operators (Eq. (3.27)). Each

of these operators are expressed in terms of the creation and annihilation operators,

which are represented diagrammatically as explained in Chapter 3. The matrix elements

present in the coupled-cluster equations are computed by separating them into the radial

and the angular parts. The angular part is manually calculated by representing each
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cluster amplitude diagram by its corresponding angular momentum diagram. The closed

part of an angular momentum diagram is evaluated using the JLV theorems [24]. The

conventions used for the evaluation of the angular factors are shown in Fig. 4.1. In

addition to the rules shown in Fig. 4.1, the arrow on the incoming free hole line is

removed and the sign at the vertex formed by the three multipoles of the T
(1)
2 operator

(λ1, λ2, K2) (see Fig. 3.9) is given a ‘+’ sign by our convention. For the complete details

of the angular factor evaluation, see the documentation [33].

��
��

��
������

outgoing

incoming 

Rank

	�	
�


������

�

�
�
�

������

������������

Incoming  hole  line
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Outgoing  particle  line
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Sign  of  the  vertex
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a

k
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q
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Figure 4.1: Notation for orbital lines

4.2 Implementation of the Iterative Scheme

The EDM perturbed CC equations given by Eq. (3.27) are,

〈

Φr
a

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

〈

Φrs
ab

∣
∣
∣
∣

{

HNT
(1)

}∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

(4.1)

Introducing a complete set of orbitals and expanding T (1) = T
(1)
1 + T

(1)
2 ,

∑

I

〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
ΦI

〉〈

ΦI

∣
∣
∣
∣
T

(1)
1

∣
∣
∣
∣
Φ0

〉

+
∑

J

〈

Φr
a

∣
∣
∣
∣
HN

∣
∣
∣
∣
ΦJ

〉〈

ΦJ

∣
∣
∣
∣
T

(1)
2

∣
∣
∣
∣
Φ0

〉

= −
〈

Φr
a

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉

∑

I

〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
ΦI

〉〈

ΦI

∣
∣
∣
∣
T

(1)
1

∣
∣
∣
∣
Φ0

〉

+
∑

J

〈

Φrs
ab

∣
∣
∣
∣
HN

∣
∣
∣
∣
ΦJ

〉〈

ΦJ

∣
∣
∣
∣
T

(1)
2

∣
∣
∣
∣
Φ0

〉

= −
〈

Φrs
ab

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
Φ0

〉
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which can be written in the form of a set of matrix equations,

A1T
(1)
1 + A2T

(1)
2 = B1 (4.2)

A3T
(1)
1 + A4T

(1)
2 = B2 (4.3)

which can be compactified as

A T (1) = B (4.4)

In terms of the elements of the matrices, Eq. (4.4) can be written as,

(
A11 A12

A21 A22

)


T

1)
1

T
(1)
2



 =

(
B10

B20

)

(4.5)

where Ai are identified as the dressed Coulomb Hamiltonian matrix elements which form

a square matrix and Bi0, the matrix of the dressed EDM Hamiltonian operator, and the

cluster amplitude matrix T (1) is a column vector. The Eq. (4.2) is first solved for T
(1)
1 ,

with an initial guess for T
(1)
2 , and is used in Eq. (4.3) to obtain a new set of T

(1)
2 ’s. The

T
(1)
2 amplitudes are then used in Eq. (4.2) to obtain a new set of T

(1)
1 amplitudes. This

procedure is repeated until convergence is achieved for both T
(1)
1 and T

(1)
2 amplitudes.

In other words, we have,

T
(1,k)
1i =

(

B10,i −
∑

j AijT
(1,k−1)
2j

)

Aii

T
(1,k)
2j =

(

B20,j −
∑

j AijT
(1,k)
2j

)

Ajj

where k = 1, 2, 3, · · · is the iteration count.

Usage of the latest determined amplitudes in each iteration helps speed up the con-

vergence of the EDM perturbed CC equations.

4.3 Complementary and Equivalent Diagrams

Complementary diagrams arise due to the contraction of an asymmetric operator (T
(1)
2 )

with a symmetric operator such as VN or T
(0)
2 . The asymmetric character of T

(1)
2 arises
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due to the product of the parities of the two orbitals at the two vertices being opposite in

sign, which gives rise to two distinct diagrams from a single contraction with any symmet-

ric operator. While it is necessary to calculate the contributions from complementary

diagrams, it is important to avoid repetition of the diagrams that are generated when-

ever the complementary diagrams turn out to be topologically equivalent to normal

diagrams. One example of the diagram for which the actual and its complementary are

distinct is shown in Fig. B.2 (CD4). The cluster amplitude diagrams are calculated

in the subroutines, named after the form of the two-body Coulomb operator they arise

from and are ‘called’ in the driver routine. The complementary diagrams are calculated

by calling the routines of the cluster amplitudes twice, where the first and the second

call to the routine differs in the arguments of the routine. The arguments corresponding

to the open orbital lines of the T
(1)
2 operator (ia, ip, ib, iq, l1, l2)are flipped and those

corresponding to the internal lines (ir, ic) are fixed. As an example consider the diagram

CD4 of Fig. B.2. The normal and the complementary calls are :

call dpphh(ia, ip, ib, iq, ir, ic, l1, l2, ......) (Normal)

call dpphh(ib, iq, ia, ip, ir, ic, l2, l1, ......) (Complementary)

where the routine is named dpphh(), to mean that it calculates the cluster amplitude

diagrams arising from the PP-HH form of the Coulomb operator (〈PP |VN |HH〉). It is

important to note that the parity of the vertices (ia, ip, l1) is fixed to be odd and that

of (ib, iq, l2), fixed to be even. The evaluation of the complementary diagrams this way

gives rise to equivalent diagrams when the normal and the complementary diagrams are

symmetric with respect to the interchange of the open orbital lines and hence are not

distinct. Equivalent diagrams for the unperturbed and perturbed coupled-cluster ampli-

tudes originate due to the presence of diagrams of symmetric topology, which results in

the repeated evaluation of the cluster diagrams that are not distinct. In this thesis, we

discuss only the equivalent diagrams arising from the implementation of the linear EDM

perturbed CC amplitudes. These diagrams in particular arise from the contraction of

the diagrams of the kind where the Coulomb operator and a cluster amplitude operator

are involved (VNT
(1)
2 ). The cluster diagrams arising from the contraction of the four-
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particle, (two-particle, two-hole) and four-hole forms of the Coulomb operator and the

cluster amplitude T
(1)
2 , generate equivalent diagrams. In the next few sections, we ex-

plain in detail, the diagrams that contribute to the double counting of cluster amplitude

diagrams in linear CCEDM and the numerical factors associated with them to account

for it. For the T
(1)
2 diagrams, the outermost loops correspond to the orbital indices

(ia, ip, ib, iq, l1, l2). Due to the parity condition at the two vertices of the T
(1)
2 diagram,

the simultaneous flip of (ia, ib) and (ip, iq) is not allowed during the loop execution. But,

the flip of either (ia, ib) or (ip, iq) is possible. In the following sections, we consider these

issues separately for the cluster diagrams arising from the (four-particle), (four-hole),

(two-particle — two-hole), (three-particle (three-hole) — one-hole (one-particle)) form

of the Coulomb operator and deduce the factors associated with them. For the cluster

diagrams arising from the (four-particle) and (four-hole) form of the Coulomb operator,

evaluation of the equivalent diagrams amounts to evaluating the diagrams identical to

the mirror reflection of the original diagrams.

4.3.1 Four Particle Form of the Coulomb Operator

Consider the diagram shown in Fig. 4.2. The normal and the complementary diagrams

are equivalent for the cluster diagram with the bare Coulomb operator, but not for the

diagram with the dressed Coulomb operator, which contributes through linear CCEDM.

Therefore, the complementary diagrams need to be calculated with a factor (1/2) for

the diagram Fig. 4.2 (I).

Exactly the same arguments given above are valid for the cluster amplitude diagrams

arising from the (four-hole) form of the Coulomb operator. Hence, these diagrams are

calculated along with the complementary diagrams, including a numerical factor (1/2)

for the cluster diagram arising from the bare Coulomb operator and no factor is associated

with the cluster diagrams arising from the dressed Coulomb operator.
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a b

p q

r s ab

pq

rs

a

p q

r s b r s ab

q p

I. Normal Complementary

II. Normal Complementary

=

=

Figure 4.2: Equivalent diagrams - Diagram (I) shows the contraction between the bare-

Coulomb and T
(1)
2 operators and diagram (II), the dressed Coulomb (HNT

(0)
1 ) and T

(1)
1 oper-

ator.

4.3.2 Two-Particle – Two-Hole Form of the Coulomb Operator

The cluster diagrams arising from the (two-particle — two-hole) form of the Coulomb

operator contributing to the linear CCEDM is shown in Fig. 4.3. Note that there are

no equivalent diagrams as the normal and complementary diagrams are distinct.

4.3.3 Three-Particle (Three-Hole) – One-Hole (One-Particle)

Form of the Coulomb Operator

The cluster diagrams arising from the (three-particle, one-hole) and (one-particle, three-

hole) form of the Coulomb operator are shown in Fig. 4.4. The complementary diagrams

are distinct from the normal diagrams and hence there is no numerical factor associated

with the diagrams.
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Figure 4.3: The normal and complementary diagrams are all distinct and hence there is no
numerical factor associated with these diagrams.
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Figure 4.4: The normal and complementary diagrams are all distinct and hence there are
no numerical factors associated with them.
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4.4 Intermediate Storage Scheme

Consider a diagram contributing to CCEDM equations shown in Fig. 4.5(a). This

diagram contains four particle and four hole lines. To calculate this diagram, the total

number of operations required is = n4
h × n4

p. For a reasonable basis, with number of

occupied (holes) and unoccupied (particles) orbitals given by nh = 22 and np = 40,

the number of operations would be ≈ 6 × 1011. Such diagrams demand a large amount

of computational time. Using the Intermediate Storage Scheme (IMS), it is possible to

reduce the number of operations by calculating an intermediate diagram, (a portion of

the complete diagram) that is commonly present in a set of diagrams, only once and

storing it. Such diagrams are termed as effective diagrams and the cluster amplitude

diagrams are then calculated in terms of these effective diagrams. The diagram in Fig.

4.5(a) is termed as an EDM-IMS diagram, where the portion of the diagram, VNT
(1)
2

is calculated and stored in terms of an effective diagram and used later to calculate

the actual diagram as shown in Fig. 4.5(b). The number of operations now become

= n2
h×n3

p+n
2
h×n3

p = 2n2
h×n3

p = 6×107 which is reduced by a factor (1/2)n2
hnp = 104. The

CCEDM diagrams arising from the (2-particle — 2-hole) form of the Coulomb operator

have been classified into EDM-IMS and Coulomb-IMS diagrams based on the topology

of the diagram and the number of orbital lines connected to T
(0)
2 and T

(1)
2 respectively.

The IMS diagrams are calculated only once and are used for further calculation of the

complete cluster amplitude diagrams arising from the particular kind of IMS diagrams.

At present, this scheme has been implemented only for the (2-particle — 2-hole), but

in general can be used for the diagrams involving orbital lines as large as 6 - 8 because

such diagrams consume a large amount of CPU time due to the execution of loops

corresponding to the orbital lines. The Fig. 4.6 shows the cluster diagrams that require

EDM-IMS storage. The diagrams contributing to EDM-IMS diagrams are shown in

Fig. 4.7, 4.8 and those contributing to the Coulomb-IMS are shown in Fig. 4.9. These

diagrams are of (hole - hole) or (particle - particle) form. The actual cluster amplitudes

are then obtained by the contraction of the effective IMS diagrams with the corresponding

cluster operator diagrams - the T
(1)
2 diagram for Coulomb-IMS and T

(0)
2 for EDM-IMS
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diagrams. The possible cluster diagrams in terms of the IMS diagrams are shown in Fig.

4.10. For details on the cluster diagrams calculated using Coulomb-IMS diagrams, refer

to the documentation [33]. The pseudo code is presented in Appendix C.

=pa

b
qr c

s d

( a ) ( b )

a p
b

q

r

Figure 4.5: EDM-IMS diagram (particle-particle type) contracted with T
(0)
2 .

Figure 4.6: Cluster diagrams that are calculated using EDM-IMS diagrams - They arise from

the terms VNT
(1)
2 and VNT

(0)
1 T

(1)
1 .
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=

( a ) ( b ) ( c )

( d ) ( e ) ( f )

Figure 4.7: HEDM perturbed hole-hole one-body IMS diagrams.

=

( a ) ( b ) ( c )

( d ) ( e ) ( f )

Figure 4.8: HEDM perturbed particle-particle one-body IMS diagrams.

From the topology of the EDM-IMS diagrams it is interesting to note that the rotation

of the free lines of the Coulomb vertices generates a diagram which is topologically

identical to the cluster diagrams arising from the singles CCEDM equations. This is a

very useful observation which enabled us to use our program where the singles cluster

amplitude diagrams are calculated (in particular, the cluster diagrams arising from the

(3-particle — 1-hole) and (3-hole — 1-particle) form of Coulomb diagrams).

The EDM-IMS diagrams are only a one-body kind, whereas the Coulomb-IMS dia-

grams are both one- and two - body kind. The two-body Coulomb-IMS diagrams are

shown in Fig. 4.11. The angular factors of the IMS diagrams can be obtained from the

documentation [33].

69



Chapter 4. Computational Aspects of CC Theory of Closed-shell Atomic EDMsChapter 4. Computational Aspects of CC Theory of Closed-shell Atomic EDMs

( c )( b )

VN

VN

=

=

( h )

( a )

( e ) ( f ) ( g )

( d )

Figure 4.9: One-body VN effective diagrams
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Figure 4.10: (a)& (b) - Cluster diagrams arising from hole-hole and particle-particle HEDM

perturbed IMS diagrams, (c)& (d) - cluster diagrams arising from hole-hole and particle-particle
Coulomb-IMS diagrams.
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Figure 4.11: Two-body VN effective diagrams - ph-hp(I), hh-hh(II), pp-pp(III), ph-ph(IV)
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Figure 4.12: Cluster diagrams arising from the two-body Coulomb-IMS diagrams - contraction

of IMS diagrams with T
(1)
2 .
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Figure 4.13: Cluster diagrams arising from the two-body Coulomb-IMS diagrams - contraction

of IMS diagrams with T
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4.5 Evaluation of Atomic EDM

The atomic EDM in the coupled-cluster formalism is given by Eq. (3.60),

Da = 2

[〈

Φ1

∣
∣
∣
∣
DeT (0)

∣
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∣
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〉
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〉]

(4.6)

The terms contributing to the zeroth and the first order (n=1 in Eq. (4.6)) are
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The terms F1 and F2 are given by,

F1 = F1(A) + F1(B);F2 = F2(A) + F2(B)

where
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∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
1

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸

F2(B) =

〈

Φ0

∣
∣
∣
∣
T

(1)
2

†
(

T
(0)
2

†
DeT (0)

)

2

∣
∣
∣
∣
Φ0

〉

︸ ︷︷ ︸
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As explained in Chapter.3, the terms contributing through the dressed electric dipole

operator in Eq. (4.8) are,

(

DeT (0)
)

1
=

1

2!
DT

(0)
1

2
+DT

(0)
2 +DT

(0)
1 +D

(

DeT (0)
)

2
=

1

3!
DT

(0)
1

3
+DT

(0)
1 T

(0)
2 +

1

2!
DT

(0)
1

2
+DT

(0)
2 +DT

(0)
1

The diagrams arising from the term
(

DeT (0)
)

1
shown in Fig. 3.11 are topologically

identical to the diagrams contributing to the right hand side of the singles CCEDM

equations (Eq. (3.7)), with the HEDM operator replaced by the D operator. Similarly,

the connected diagrams arising from the term
(

DeT (0)
)

2
are topologically identical to

the diagrams on the right hand side of the CCEDM equation for the doubles. Hence,

the programs developed for the calculation of the B matrix (see Eq. (3.49)) for the

singles and the doubles are used to calculate Z1, Z2 and F1(A), with the replacement

of the HEDM operator by the D operator. The term F1(B) involves the calculation of
(

DeT (0)
)

3
, given by

(

DeT (0)
)

3
=
(

DeT (0)
)conn

2
× T

(0)
1 +

(

DeT (0)
)

1

[
1

2!
T

(0)
1

2
+ T

(0)
2

]

.

The diagrams representing F1(B) are topologically equivalent to the nonlinear EDM

cluster amplitude diagrams for singles arising from the (particle-hole — particle hole)

form of the Coulomb operator, where T
(1)
1

†
is replaced by the electric dipole operator,

D.

The effective diagrams of F2(B) are obtained by the multiplication of T
(0)
2 by diagrams

of
(

DeT (0)
)

4
given by,

(

DeT (0)
)

4
=
(

DeT (0)
)conn

2

[
1

2!
T

(0)
1

2
+ T

(0)
2

]

+
(

DeT (0)
)

1

[
1

3!
T

(0)
1

3
+ T

(0)
2 T

(0)
1

]

.

The resultant diagrams have the same topology as the diagrams arising from the terms
(

VNT
(0)
1 T

(0)
1 T

(1)
2

)

,
(

VNT
(0)
2 T

(1)
2

)

,
(

VNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1

)

,
(

VNT
(0)
1 T

(0)
2 T

(1)
1

)

, where the resid-

ual Coulomb operator has a PH-PH form and is hence replaced by the operator T
(0)
2

†
.

This enabled us to use the same programs that were written for the calculation of the

cluster amplitude diagrams mentioned above, for calculating F2(A).
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Chapter 5

Analysis of Hg EDM Results

The single particle orbitals for all calculations in the subsequent sections were generated

using the Gaussian basis set expansion whose salient features are presented in this section.

In the central field approximation, the solution of the Dirac equation in terms of the four

component spinors is given by

Ψnκm(r, θ, φ) = r−1

(
Pnκ(r) χκ m(θ, φ)

iQnκ(r) χ−κ m(θ, φ)

)

where Pnκ(r) and Qnκ(r) are the large and the small components of the radial wavefunc-

tions expanded in terms of the basis set[34],

Pnκ(r) =
∑

p

CL
κp g

L
κp(r)

Qnκ(r) =
∑

p

CS
κp g

S
κp(r)

where the summation over the index p runs over the number of basis functions N , gL
κp(r)

and gS
κp(r) correspond to the large and small components and CL

κp and CS
κp are their

expansion coefficients for each value of κ. This is known as the method of Finite Basis

Set Expansion (FBSE).The functions gL
κp(r) are chosen to be Gaussian Type Orbitals

(GTOs) of the form,

gL
κp(r) = CL

Nκp
rnκ e−αpr2

where αp = α0 β
p−1, where α0 and β are input parameters and nκ = 1 for s, 2 for p and

so on and CL
Nκp

is the normalization factor for the large component. The large and small

components are related by [35, 36]

gS
κp(r) = CS

Nκp

(
d

dr
+
κ

r

)

gL
κp(r)
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where

CL
Nκp

=

√

αp

2nκ − 1

[

4 (κ2 + κ+ nκ) − 1

]

The coefficients CL,S
Nκp

are obtained by the diagonalization of the Fock matrix [34]. The

calculations presented in this thesis correspond to the Even Tempered (ET) basis set,

where the parameters α0 and β are different for different symmetries. Though ET ba-

sis leads to a huge number of basis functions, large scale coupled-cluster calculations

have been performed with the currently available computational resources. The nuclear

density ρN (r) for the Fermi type distribution of the nuclear structure is given by,

ρN (r) =
ρ0

1 + e(r−c)/a

where r is the electronic coordinate. The nuclear radius is taken as the root mean square

radius of the nucleus [37]. It is approximately related to the isotope number via the

formula,
√

〈r2
rms〉 = 0.836A1/3 + 0.570 fm

where A is the mass number of the nucleus. a and c are the nuclear parameters, where

a is the skin thickness parameter, a = 2.3/4ln3 and c is the half-charge radius given by,
√

(5r2
rms/3 − 7a2π2/3) [38]. The quantity ρ0 is determined by normalising the nuclear

density over a spherical volume. The radial grid has the form, rk = r0
(
e(k−1)h − 1

)
, k =

1, 2, 3, · · · , np, np is the total number of grid points.

5.1 Accuracy of the Single Particle Wavefunctions

The comparison of the single particle basis sets used in all the subsequent calculations,

with the orbitals generated using the numerical approach with the GRASP2 DF code

[39] is presented in this section. In this approach, the Dirac-Fock equation is solved nu-

merically. The single particle wavefunctions and the energies of the core and the virtual

orbitals are calculated step by step. This approach generates only the bound orbitals,

but the analytical approach explained in the previous section using the FBSE method,

produces both the bound and the continuum orbitals in one stroke. The accuracy of the
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orbitals generated using the FBSE approach depends on the choice of the parameters α0

and β. The large and the small components of the relativistic wavefunction generated

using the analytical approach for a particular choice of these parameters can be com-

pared with those generated using the numerical approach. The most important criterion

which determines the accuracy of the properties is the convergence of the basis set. The

convergence of the properties with the size of the basis and the choice of the α0 and β

parameters is related to the completeness of the basis considered. The results of this

comparison are shown for the large component in Fig. 5.1, 5.2, 5.3, 5.4, 5.5 for selected

orbitals in each symmetry. The horizontal axis corresponds to the radial grid in atomic

units whose form is given in the previous section and the vertical axis is the relative

percentage error given by

∣
∣
∣
∣

∣
∣
∣PGrasp(r)

∣
∣
∣−
∣
∣
∣PGauss(r)

∣
∣
∣

∣
∣
∣
∣

/∣
∣
∣PGrasp(r)

∣
∣
∣.

Figure 5.1: Relative percentage error for 5s1/2 and 6s1/2. The distance is presented in atomic
units.
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Figure 5.2: Relative percentage error for 4p1/2 and 5p1/2. The distance is presented in atomic
units.

Figure 5.3: Relative percentage error for 4p3/2 and 5p3/2. The distance is presented in atomic
units.
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Figure 5.4: Relative percentage error for 4d3/2 and 5d3/2. The distance is presented in atomic
units.

Figure 5.5: Relative percentage error for 4f5/2. The distance is presented in atomic units.
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Table 5.1: Number of basis functions used to generate the even tempered Dirac-Fock orbitals
and the corresponding value of α0 and β used. The total number of active orbitals are shown
in the brackets for ‘Active holes’.

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2

Number of basis 31 32 32 20 20 20 20 10 10
α0(×10−5) 725 715 715 700 700 695 695 655 655
β 2.725 2.715 2.715 2.700 2.700 2.695 2.695 2.655 2.655
Active holes (36) 2 2 2 2 2 1 1 1 1
Active holes (39) 3 3 3 2 2 1 1 1 1
Active holes (43) 3 3 3 3 3 2 2 1 1
Active holes (45) 3 3 3 3 3 3 3 1 1
Active holes (51) 5 5 5 3 3 3 3 1 1
Active holes (57) 7 7 7 3 3 3 3 1 1
Active particles 6 4 4 3 3 1 1 0 0

For all the subsequent calculations in this thesis, the details of the basis used is shown

in Table 5.1.
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5.2 Calculation of Correlation Energy

The reduction of the perturbed CC equations to the unperturbed CC equations as shown

in Section 3.1.3 can serve as a good check for the CCEDM code. After a suitable reduc-

tion, the perturbed CC equations acquire the same mathematical structure as the un-

perturbed CC equations. The calculation of the unperturbed amplitudes from CCEDM

equations in the limit HEDM → 0 at the linear level has been performed and compared

with a completely independent program, known as the CC with Singles and the Doubles

(CCSD)[40] under the linear approximation. The T (0) amplitudes obtained from the two

methods are in good agreement.

The correlation energy is calculated starting from the Eq. (3.8),

e−T

(

HN + EHF

)

eT

∣
∣
∣
∣
Φ0

〉

= E

∣
∣
∣
∣
Φ0

〉

Projecting by the reference state on both sides of the above equation,

〈

Φ0

∣
∣
∣
∣
e−T

(

HN + EHF

)

eT

∣
∣
∣
∣
Φ0

〉

= E

〈

Φ0

∣
∣
∣
∣
Φ0

〉

(5.1)

Hence,

Ecorr =

〈

Φ0

∣
∣
∣
∣
HN

∣
∣
∣
∣
Φ0

〉

where Ecorr = E−EHF. In linear CC theory, the diagrams contributing to the correlation

energy are shown in Fig. 5.6.

( a ) ( b )

Figure 5.6: Correlation energy diagrams in linear coupled-cluster theory.

Table 5.1 shows the details of the number of basis functions used to generate the

Gaussian basis set and the active orbitals used in the present calculation. The compar-

ison of the correlation energy calculated using the cluster amplitudes generated by two
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independent codes has been done for a variety of basis sets. The results obtained in the

two cases are in good agreement with each other. This constitutes a very good check

for the validity of the linear CCEDM code used in the atomic EDM calculations. The

results of the correlation energy using the CCEDM code after appropriate changes are

shown in Table 5.2.

Table 5.2: Correlation energies calculated with converged unperturbed cluster amplitudes in
atomic units

Basis Ecorr (linear CCEDM
reduced to CCSD)

36 −2.33 × 10−3

39 −1.64 × 10−2

43 −1.86 × 10−2

45 −1.91 × 10−2

51 −0.78 × 10−1

57 −1.79 × 10−1

5.2.1 Application of CC Theory to Polarizability

5.2.1.1 Static Polarizability

The concept of polarizability arises from the interaction of electric field with matter.

In the presence of an external electric field, a neutral atom gets polarized, where the

positive and negative charge distributions shift from their original positions and reach

an equilibrium. This gives rise to an induced electric dipole moment on the atom Dind

which points in the same direction as the external electric field E and is proportional to

it : Dind = αE . The constant of proportionality α is called the atomic polarizability. An

external time dependent electric field gives rise to dynamic polarizability. We now derive

the expression for static polarizability from first principles using quantum mechanics.

The polarizability is identified by considering the interaction of an atom with an uniform

external electric field.
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The induced electric dipole moment is the expectation value of the electric dipole

operator in the states perturbed by the interaction H ′ = − ~D.~E . It is given by,

Dind =

〈

Ψa

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψa

〉

where |Ψa〉 = |Ψ(0)
a 〉 + |Ψ(1)

a 〉 and

|Ψ(1)
a 〉 =

∑

I

∣
∣
∣
∣
Ψ

(0)
I

〉

〈

Ψ
(0)
I

∣
∣
∣
∣
H ′

∣
∣
∣
∣
Ψ

(0)
a

〉

E
(0)
a − E

(0)
I

Hence,

Dind = 2 ×
〈

Ψ(0)
a

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ(1)

a

〉

(5.2)

= −2
∑

I

〈

Ψ
(0)
a

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
I

〉〈

Ψ
(0)
I

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
a

〉

E
(0)
a − E

(0)
I

E (5.3)

Hence, the polarizability can be identified as,

α = −2
∑

I

〈

Ψ
(0)
a

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
I

〉〈

Ψ
(0)
I

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
a

〉

(

E
(0)
a − E

(0)
I

) (5.4)

The above expression suggests that the polarizability of a system in a given state can

be determined by taking the expectation value of the electric dipole operator D in that

state when it is perturbed by D itself. Let

∣
∣
∣
∣
Ψ(D)

a

〉

=
∑

I

∣
∣
∣
∣
Ψ

(0)
I

〉

〈

Ψ
(0)
I

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
a

〉

(

E
(0)
a − E

(0)
I

) (5.5)

where |Ψ(0)〉 and |Ψ(D)〉 are the unperturbed and the first order electric dipole perturbed

wavefunctions respectively and E(0) are the unperturbed energy eigenvalues. The unper-

turbed atomic Hamiltonian H0 satisfies the Schrödinger equation,

(

H0 − E(0)
a

)∣
∣
∣
∣
Ψ(0)

a

〉

= 0
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Operate
(

H0 − E
(0)
a

)

on both sides of Eq. (5.5),

(

H0 − E(0)
a

)∣
∣
∣
∣
Ψ(D)

a

〉

=
∑

I

(

H0 − E(0)
a

)∣
∣
∣
∣
Ψ

(0)
I

〉

〈

Ψ
(0)
I

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ

(0)
a

〉

(

E
(0)
a − E

(0)
I

)

= −
∑

I

∣
∣
∣
∣
Ψ

(0)
I

〉〈

Ψ
(0)
I

∣
∣
∣
∣
D

∣
∣
∣
∣
Ψ(0)

a

〉

since |Ψ(0)
I 〉 is an eigen function of H0. Since D is an odd parity operator, |Ψ(0)

I 〉 must

be opposite in parity to |Ψ(0)
a 〉. Using this fact and the completeness condition, we get

(

H0 − E(0)
a

)∣
∣
∣
∣
Ψ(D)

a

〉

= −D
∣
∣
∣
∣
Ψ(0)

a

〉

(5.6)

The polarizability can therefore be determined as α = −2 〈Ψ(0)
a |D|Ψ(D)

a 〉 (see Eq.

(5.4)). The CC equations for polarizability are similar to the CCEDM equations (Eq.

(3.27)) with the HEDM operator being replaced by the electric dipole operator. (Eq.

(3.27)) The polarizability calculations are necessary in principle to get an idea about the

accuracy of our perturbed CC approach and our code based on it to calculate the EDM

of closed-shell atoms. The sample calculation of polarizability for atomic 199Hg is shown

in Section 5.2.2. This could have served as a very good check on the CCEDM program,

if the polarizability of Hg had been known to high accuracy. However, the uncertainity

in the measurement of this quantity is about 50 % [41]. Nevertheless, we have calculated

the polarizability of Hg in its ground state, as no other experimental data is available to

test our EDM calculation.

5.2.2 Sample Calculation of Polarizability of 199Hg

The polarizability of a closed-shell atomic system is calculated by replacing the HEDM

operator by the induced dipole operator (see Section 5.2.1.1). With the same input given

in Table 5.1 for 57 active orbitals, the individual contributions of terms in Eq. (3.77) are

presented in Table 5.3
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Table 5.3: Individual contributions

Contributions in units of ea3
0

T
(1)
1

†
D 25.40

T
(1)
1

†
DT

(0)
1 −0.16

T
(1)
1

†
DT

(0)
2 −2.21

T
(1)
2

†
DT

(0)
2 0.298

T
(1)
2

†
DT

(0)
1 −0.01

Total 23.32

The Dirac-Fock contribution is = 34.66 a.u. The leading contribution arises from the

term T
(1)
1

†
D and the next dominant is the term T

(1)
1

†
DT

(0)
2 . The experimental value of

the polarizability in atomic units [41] is 34.45ea3
0, the uncertainity in the measurement

being 50 %. The earlier calculation [13] with V N form of orbitals gave a value 40.91 a.u

for the Dirac-Fock and 44.92 a.u with the CPHF. The difference is due to the nature of

the orbitals and the basis used. Though the results for the polarizability of 199Hg might

not reflect the validity of the linear CCEDM program due to the large error bars in its

measured value, our result nevertheless is within the error bars of the measurement.

5.3 Linear CCEDM for Atomic Hg

The calculation presented in this chapter is for a test basis of 57 active orbitals. A sum-

mary of the results obtained by gradually increasing the size of the basis set is presented

towards the end of this chapter. The single particle wavefunctions are calculated using

GTOs which are generated with the input for 57 active orbitals are shown in Table 5.1.

The individual contributions presented further in this chapter correspond to this basis.

This is followed by the generation of the unperturbed cluster amplitudes using an inde-

pendent coupled-cluster program. The perturbed cluster amplitudes are then calculated

using the CCEDM program. The program converged in 8 iterations for a tolerance of

10−7. The terms contributing to the atomic EDM at the level of the linearised CCEDM
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are,

Datom = 2

〈

Φ0

∣
∣
∣
∣

[

T
(1)
1

†
D+T

(1)
1

†
DT

(0)
1 +T

(1)
1

†
DT

(0)
2 +T

(1)
2

†
DT

(0)
2 +T

(1)
2

†
DT

(0)
1

]∣
∣
∣
∣
Φ0

〉

(5.7)

It must be noted that the operators D and HEDM are both single particle operators and

have the same rank (K2 = 1). Also, diagrammatically both the operators have same

representations. Hence the atomic EDM calculated by considering HEDM as the pertur-

bation and subsequently calculating the expectation value of the induced dipole operator

between the perturbed states or treating the induced dipole operator as the perturbation

and taking the expectation value of the HEDM operator, are identical. Computationally,

it is much more efficient to calculate the EDMs induced by the T-PT, NSM interactions

and also properties like the polarizability, by using the cluster amplitudes perturbed

by the induced dipole operator so that the calculation of the perturbed amplitudes is

performed only once.

5.3.1 Results for Hg EDM Induced by the P and T Violating

T-PT Interaction

Contributions from each of the terms in Eq. (5.7) are shown in Table 5.4 for the basis

with the number of active orbitals = 57. The final result can be expressed in units of e-m,

Table 5.4: Individual contributions

Contributions in units of e a0 GF CTσN

T
(1)
1

†
D −47.830

T
(1)
1

†
DT

(0)
1 0.0815

T
(1)
1

†
DT

(0)
2 14.320

T
(1)
2

†
DT

(0)
2 −0.386

T
(1)
2

†
DT

(0)
1 −0.059

Total −33.874

DHg = −1.125 × 10−22CTσNe m The Dirac-Fock contribution is −73.89CT GF σNe a0 =
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−2.45×10−22CTσNe m. It can be noticed from the above table that the largest contribu-

tion comes from the term T
(1)
1

†
D. This can be inferred from the fact that the Dirac-Fock

effect, which is the dominant, is contained in it. In addition, certain types of pair cor-

relation effects are also present, some of which are given in Fig. 5.7. The trend shown

by the individual contributions in Table 5.4 is related to the fact that the T
(0)
1 cluster

amplitudes are smaller in magnitude compared to the T
(0)
2 cluster amplitudes. Also, the

T
(1)
1 amplitudes are larger in magnitude compared to the T

(1)
2 amplitudes again due to

the presence of the Dirac-Fock contribution in T
(1)
1 . For example, from the above table,

we see that the contribution of T
(1)
1

†
DT

(0)
2 is greater than that of T

(1)
1

†
DT

(0)
1 . Similarly,

the contribution of T
(1)
2

†
DT

(0)
2 is greater than that of T

(1)
2

†
DT

(0)
1 . These arguments are

equally valid for the atomic EDM induced by the nuclear Schiff moment shown in the

next section, which follows the same trend as above. It is also interesting to note that

in both cases contribution of the term T
(1)
1

†
D is ≈ 3 times larger than that of the term

T
(1)
1

†
DT

(0)
2 , which is the second largest contribution.

( b )( a )

Figure 5.7: Leading diagrams contributing to pair correlation

5.3.2 Results for Hg EDM Induced by the P̂ and T̂ Violating

Nuclear Schiff Moment

The 199Hg atomic EDM induced by the nuclear Schiff moment is calculated for the same

input given in the previous Section 5.3.1. The method of generation of the perturbed

and the unperturbed cluster amplitudes is the same as described earlier. The Dirac-Fock

contribution is DHg = −0.546 × 105e a0 S = −0.390 × 10−17e cm S
efm3 . Contributions
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from each of the above terms is shown in Table 5.5. Again, the leading contribution is

that of the term T
(1)
1

†
D and it can also be seen that the contribution of the term T

(1)
1

†
D

is ≈ 3 times of that of the term T
(1)
1

†
DT

(0)
2 , which was also true for the results of the

T-PT induced EDM. Our result is not in agreement with Dzuba et al. [13]. They have

used CI + MBPT method for the generation of the orbitals. We have compared the

Schiff moment interaction and the electric dipole matrix elements of the 6s1/2 and the

core p1/2 orbitals for 199Hg with the results obtained by the authors of Dzuba et al. at

the Dirac-Fock level and found that the agreement was very good. This suggests that

the discrepancy in our results could be majorly due to the different choices of the virtual

orbitals in the two calculations. We have used Dirac-Fock orbitals in our calculation but

the details of the orbitals used in the calculation of Dzuba et al. [13] is not clear.

Table 5.5: Individual contributions

Contributions in atomic units of S e ×a0

T
(1)
1

†
D −0.177 × 105

T
(1)
1

†
DT

(0)
1 0.030 × 103

T
(1)
1

†
DT

(0)
2 0.525 × 104

T
(1)
2

†
DT

(0)
2 −14.258 × 101

T
(1)
2

†
DT

(0)
1 0.252 × 10−4

Total −0.126 × 105

The final result is in the units where S is expressed in e fm3,

DHg = −0.126 × 105 × 2 × 10−23

0.5292
× S

e fm3 e cm

DHg = −0.0901 × 10−17e cm
S

e fm3

5.3.3 Summary of the EDM Results for 199Hg

In this section, a summary of all the results obtained for the atomic EDM induced by

the T-PT, NSM and also the polarizability, with basis sets of different sizes is presented.
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The interaction Hamiltonian for the T-PT and the NSM are both dependent on the

nuclear density ρN (r) and hence their matrix elements are sensitive to the s1/2 and the

p1/2 orbitals, which have a nonzero probability density inside the nuclear radius. In

addition, the NSM interaction Hamiltonian is proportional to the electron coordinate

~R. Also, the matrix elements of the atomic EDM contain the electric dipole operator

~D. Hence the atomic EDMs arising from these interactions require the single particle

orbitals to be very accurate all through the radial coordinate. The trend followed by the

T-PT and NSM induced EDM is shows that the atomic EDM is very sensitive to the

inclusion of s1/2 and the p1/2 virtuals. On the otherhand, there is not much variation

in the polarizability as it is more sensitive to the orbitals having higher orbital angular

momenta. We have also performed linear CCEDM calculations, without including any

T (0) cluster amplitudes. This in other words, amounts to the linear CCEDM calculation

with the cluster amplitudes generated under the approximations HN ≈ HN and HEDM ≈
HEDM in Eq. (3.27). Hence all the correlation effects that are present through the

T (0) amplitudes have been omitted. The results of this calculation for a basis of 39

active orbitals are presented here. The Dirac-Fock contribution for this basis is DHg =

−3.17×10−22CTσNe m. The total contribution is DHg = −5.77×10−22CTσNe m. For this

basis, the CPHF calculation gives DHg = −4.64×10−22CTσNe m. Similar comparison can

be made for a basis of 57 active orbitals, for which the Dirac-Fock contribution is DHg =

−2.45 × 10−22CTσNe m, the bare-Coulomb calculation without T (0) amplitudes gives

DHg = −6.60 × 10−22CTσNe m, CPHF calculation gives DHg = −5.61 × 10−22CTσNe m.

This comparison helps in understanding the interplay between the various many-body

effects at the CPHF level, which contains the Coulomb effects only of the two particle-two

hole kind, the bare-Coulomb, which contains all the effects of the Coulomb interaction

and the linear CCEDM, which collectively contains the effects of the CPHF, the bare

Coulomb and more.

5.4 Results for the CCEDM-CPHF Comparison

The details of the basis used are shown in Table 5.7.
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Table 5.6: Summary of all the results.

Basis size In units of In units of Polarizability
10−22CTσN e m 10−17 e cm S

e fm3 in e a3
0

36 −2.703 1.830 28.89
39 −2.968 −0.228 30.83
42 −2.205 −0.146 23.59
45 −1.414 −0.112 22.60
51 −1.404 −0.112 23.22
57 −1.125 −0.090 23.31

Table 5.7: Number of basis functions used to generate the even tempered Dirac-Fock orbitals
and the corresponding value of α0 and β used.

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2

Number of basis 31 32 32 20 20 20 20 10 10
α0(×10−5) 725 715 715 700 700 695 695 655 655

β 2.725 2.715 2.715 2.700 2.700 2.695 2.695 2.655 2.655
Active holes 6 6 6 4 4 4 4 3 3

Active particles 6 4 4 3 3 1 1 0 0

The calculated T
(1)
1 amplitudes are in excellent agreement with the CPHF mixing

coefficients to an accuracy of 99% (Table 5.10). We attribute this difference to the type

of orbitals used. The variation of Da with normal diagrams for the chosen basis, with

the inclusion of higher angular momentum virtual states shows the following trend with

the inclusion of normal diagrams : The Table 5.8 indicates that the higher angular

momentum states give a positive contribution. The dominant contribution arises from

the 6s1/2-p1/2 and 6s1/2-p3/2 intermediate states, whose matrix elements are tabulated

in Table 5.9. Total contribution (normal + pseudo) from 6s1/2-np1/2 is Da = −1.78 ×
10−11CT ea0σN . The contribution of all the core is Da = −5.81 × 10−22CT e mσN . We

attribute the slight discrepancy between this and the result of an earlier calculation [10]

to the numerical differences arising primarily from the generation of the single particle

orbitals used and the size of the basis in our calculation and the coefficients calculated by
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Table 5.8: Variation of Da with the inclusion of higher angular momentum virtual states.
Here nsym refers to the symmetry of the orbital.

S.No. nsym EDM ( ×10−22CTσN e m )
Normal (Normal+Pseudo)

1 3 −6.30 −5.48
2 5 −6.31 −5.53
3 7 −6.16 −5.81
4 9 −6.16 −5.81

solution of differential equation approach in [10]. From the present study, it is evident

that the contribution from pseudo diagrams though important is 6 % of the normal

diagram contribution and opposite in sign. An increase in the number of virtual orbitals,

results in deviation from the values listed in Table 5.9. For example, with the basis (1-

14)s1/2, (2-14)p1/2,3/2,(3-12)d3/2,5/2, (4-8)f5/2,7/2 and (5-9)g7/2,9/2, the total contribution

and the contribution from the normal is −6.54×10−22CTσN e m and −6.31×10−22CTσN

e m respectively. Hence, there are certain terms in the coupled-cluster theory for EDMs

that are exactly equivalent to the terms known as the normal diagrams in the CPHF

theory. This is demonstrated numerically in the context of electric dipole moments,

a property which is sensitive to the accuracy of the wavefunctions in the near-nuclear

regions. Such equivalence for pseudo diagrams, Fig. 3.20(ii,iii) is not evident. Pseudo

diagrams can be realized as the sum of two MBPT diagrams [42]. Hence, in the coupled-

cluster expression of Da Eq. (3.57), the direct and the conjugate terms, which when

added give exactly the pseudo diagrams of CPHF. This shows that the coupled-cluster

theory clearly contains all the CPHF effects and many more. With the increasing number

of virtual orbitals in each symmetry, the difference between the Dirac-Fock contributions

in the CPHF and the CCEDM-CPHF framework is ∼ 10−11CT e m.
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Table 5.9: Dominant contributions to Da(in units of CT ea0) from normal and pseudo diagrams
for np intermediate states calculated using the coupled-cluster theory for EDMs.

Core np T1
(1) (atomic units) D (atomic units) Da = T1

(1) ×D
Normal Pseudo Normal Pseudo Normal Pseudo

6s1/2 6p1/2 111.753 95.739 0.872 0.835 −0.204 0.038
6s1/2 7p1/2 −269.402 −233.805 −1.821 −1.734 −1.027 0.185
6s1/2 8p1/2 270.725 242.544 1.388 1.311 −0.787 0.126
6s1/2 9p1/2 −198.267 −189.975 −0.344 −0.319 −0.143 0.017
6s1/2 10p1/2 −106.923 −108.978 0.068 0.059 0.015 −0.002
6s1/2 6p3/2 20.542 15.054 0.995 0.904 0.043 −0.015
6s1/2 7p3/2 −54.653 −39.743 −2.372 −2.109 0.271 −0.104
6s1/2 8p3/2 −58.035 −41.318 −2.311 −1.876 0.269 −0.118
6s1/2 9p3/2 30.418 20.049 0.771 0.513 0.049 −0.033
Total −1.514 0.094
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Table 5.10: Comparison of the CPHF mixing coefficients and the CCEDM-CPHF T (1) am-
plitudes in atomic units.

Index CCEDM-CPHF CPHF

1 0.2924205119 0.2924205118
2 −0.7982275466 −0.7982275462
3 −1.1155643358 −1.1155643352
4 1.8377536946 1.8377536937
5 3.7317822454 3.7317822436
6 9.6787847632 9.6787847589
7 −30.008015414 −30.008015412
8 0.0001165862 0.0001165862
9 0.0002421674 0.0002421674

10 −0.6387746775 −0.6387746765
11 1.7436575790 1.7436575763
12 2.4365130942 2.4365130904
13 −4.0126091898 −4.0126091835
14 −8.1347997133 −8.1347997011
15 −20.937517787 −20.937517755
16 60.693370926 60.693370912
17 1.2843746175 1.2843746168
18 −3.5056043989 −3.5056043963
19 −4.8962935559 −4.8962935525
20 8.0527485401 8.0527485326
21 16.227995315 16.227995299
22 40.569138706 40.569138625
23 −95.030635781 −95.030635790
24 0.0006727996 0.0006727997
25 −0.0021685273 −0.0021685274
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5.5 Implications of Atomic EDMs for Physics Be-

yond the Standard Model

The Standard Model of particle physics does not accommodate the tensor-pseudotensor

P and T violating electron-nuclear interaction. Any nonzero value of CT would mean

physics beyond the Standard Model. The present limit on CT = 0 is obtained from

the comparison of the ratio R = datom/CT using coupled-perturbed Dirac-Fock theory

[10] and the latest experimental result [8]. More details of this theory are presented in

Section 3.3. The diagrams arising in the CPHF theory Fig. 3.20 form only a subset of

the correlation effects shown in Fig. B.2. This comparison gives [8, 9, 10],

CT =

(

1.77 ± 0.82 ± 0.67

)

× 10−9σN

An improved accuracy of the calculation of the quantity R would give an improved

estimate of CT . With our linear CCEDM calculation, we obtain the limit for CT as

CT =

(

0.94 ± 0.44 ± 0.36

)

× 10−8σN

From the Fig. 1.1, the contribution to the closed-shell atomic EDMs induced by the

tensor-pseudotensor electron-nucleus interaction arises from the electron-nucleon inter-

actions which originates from the electron-quark interactions. The interaction involves

the nuclear spin σN and hence CT is weighted by the neutron and proton spins :

CT =

〈

CTp

∑

p

σp + CTn

∑

n

σn

〉

where σp and σn are the proton and neutron spins respectively. The nucleus of 199Hg

has an unpaired neutron with I = 1
2
. Certain models of CP -violation can in principle

predict the coupling constants associated with the T-PT electron-quark interactions.

For example, the coupling constant CT at the quark-electron level can be nonzero in

the models that can accommodate the scalar leptoquarks. However, it is difficult to

determine CT at the quark-electron level from a knowledge of the atomic EDMs. This
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is associated with the lack of a clear cut approach in finding the contribution that the

EDM of a current quark makes to a nucleon EDM [43].

It has already been explained in earlier sections that the EDM of atomic 199Hg could

arise from the P and T violating nuclear interactions. These interactions produce the

NSM. In this chapter we discuss the connection between the NSM with the P and T

violating quark interactions.

The contribution to the nuclear Schiff moment (NSM) can arise from

1. The nucleon EDM : The nuclei which consist of unpaired nucleons can induce an

EDM due to the EDMs of the lone nucleons.

2. P and T violating nucleon-nucleon interactions : The presence of CP violation

at the quark level can induce nucleon-nucleon interactions which are P and T

violating, in addition to the nucleon EDMs of the form

HPT =
GF√

2
ηab

(
N̄aiγ5Na

)(
N̄bNb

)
. (5.8)

In the nonrelativistic limit, Eq. (5.8), reduces to,

HPT =
GF√

2

ηab

2mp
σa · ∇ρb

This interaction can be written as an interaction of a single valence nucleon Na and the

nuclear core with the density distribution ρ as,

Hnc =
GF√

2

1

2mp
ηaσa · ∇ρ (5.9)

where

ηi = [ηipZ + ηin (A− Z)] /A

For 129Xe and 199Hg, the unpaired nucleon is a neutron. The NSM caused by the

internal proton excitations is parameterized in terms of the constant ηnp. It was later

shown that the contributions of the internal nucleons to the T-odd nuclear moments is

as important as the contribution of external ones [15]. The most accurate measurement

of the 199Hg atomic EDM is [8],

dHg = −
(
1.06 ± 0.49 ± 0.40

)
× 10−28 e cm (5.10)
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and the numerical calculations of the 199Hg atomic EDM induced by the nuclear Schiff

moment with our CCEDM calculations give,

dHg = −0.090 ××10−17
( S

e fm3

)
e cm (5.11)

The NSM, S is related to the parameter ηnp by [15],

S

e fm3 = −1.4 × 10−8 ηnp (5.12)

From Eq. (5.11) and 5.12, we get,

dHg = −0.090 × 10−17 × (−1.4) × 10−8 ηnpe cm

= 0.126 × 10−25ηnpe cm (5.13)

From Eq. (5.10), we obtain,

−
(
1.06 ± 0.49 ± 0.40

)
× 10−28 = 0.126 × 10−25ηnp (5.14)

Hence,

ηnp = −
(
1.06 ± 0.49 ± 0.40

)
× 10−28

0.126 × 10−25

= −
(
8.4 ± 3.9 ± 3.2

)
× 10−3 (5.15)

(see Ref.[13], Table VIII.)

To estimate the ηnp parameter, it is assumed that the terms
(
GF/

√
2
)
ηnpN̄iγ5N N̄N

arise from one pion exchange. The lowest intermediate state contributing to ηnp is the

π0 meson, which is related to the pion-nucleon coupling constant by,

η0
GF√

2
= −gπNN ḡπNN

m2
π

(5.16)

where, GF = 1.17 × 10−11 (MeV )−2 is the Fermi’s coupling constant, mπ = 140MeV is

the pion mass, gπNN ≈ 13.5 is the usual pion-nucleon coupling constant, and ḡπNN is the

P and T violating pion-nucleon coupling constant. For 199Hg, we have,

− gπNN ḡπNN = ηnp ×
GFm

2
π√

2
(5.17)
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where GFm
2
π = 2.29 × 10−7. Substituting for GFm

2
π,

− gπNN ḡπNN = −
(
8.4 ± 3.9 ± 3.2

)
× 10−3 × 2.29 × 10−7

√
2

ḡπNN =
(
8.4 ± 3.9 ± 3.2

)
× 10−10 × 2.29

13.5 ×
√

2

=
(
8.4 ± 3.9 ± 3.2

)
× 0.11 × 10−10

=
(
0.92 ± 0.43 ± 0.35

)
× 10−10 (5.18)

(see Ref.[13], Table VIII.)

According to [18], the above value of ḡπNN for 199Hg can be used to set limit on the

QCD vacuum angle θQCD using,

ḡπNN ≈ −0.027 θQCD

which gives,

θQCD =
(
3.4 ± 1.6 ± 1.3

)
× 10−9 (5.19)

(See [13] Table VIII).

Apart from the limit on θQCD, it is also possible to set a limit on the linear combination

of quark chromo EDMs using,

ηnp =
1

4πGF

3gπppm
2
0

fπm2
π

×
(
d̃d − d̃u − 0.012d̃s

)

where fπ is the pion decay constant, gπpp is the CP conserving coupling constant.

Also, the I = 1 component of ḡπNN is related to the chromo electric EDM of the light

quarks[17],

ḡI=1
πNN = 2

(
d̃u − d̃d

)
× 1014

where the terms on the right hand side are all expressed in centimeters. From the limit

on ḡπNN , we obtain the limit for the linear combination of the quark chromo EDMs,

e
(
d̃u − d̃d

)
=

(
0.92 ± 0.43 ± 0.35

)
× 10−10

2 × 1014

=
(
0.46 ± 0.22 ± 0.18

)
× 10−24e cm
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(See [13] Table VIII).

It is also possible to obtain a limit on the neutron and proton EDMs from the 199Hg

EDM. The neutron EDM dN is estimated in terms of the the CP -odd θ terms in the

QCD Lagrangian [44],

dN ≈
(
5.2 × 10−16e cm

)
θ

Using Eq. (5.19),

dN =
(
5.2 × 10−16e cm

)
×
(
3.4 ± 1.6 ± 1.3

)
× 10−9 (5.20)

we get,

dN = (17.7 ± 8.3 ± 6.8) × 10−25e cm

which can be used to set limit on the proton EDMs [19],

Q = sp dp + sn dn (5.21)

where the NSM Q is presented as the sum of proton and neutron EDMs and sp =

0.2 ± 0.02fm2 and sn = 1.895 ± 0.035fm2. It is possible from the above relations, to get

a limit for the proton EDM from 199Hg EDM.
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Conclusions and Future Directions

The study of atomic electric dipole moments is of fundamental importance involving

the fields of atomic, nuclear and particle physics. These can provide an unambiguous

test for the Standard Model and some of its extensions. Atoms are rich sources of P

and T violating effects and hence can be used to study CP violation in the leptonic,

semi-leptonic and hadronic sectors. In particular, the closed-shell atomic EDMs can

throw light on the CP violating interactions that originate within the nucleus. The

observation of an EDM is a direct evidence of time-reversal violation. Tremendous

progress has been made during the past few years in the search for EDMs. Experiments

are currently underway on Hg [8], Xe [45] and new experiments are being planned for Ra

and Yb. Sophisticated techniques like laser cooling and other state of the art techniques

could help in improving the sensitivity of the EDM experiments significantly. Certain

molecules and solid state materials also serve as promising candidates to look for EDMs.

Molecules can have enhancement factors ≈ 100-1000 times larger than that for atoms

due to their large interaction energy. For example, a limit for the EDM of an electron has

been obtained from YbF molecule [46]. Experiments with molecules are more promising

compared to atoms because of the elimination of various systematic errors due to the

large interaction energy and strong tensor polarizability of the molecules. Solid state

materials like gadolinium garnets could also be good candidates for the electron EDM

[47].

In this thesis, we have attempted to calculate the EDM of closed-shell atoms using

relativistic coupled-cluster theory; an all order relativistic many-body theory. We have

obtained new limits for various quantities of fundamental importance — the tensor-
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pseudotensor coupling constant (CT ), the nuclear Schiff moment (S), the neutron EDM

(dN), the pion-nucleon coupling constant (ḡπNN), the QCD vacuum angle (θQCD) and

the EDMs of linear combinations of quarks. This is the most advanced calculation

of EDM of closed-shell atoms to date. Inclusion of nonlinear terms in the CCEDM

equations would give more accurate limits further and together with the experimental

result, would give an improved estimate of the P and T violating coupling constants.

The validity of the CCEDM program has been checked at various stages. We have

performed the calculations of the unperturbed coupled-cluster amplitudes by appropriate

modifications to the CCEDM program. The correlation energy calculated from these

amplitudes match fairly well with the results of an independent existing CC program. We

have established that the normal CPHF diagrams are subsumed in the CCEDM theory

and have shown the numerical equivalence of the two theories for normal diagrams at

all orders of Coulomb perturbation. We found that the pseudo diagrams are present;

though not in a transparent way in the CCEDM theory. Our calculation of the T-PT

interaction coupling constants and the nuclear Schiff moment includes the correlation

effects arising from the four-particle, four-hole, (three-particle — one-hole), (three-hole

— one-particle), etc. that are not present in the CPHF theory, which contains only

the (two-particle — two-hole) effects. A more detailed study could be performed to

understand the importance of each of these effects independently in a heavy atom like

Hg. The results of the Dirac-Fock, the CPHF and the CCEDM, reflect the fact that

the correlation effects are very important for Hg. One more interesting thing is that

the results obey the same trend for the NSM and the T-PT induced atomic EDMs.

The CCEDM program can be used to calculate the atomic polarizability by replacing

the HEDM operator by the electric dipole operator. This would have been an excellent

check for the program if the error bars of the experimental value of atomic Hg were

small. Nevertheless, our result of the polarizability of Hg lies within the error bars of its

measured value.

An improvement in our CC calculation can be achieved by the inclusion of triple

excitations, quadrupole excitations, etc. The demands on the computational resources
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become increasingly critical for the inclusion of higher order excitations. As the size of

the basis increases, the number of Coulomb integrals proliferate and this consumes an

enormous amount of computational time and memory. In addition, the triangular and the

parity selection rules satisfied by the EDM operator are also responsible for huge amounts

of computational time. An alternative approach to perform these calculations is by [48]

which is a string-based algorithm and can handle any level of excitation. In addition,

theories like the unitary coupled-cluster (UCC) and the linear response theory (LRT)[42]

can be used to perform EDM calculations. The linear CCEDM theory presented in this

thesis is applicable to any closed-shell atomic system, but our focus has been on Hg as

it is presently the most interesting candidate from an experimental point of view and a

new result for this atom is expected soon.

The results shown in Section.5.3 correspond to a linearised coupled-cluster theory

applied to the calculations of closed-shell atomic EDMs. The linear CCEDM calculations

with accurate and large basis sets are critical for these calculations and are in progress. In

particular, there is the challenging task of optimizing the single particle basis. This could

be explored to a large extent by using the even-tempered (ET) and the well-tempered

(WT) bases. Undoubtedly, the accuracy of the single particle basis is very critical to

any many-body calculation. It can be noticed that the basis used in our calculations is

quite accurate near the nucleus and also far from the nucleus. Since this is an important

requisite for the atomic EDM calculations, particularly the EDMs induced by the T-PT

and the NSM, which are sensitive to the s1/2 and p1/2 wavefunctions near the nucleus,

the quality of the basis used in our calculations is indeed very good. The high accuracy

calculations of the coupling constants are underway and it should be possible to obtain

the results of the nonlinear CCEDM calculation in the near future considering the present

status of the CCEDM program, and the accessibility of the techniques of parallelization.

The stage is now well set for further research on the EDM of atomic Hg. Given the

prospect of an improved measurement of this quantity, there is clearly a necessity for

accurate calculations of R; the ratio of the atomic EDM to the P and T violating coupling

constant. The accurate calculations of the coupling constants would help in providing
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important insights into many models of particle physics that predict CP violation.

From the nuclear physics point of view, there is a necessity for an improvement in the

calculation of the nuclear Schiff moment, which can connect the CP violating coupling

constants at the atomic level to those predicted by the models of particle physics. Clearly,

atomic physics has the potential to probe new physics beyond the Standard Model.
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Appendix A

P and T Violation and Electric

Dipole Moments

Implications of P symmetry on intrinsic electric dipole moments

The permanent electric dipole moment(EDM) is defined as the expectation value of

the electric dipole operator between non-degenerate atomic states. Let Dint denote the

intrinsic or the permanent EDM of a non-degenerate physical system in a state |Ψ〉.
Then, its EDM is given by,

Dint = 〈Ψ |Dind| Ψ〉 (A.1)

where Dind is the induced dipole operator. Consider the above quantity in a parity

transformed coordinate system,

Dint = 〈Ψ′ |Dind| Ψ′〉

where | Ψ′〉 = P | Ψ〉. Since P = P † = P−1, the above can be modified into,

Dint = 〈Ψ′ |
(
P P †

)
Dind

(
P P †

)
| Ψ′〉

= 〈Ψ |P † P
(
P † Dind P

)
P † P |Ψ〉

(A.2)

Since,
(
P † Dind P

)
= − Dind, we have,

Dint = − 〈Ψ |Dind |Ψ〉 (A.3)

〈Ψ′ |Dind| Ψ′〉 = − 〈Ψ |Dind |Ψ〉
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The state |Ψ〉 is a stationary state and hence if the Hamiltonian determining the system

is H, then, H|Ψ〉 = E|Ψ〉. Assuming the Hamiltonian to be invariant under P , we have

P−1HP = H. Hence,

(
PHP−1

)
P |Ψ〉 = EP |Ψ〉

H|Ψ′ = E|Ψ′〉

This implies, both |Ψ〉 and |Ψ′〉 ≡ P |Ψ〉 describe stationary states with same eigenvalue

E . If this energy level is non-degenerate, then the two states cannot be independent and

hence P |Ψ〉 = c|Ψ〉, where c = ±1. From A.1 and A.3,

〈Ψ |Dind |Ψ〉 = − 〈Ψ′ |Dind| Ψ′〉

= − c2 〈Ψ |Dind |Ψ〉

= − 〈Ψ |Dind |Ψ〉

In other words,

〈Ψ |Dind |Ψ〉 = 0

It is hence proved that

If the Hamiltonian is invariant under a P transformation, and if the state is non-

degenerate, then there can be no permanent electric dipole moment in that state

Implications of T symmetry on intrinsic electric dipole moments

In the previous section, it was shown that there can be no permanent electric dipole

moment in a non-degenerate state if the Hamiltonian is invariant under space inversion.

It can be be shown that electric dipole moments are excluded by invariance under time

reversal too. If the Hamiltonian H is rotationally invariant, it must commute with the

angular momentum operators. This further means that there is a complete set of common

eigen vectors of H, J2 and Jz denoted by the state |E, j,m〉. It is assumed that the only

degeneracy of these energy eigen vectors is that associated with the (2j+1) values of m,

where m is the projection of j, the eigenvalue of the total angular momentum operator
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J. The electric dipole moment operator d is an irreducible tensor operator of rank 1.

Therefore, the average dipole moment on one of these states is, from projection theorem,

〈E, j,m|d|E, j,m〉 = CE,j〈E, j,m|J|E, j,m〉 (A.4)

where CE,j is a scalar. We know that if the vectors |u′〉 = θ|u〉 and |v′〉 = θ|v〉, then,

〈u′|v′〉 = 〈u|v〉∗ (A.5)

where θ is the time-reversal operator and is anti-linear. Let |u〉 = |ψ〉 and |v〉 = dα|ψ〉
where dα is one of the components of electric dipole moment operator. Then, |u′〉 =

|ψ′〉 = θ|ψ〉 and |v′〉 = θdα|ψ〉 = dα|ψ′〉
⇒ 〈ψ′|dα|ψ′〉 = 〈ψ|dα|ψ〉∗. But dα is hermitian ⇒ 〈ψ′|d|ψ′〉 = 〈ψ|d|ψ〉 where |ψ′〉 = θ|ψ〉.
Similarly consider Jα, a component of angular momentum in place of dα. Therefore,

θJα = −Jαθ

⇒ 〈ψ′|J|ψ′〉 = −〈ψ|J|ψ〉 (A.6)

Also,

Jz|E, j,m〉 = m~|E, j,m〉 (A.7)

⇒ θJzθ
−1θ|E, j,m〉 = m~θ|E, j,m〉. Therefore,

Jz [θ|E, j,m〉] = −m~θ|E, j,m〉 (A.8)

Restricting the degeneracy to m values alone, the vector θ|E, j,m〉 can differ from

|E, j,−m〉 by at most a phase factor. Therefore by taking, |ψ〉 = |E, j,m〉 we have

〈E, j,−m|d|E, j,−m〉 = 〈E, j,m|d|E, j,m〉 and

〈E, j,−m|J|E, j,−m〉 = −〈E, j,m|J|E, j,m〉 (A.9)

From these two results, by substituting m by -m, the right hand side of Eq. (A.4) changes

sign, while left hand side doesn’t. This is possible only if both sides vanish separately.

Hence the spontaneous dipole moment of the state must vanish under combined assump-

tions of rotational invariance and time reversal invariance and the degeneracy of the state

being only that due to m.
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Appendix B

Classification of the CCEDM

Diagrams

Diagrammatic representation of Coulomb operator and classification of

diagrams according to the form of Coulomb operator

F_PP

F_HH

F_PH

CD8.CS2.

CS1. CD7.

CD5. CD6.

Figure B.1: CCEDM diagrams at the bare Coulomb level listed according to the form of HN .
The operator F denotes the single electron part of HN . The leftmost side is the list of diagrams
of F and on the right side are given the cluster amplitude diagrams arising for each F .
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CS7. CS8.

CD10.CD9.CS4.

V_PPPP

V_HHHH

V_PPHH

V_HPPH

V_PPPH

V_HHPH

V_PPHP

V_HHHP

CD3.

CD6.

CS3. CD4. CD5.

CD2.

CS9. CS10.

CD1.

Figure B.2: CCEDM diagrams at the bare Coulomb level listed according to the form of VN

- contd. VN is the two-electron part. The leftmost side is the list of diagrams of VN and on the
right side are given the cluster amplitude diagrams arising for each VN .
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Appendix C

Technical Details of the CCEDM

Program

Flow chart for the CCEDM program is shown in Fig. C.1.

The program consists of routines to calculate various parameters/quantities necessary

for setting up the CCEDM equations. The routines important for the actual EDM

calculation are described below :1

• Subroutine readinp: Reads the input containing the number of basis, number of

occupied orbitals and the rank of the EDM and induced dipole operators.

• Subroutine symm: This routine sets up the equation indices for retrieving T (0)

amplitudes and also the skip information necessary for defining the locations of

the Coulomb integrals.

• Subroutine symm-edm: This routine sets up the equation indices for the T (1) am-

plitudes.

• Subroutine findlam: This routine calculates the multipoles (λ1, λ2) of the T
(1)
2

operator, stores them in an array and also defines the locations for storing them.

• Subroutine coulims: This routine calculates the bare Coulomb integrals, i.e. (4-

particle), (4-hole), (2 particle, 2 hole), (3 particle, 1 hole) diagrams and stores them

in memory.

1For a detailed description of the program refer to the documentation to be put up in our webpage
: http://www.iiap.res.in/research/NAPP/main.html
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• Subroutine aimshhph: This routine calculates the (particle - particle) EDM IMS

contributions and stores them in memory.

• Subroutine aimsppph: This routine calculates the (hole - hole) EDM IMS contri-

butions and stores them in memory.

• Subroutine edmtp: This routine calculates the matrix elements of the tensor-

pseudotensor EDM operator.

• Subroutine e1mat: This routine calculates the matrix elements of the electric

dipole matrix element.

• Subroutine schiff: This routine calculates the matrix elements of the Schiff

moment interaction Hamiltonian.

• Subroutine vdriver: This routine solves the CCEDM equations for the unknown

T (1) amplitudes. The method employed to solve them is based on the Gauss-Seidel

iterative scheme. The amplitudes are then stored in a binary format for property

calculations.

• Subroutine vimsloc: This routine sets up the equation indices for storing the

Coulomb integrals 〈ij|V |kl〉.

• Subroutine sppph: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (3 particle - 1 hole) form of Coulomb diagrams, contributing

to singles CCEDM equations (See Fig. B.2).

• Subroutine shhph: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (3 hole - 1 particle ) form of Coulomb diagrams, contributing

to singles CCEDM equations (See Fig. B.2).

• Subroutine sphph: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (2 hole - 2 particle ) form of Coulomb diagrams, contributing

to singles CCEDM equations (See Fig. B.2).
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• Subroutine dpphp: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (3 particle - 1 hole) form of Coulomb diagrams, contributing

to the doubles CCEDM equations (See Fig. B.2).

• Subroutine dhhhp: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (1 particle - 3 hole) form of Coulomb diagrams, contributing

to the doubles CCEDM equations (See Fig. B.2).

• Subroutine dpphh: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (2 hole - 2 particle ) form of Coulomb diagrams, contributing

to the doubles CCEDM equations (See Fig. B.2).

• Subroutine dpppp: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (4 particle ) form of Coulomb diagrams, contributing to the

doubles CCEDM equations (See Fig. B.2).

• Subroutine dhhhh: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (4 hole ) form of Coulomb diagrams, contributing to the

doubles CCEDM equations (See Fig. B.2).

• Subroutine dppph: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (3 particle - 1 hole ) form of Coulomb diagrams, contributing

to the doubles CCEDM equations (See Fig. B.2).

• Subroutine dhhph: This routine calculates the perturbed cluster amplitude dia-

grams arising from the (1 particle - 3 hole ) form of Coulomb diagrams, contributing

to the doubles CCEDM equations (See Fig. B.2).

• compute-edm.f : This routine calculates the EDM expectation value for the tensor-

pseudotensor, NSM and can also be used for the calculation of atomic polarizabil-

ities.

• Subroutine edm-lin: This routine is particularly written for calculating the con-

tribution to the EDM expectation value from linear CCEDM calculations. In the

109



Appendix C. Technical Details of the CCEDM ProgramAppendix C. Technical Details of the CCEDM Program

Section 5.3.1, a sample calculation is presented, listing the specific terms contribut-

ing to the EDM calculation at the linear CCEDM level.

Further in this chapter, some of the milestones in the project of the implementation of

the CCEDM theory program are described.
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Figure C.1: Flow-chart for the nonlinear CCEDM code - The driver routine calls the routines
sppph, sphph, shhph, where the cluster diagrams arising from PPPH, PHPH, HHPH form of
the Coulomb operator (VN ) respectively, contributing to singles are calculated. Similarly the
routines, dpphp, dppph, dpppp, dppph, dhhhp, dhhhh are called where the diagrams arising from
corresponding form of the Coulomb operator contributing to doubles are calculated.The driver
routine also calculates the diagrams contributing to the right hand side -(B matrix) of the
CCEDM equation.
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Figure C.2: Loop structure for the driver routine
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Figure C.3: Loop structure for the driver routine (contd.)
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Figure C.4: Loop structure for inclusion of EDM-IMS diagrams in driver routine and com-
puting the cluster amplitudes using the IMS
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Appendix D

The Tensor-Pseudotensor HEDM

Matrix Element

Consider the general matrix element of HEDM between |Φa〉 and |Φb〉, 〈Φa|HEDM|Φb〉
where HEDM has the form given in Eq. (2.10). Keeping the numerical constants aside

for the moment, consider

〈Φa|HEDM|Φb〉 = 〈Φa|iβαzIzρN(r)|Φb〉

Consider the Z-axis as the axis of quantization.

〈Φa|HEDM|Φb〉 = iIz〈Φa|iβαzρN (r)|Φb〉 (D.1)

The wavefunctions |Φa〉 and |Φb〉 can be represented in terms of the two-component Dirac

wavefunctions given by,

〈r|Φa〉 =
1

r

(

Pnaκa(r)χκama(θ, φ)
iQnaκa(r)χ−κama(θ, φ)

)

and

〈r|Φb〉 =
1

r

(

Pnbκb
(r)χκbmb

(θ, φ)
iQnbκb

(r)χ−κbmb
(θ, φ)

)

The Dirac matrices, β and α are given by

β =
(
I 0
0 −I

)

;α =
(

0 σ
σ 0

)

Substituting for β, αz in Eq. (D.1), we get
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〈Φa|HEDM|Φb〉 =

∫
1

r2

[

Pnaκa(r)χ
†
κama

(θ, φ) −iQnaκa(r)χ
†
−κama

(θ, φ)
] ( 0 σz

−σz 0

) [

Pnbκb
(r)χκbmb

(θ, φ)
iQnbκb

(r)χ−κbmb
(θ, φ)

]

× ρN (r)r2drdΩ(iIz)

=

∫
[

Pnaκa(r)χ
†
κama

(θ, φ) −iQnaκa(r)χ
†
−κama

(θ, φ)
]
[

σz(i)Qnbκb
(r)χ−κbmb

(θ, φ)
−σz(i)Pnbκb

(r)χκbmb
(θ, φ)

]

ρN (r)drdΩ(iIz)

Simplifying further,

〈Φa|HEDM|Φb〉 =

∫
[
Pnaκa(r)χ

†
κama

(θ, φ)σzQb(r)χ−κbmb
(θ, φ)(i)

]
+

[

Qnaκa(r)χ
†
−κama

(θ, φ)σzPb(r)χκbmb
(θ, φ)(i)

]

ρN(r)drdΩ(iIz)

Separating the integrals for radial and angular parts,

∫

Pnaκa(r)Qnbκb
(r)ρN(r)dr

∫

χ†
κama

(θ, φ)σzχ−κbmb
(θ, φ)dΩ

︸ ︷︷ ︸

I1

(i)(iIz) (D.2)

+

∫

Qnaκa(r)Pnbκb
(r)ρN(r)dr

∫

χ†
−κama

(θ, φ)σzχκbmb
(θ, φ)dΩ

︸ ︷︷ ︸

I2

(i)(iIz)

To calculate the specific angular matrix elements corresponding to 〈ΦKs1/2
|HEDM|ΦK′p1/2

〉
and 〈ΦKs1/2

|HEDM|ΦK′p3/2
〉 we evaluate the respective angular parts, I1 and I2 in Eq.

(D.2).

Consider the first integral, I1 for 〈ΦKs1/2
|HEDM|ΦK′p3/2

〉:

I1 =

∫

χ†
κama

(θ, φ)σzχ−κbmb
(θ, φ)dΩ

χ†
κama

(θ, φ) : κa = -1 Ja = 1/2 This angular wavefunction is for the upper component

of Φa〉. Hence, la = (Ja + Sign(κa) × 1/2) = 0 ⇒ ml
a = 0 and sa = 1/2. Choose the

projection of the total angular momentum to be the highest value. Ma = 1/2 = 0+ 1/2.
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The state |Ja,Ma〉 = |1
2
, 1

2
〉 = |0, 0〉|1

2
, 1

2
〉 in the L-S basis. Writing χ†

κama
(θ, φ) in the

uncoupled basis,

χκama(θ, φ) =
∑

ml
a,ms

a

|la, ml
a〉 × |sa, m

s
a〉〈la, ml

a, sa, m
s
a|Ja,Ma〉

= |0, 0〉|0, 0〉 = Y00|α〉

where |α〉 represents the wavefunction of a spin-up particle and Y00, the spherical har-

monics.

The term χ−κbmb
(θ, φ) corresponds to the lower component of |Φb〉. The orbital angu-

lar momenta of the upper and lower components l and l′ respectively are related as

l′ = 2J − l. We now have, κb = −2 Jb = 3/2 The kappa for the lower component,

−κb = 2. Therefore, l′b = 2Jb − lb and lb = 1. Hence, l′b = 2. From Wigner-Eckart

theorem, the multipole moments, Ma, Mb and q satisfy −Ma + q + Mb = 0. Hence,

Ma = Mb. Hence choose Mb = 1/2. Therefore,

χ−κbmb
(θ, φ) = |2, 0〉| 1

2
, 1

2
〉〈2, 0; 1

2
, 1

2
|3
2
, 1

2
〉+

|2, 1〉|1
2
,−1

2
〉〈2, 1

2
,−1

2
|3
2
, 1

2
〉

= Y20|α〉〈2, 0; 1
2
, 1

2
|3
2
, 1

2
〉 + Y21|β〉〈2, 1; 1

2
,−1

2
|3
2
, 1

2
〉

Now,

σzχ−κbmb
(θ, φ) = Y20|α〉〈2, 0; 1

2
, 1

2
|3
2
, 1

2
〉 − Y21|β〉〈2, 1; 1

2
,−1

2
|3
2
, 1

2
〉

The integral I1 becomes,

I1 =

∫

χ†
κama

(θ, φ)σzχ−κbmb
(θ, φ)dΩ = 0

Consider I2:

χκbmb
(θ, φ) :

κb = −2, Jb = 3
2
, lb = 3

2
− 1

2
= 1 → ml

b=-1, 0, 1. Fix Mb = 1
2
.

χκbmb
(θ, φ) = Y10|α〉〈1, 0; 1

2
, 1

2
|3
2
, 1

2
〉 + Y11|β〉〈1, 1; 1

2
,−1

2
|3
2
, 1

2
〉
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σzχκbmb
(θ, φ) = Y10|α〉〈1, 0; 1

2
, 1

2
|3
2
, 1

2
〉 − Y11|β〉〈1, 1; 1

2
,−1

2
|3
2
, 1

2
〉

χ−κama(θ, φ):

κa = −1, −κa = 1, Ja = 1/2, l′a = 2Ja − la = 1. Hence, ml
a = −1, 0, 1. Fix Ma = 1

2
.

χ−κama(θ, φ) = Y10|α〉〈1, 0; 1
2
, 1

2
|1
2
, 1

2
〉 + Y11|β〉〈1, 1; 1

2
,−1

2
|1
2
, 1

2
〉

Using the orthogonality property of the Spherical tensors Ylm and Clebsch-Gordan coef-

ficients, we get I2=− 2
3

√
2. The EDM matrix element,

〈

ΦKs1/2

∣
∣
∣
∣
HEDM

∣
∣
∣
∣
ΦK′p3/2

〉

= (i2)(Iz)

(

−2

3

√
2

)∫

Qa(r)Pb(r)ρN(r)dr (D.3)

119



Appendix E

Radial Matrix Elements of the

Nuclear Schiff Moment

Consider the matrix element of the Schiff moment interaction HSM between two states,
〈
Φa

∣
∣HSM

∣
∣Φb

〉
. The wavefunctions

∣
∣Φa

〉
and

∣
∣Φb

〉
can be represented in terms of the

two-component Dirac wavefunctions given by,

Φ(r) =
1

r

(
Pnaκa

(
r
)
χκama

(
θ, φ
)

i Qnaκa

(
r
)
χ−κama

(
θ, φ
)

)

(E.1)

Expressing
∣
∣Φb

〉
in a similar form and setting up of the matrix element of HSM gives,

〈

Φa

∣
∣
∣
∣
HSM

∣
∣
∣
∣
Φb

〉

=

∫ [

Pnaκa (r)χ†
κama

− i Qnaκa (r)χ−κama (θ, φ)†
]

(− 3 S e)

[

Pnbκb
(r)χκbmb

(θ, φ)
i Qnbκb

(r)χ−κbmb
(θ, φ)

]
ρ(r)

B
dr dΩ (E.2)

where dΩ = sinθ dθ dφ and B =
∫
r4ρ(r)dr. Multiplying the matrices,

∞∫

0



Pnaκa (r) Pnbκb
(r)χ†

κama
χκbmb

︸ ︷︷ ︸

A

+ Qnaκa (r) Qnbκb
(r)χ†

−κama
χ−κbmb

︸ ︷︷ ︸

B





(

− 3 S e
1

B

)

ρ(r) r cosθ dr dΩ (E.3)

Consider,

A = (− 3 S e)

∫ [

Pnaκa (r) Pnbκb
(r)χ†

κama
χκbmb

]
ρ(r)

B
r cosθ dr dΩ

and

B = (− 3 S e)

∫ [

Qnaκa (r) Qnbκb
(r)χ†

−κama
χ−κbmb

]
ρ(r)

B
r cosθ dr dΩ
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We now evaluate the angular parts of the specific integrals between s1/2 and p1/2 orbitals.

First consider the angular part of,

〈Φks1/2
|HSM|Φmp1/2

〉

given by,
∫

χ†
κama

cosθ χκbmb
sinθ dθ dφ

κa = −1 ; Ja = 1/2 ⇒ la =
(
Ja + sign(κa) × 1/2

)
= 0

Using the above expression for li, the values of κi are calculated by fixing the projection

of the total angular momentum Ja = 1/2 and Jb = 1/2 as Ma = 1/2 and Mb = 1/2 and

tabulated in Table E.

κa ml
a κb ml

b

-1 0 1 -1, 0, 1

Table E.1: Possible orbital angular momenta for κ = −1.

The angular part χκama is expressed in terms of the spherical harmonics and the spin

functions α(up-spin) and β(down-spin) as,

χκama =
∑

ml
a,ms

a

|la ml
a〉 ⊗ |sa m

s
a〉 × 〈la ml

a sa m
s
a | Ja Ma〉

= Y00 | α〉 〈0 0 1
2

1
2
| 1

2
1
2
〉

= Y00 | α〉 〈1
2

1
2

0 0 | 1
2

1
2
〉

= Y00 | α〉 (E.4)

Now consider, κb = 1 and Jb = 1/2, ⇒ lb = 1 and ml
b = −1 , 0 , 1. Fix

Mb = 1/2, and using ms
b +ml

b = Mb, the possible values of ms
b = ±1/2. Hence,

χκbmb
= Y11 | β〉〈1 1 1

2
− 1

2
| 1

2
1
2
〉 + Y10| α〉〈1 0 1

2
1
2
| 1

2
1
2
〉

= Y11 | β〉
(√

2/3
)

− Y10| α〉
(√

1/3
)

(E.5)
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after substituting for the Clebsch-Gordon coefficients. Combining E.4 and E.5, the an-

gular part of (A) becomes,

∫

χ†
κama

cosθ χκbmb
sinθ dθ dφ =

∫

[Y00〈 α|] (cosθ)

[

Y11 | β〉
(√

2/3
)

− Y10| α〉
(√

1/3
)]

sinθ dθ dφ

=

∫

− Y00Y10

(√

1/3
)

cosθ sinθ dθ dφ

= −
(

1

3

)

(E.6)

The integral (A) becomes,

A = (− 3 S e)

(−1

3

)∫

Pnaκa (r) Pnbκb
(r)

ρ(r)

B
r dr

We now evaluate the angular part of (B) given by,

∫

χ†
−κama

cosθ χ−κbmb
sinθ dθ dφ

Consider, κa = −1 ⇒ −κa = 1 and Ja = 1/2. Hence, la = 1 and ml
a = −1, 0, 1.

Fixing M − a = 1/2, ms
a = ±1/2. Therefore,

χ−κama = Y10 |α〉 〈1 0 1
2

1
2
| 1

2
1
2
〉 + Y11 | β〉〈1 1 1

2
− 1

2
| 1

2
1
2
〉

= Y10 |α〉
(

−
√

1/3
)

+ Y11 | β〉
(√

2/3
)

(E.7)

Consider, −κb = −1, Jb = 1/2 ⇒ lb = 0 ⇒ ml
b = 0. Fix Mb = 1/2 ⇒ ms

b = 1/2.

Hence,

χ−κbmb
= Y00 |α〉

We now obtain the angular part of (B),

=

∫ [

Y10
∗〈α|

(

−
√

1/3
)

+ Y11
∗〈β|

(√

2/3
)]

cosθ [Y00 |α〉] sinθ dθ dφ

=

∫

Y10
∗ Y00

(

−
√

1/3
)

cosθ sinθ dθ dφ

=

(−1

3

)

(E.8)
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Substituting in (B),

B = (− 3 S e)

(

−1

3

) ∫

Qnaκa (r) Qnbκb
(r)

ρ(r)

B
r dr

Combining (A) and (B),

〈Φks1/2
|HSM|Φmp1/2

〉 = (− 3 S e)

(−1

3

)

∞∫

0

[Pnaκa (r) Pnbκb
(r) + Qnaκa (r) Qnbκb

(r)]
ρ(r)

B
r dr (E.9)

The matrix element of the Schiff moment operator between the states |mp1/2〉 and |ks1/2〉
can be derived similarly and is given by,

〈

Φmp1/2

∣
∣
∣
∣
HSM

∣
∣
∣
∣
Φks1/2

〉

= (− 3 S e)

(−1

3

)

∞∫

0

[

Pnaκa (r) Pnbκb
(r) + Qnaκa (r) Qnbκb

(r)

]
ρ(r)

B
r dr (E.10)

which is exactly same as for

〈

Φks1/2

∣
∣
∣
∣
HSM

∣
∣
∣
∣
Φmp1/2

〉

.

123



Appendix F

Matrix Elements of the P and T

Violating Nuclear Potential

We start with the derivation of a general P , T odd electrostatic potential inside the

nucleus, take the electronic matrix element of this potential and show that it is related

to the nuclear Schiff moment.

The nuclear electrostatic potential is

Φ(R) =

∞∫

0

eρ(r)

|R − r|d
3r +

1

Z
(d.∇)

∞∫

0

ρ(r)

|R− r|d
3r (F.1)

where eρ(r) is the nuclear charge density,
∫
ρ(r)d3r = Z, d = e

∫
ρ(r)d3r = e〈r〉 is the

nuclear EDM. The definitions of the vectors R and r are given in fig.1.

R

r
O

Q

|  R − r  |

Surface  of  the  nucleus

R N

P

Note that both R and r are lying within the nucleus and RN is the nuclear radius.

The second term cancels the dipole long range electric field in the multipole expansion
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of Φ(R). Consider the multipole expansion of Φ(R) around R = R0

Φ(R) = Φ(R0) + (R − R0)Φ
′(R0) +

(R − R0)
2

2!
Φ′′(R0) + · · ·

which is equivalent to Eq. (F.1) at R = R0 except that the second term in Eq. (F.1) is

defined per nucleon. Expanding 1
|R−r|

1

|R − r| =
∑

l

rl
<

rl+1
>

Pl(cosθ)

where θ is the angle between R and r and Pl(cos θ) are the Legendre polynomials.

Consider the first term of Eq. (F.1).

∞∫

0

eρ(r)

|R− r|d
3r =

R∫

0

eρ(r)

|R− r|d
3r +

∞∫

R

eρ(r)

|R − r|d
3r

Only odd multipoles of l give rise to P ,T odd potential. All values beyond l=1 give

negligible contribution. Hence, in the
∑

l only l=1 is retained for the first term. Using

Pl(cos θ) = cos θ we get

=
1

R2

R∫

0

erρ(r) cos θd3r +R

∞∫

R

eρ(r)

r2
cos θd3r

∞∫

0

eρ(r)

|R− r|d
3r =

R

R3
·

R∫

0

erρ(r)d3r + R ·
∞∫

R

erρ(r)

r3
d3r. (F.2)

Consider the second term in Eq. (F.1). Retaining only the l = 0 term

1

Z
(d · ∇)

∞∫

0

ρ(r)

|R− r|d
3r =

1

Z
d · ∇

(
1

R

) R∫

0

ρ(r)d3r +
1

Z
(d · ∇)

∞∫

R

ρ(r)

r
d3r (F.3)

Consider the first term in the Eq. (F.2) in the limit R→ inf

e
R

R3
·

∞∫

0

rρ(r)d3r = e
R

R3
〈r〉.
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Similarly in the limit R → inf first term in Eq. (F.3) becomes

− R

ZR3
e〈r〉

∞∫

0

ρ(r)d3r = −e〈r〉
R3

R.

These two terms cancel each other. Hence the integral limits in the first terms of Eq.

(F.2) and Eq. (F.3) can be changed using

R∫

0

=

∞∫

0

−
∞∫

R

= −
∞∫

R

Eq. (F.1) becomes

Φ(R) =
−eR
R3

∞∫

R

rρ(r)d3r + eR

∞∫

R

ρ(r)rd3r

r3
+
e〈r〉
ZR3

· R
∞∫

R

ρ(r)d3r

Rewriting the above equation

Φ(R) = eR





∞∫

R

( 〈r〉
ZR3

− r

R3
+

r

r3

)

ρ(r)d3r



 (F.4)

This nuclear potential goes to zero when ρ(r) becomes zero for R > RN .

Physical significance of the different terms in Eq. (F.4):

• Consider the first term
∞∫

R

eR
〈r〉
ZR3

ρ(r)d3r

Rearranging,
∞∫

R

e〈r〉
Z

R

R3
ρ(r)d3r

This term represents the interaction of the average nuclear electric dipole moment

per nucleon due to a charge distribution at a distance of r between R and RN

with the electric field due to a point charge at a distance R from the centre of the

nucleus.
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• Consider the second term
∞∫

R

er · R

R3
ρ(r)d3r

This term is the interaction of the nuclear electric dipole moment produced due to

a charge distribution ρ(r) in the region between R and RN with the electric field

due to a unit charge at a distance R from the centre of the nucleus.

• The third term
∞∫

R

R
er

r3
ρ(r)d3r

represents an interaction of an electric field produced due to a charge distribution

between R to RN with the nuclear dipole moment produced at a distance R from

the centre of the nucleus. The nuclear electrostatic potential, Eq. (F.4) mixes

the electron wavefunctions of opposite parity. We consider only the s1/2 and p1/2

electron wavefunctions as only these have a nonzero probability density inside the

nucleus. We are interested in the matrix element

〈Ψs| − eΦ(R)|Ψp〉.

Using the relativistic form of the electron wavefunctions

Ψ(R) =

(

f(R)Ω(jlm)
−i(σ · n)g(R)Ω(jlm)

)

(F.5)

in the above matrix element and simplifying

∞∫

0

(fsfp + gsgp)
(
Ω†

snΩp

)
[Φ(R)]R2dRsinθdθdφ

Using
∞∫

0

dR

∞∫

R

dr =

∞∫

0

dr

r∫

0

dR

and Usp = fsfp + gsgp, the above term reduces to

= −e2〈s|n|p〉
∞∫

0

[ 〈r〉
ZR3

− r

R3
+

r

r3

]

ρ(r)d3r

∫ r

0

R2UspdR
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= −e2〈s|n|p〉







∞∫

0





(
1

Z
〈r〉 − r

) r∫

0

UspdR +
r

r3

r∫

0

UspR
3dR



 ρ(r)d3r







Now expand Usp = fsfp + gsgp =
∑

k bkR
k and substituting in the above equation

= −e2〈s|n|p〉
∑

k











∞∫

0

((
1

Z
〈r〉 − r

)

bk
rk+1

k + 1
+

r

r3

rk+4

k + 4
bk

)


 ρ(r)d3r







= −e2〈s|n|p〉
∑

k

bk
k + 1

{[
1

Z
〈r〉〈rk+1〉 − 3

k + 4
〈rrk+1〉

]}

where 〈s|n|p〉 =
∫

Ω†
snΩpdφ sin θdθ.

In the nonrelativistic case, (Zα→ 0), only b1 6= 0. Hence,

〈s| − eΦ(1)|p〉 = −e
2b1
2

〈s|~n|p〉 ·
[

1

Z
〈~r〉〈r2〉 − 3

5
〈~rr2〉

]

= 4πe~S ·
(
∇Ψ†

sΨp

)

R→0

where the Schiff moment ~S is defined as

~S =
e

10

[

〈~rr2〉 − 5

3Z
〈r2〉〈~r〉

]

= S~I/I (F.6)

where ~I is the nuclear spin. The above form of the Schiff moment defines the

nonrelativistic expression for the P and T violating nuclear potential arising due

to the Schiff moment. Note that the quantities defining S refer to the nuclear

coordinates.
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Additional Notes

G.1 Matrix elements of the Coulomb operator

The term representing the two-body Coulomb interaction can be expanded as [31,

32]
1

r12
=
∑

k

Uk(1, 2)
∑

q

(−1)qCk
q (1)Ck

−q(2) (G.1)

where

Uk(1, 2) =
rk
<

rk+1
>

,

Ck
q =

√

4π/(2k + 1)Ykq(θ, φ)

The two-electron matrix element is given by,

〈ab| 1

r12
|cd〉 = δ(ma +mb, mc +md)

∑

k

dk(jama; jcmc)d
k(jbmb; jdmd)R

k(a, b, c, d, k)

The dk coefficients are the angular factors and Rk(a, b, c, d, k) is a two-electron

radial integral dependent on the large and small components of the orbitals a,b,c,d

and the multipole k. This can written as,

〈

ab

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
cd

〉

=
∑

( ja,jc,jb,jd
ma,mc,mb,md,k,q)

Xk
q (ja, jb, jc, jd) (−1)(ja−ma+jd−md)

(
ja k jc

−ma q mc

)

(
jd k jb

−md q mb

)

(G.2)
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where

Xk
q (ja, jb, jc, jd) = (−1)(k−q) (−1)(ja−

1
2
+jb−

1
2
)

(
ja k jc
1
2

0 −1
2

)(
jd k jb
1
2

0 −1
2

)

[

ja, jc, jb, jd

]1
2

Rk (a, b, c, d, k)

and

Rk (a, b, c, d, k) =

∞∫

0

∞∫

0

[

Pnaκa(r1)Pncκc(r1) +Qa(r1)Qc(r1)

]

× rk
<

rk+1
>

×
[

Pnbκb
(r2)Pndκd

(r2) +Qb(r2)Qd(r2)

]

dr1 dr2

With the selection rules,

(−1)la+lc+k = (−1)lb+ld+k = 1

G.2 Matrix elements of the Induced Dipole Op-

erator

Consider the angular matrix element of the induced dipole operator between the

states of angular momenta (Ja,Ma) and (Jb,Mb),

〈

ΨJa,Ma

∣
∣
∣
∣
Dk

ind

∣
∣
∣
∣
ΨJb,Mb

〉

=

(

−1

)Ja−Ma
(

Ja k Jb

−Ma 0 Mb

)

×
〈

Ja

∣
∣
∣
∣

∣
∣
∣
∣
Dk

ind

∣
∣
∣
∣

∣
∣
∣
∣
Jb

〉

where the reduced matrix element is

〈

Ja

∣
∣
∣
∣

∣
∣
∣
∣
Dk

ind

∣
∣
∣
∣

∣
∣
∣
∣
Jb

〉

=

(

−1

)Ja+
1
2
[

(2Ja + 1) (2Jb + 1)

]( Ja 1 Jb

1
2

0 −1
2

)

×
〈

Ψa(r)

∣
∣
∣
∣
Dind

∣
∣
∣
∣
Ψb(r)

〉

and Dind = e r.
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