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1. uct

One of the main paradoxes of the contemporary physics
of elementary particles is the apparent incompatibility of
two maln theoretical foundations: on the one hand the theory
of general relativity which connects the force of gravity to
the structure of space-time, on the other hand the theory of
guantum mechanics. General relativity has been developed
mainly to understand phenomena on a cosmic scale and the
evolution of universe, while guantum mechanics regards
mainly the atomlc, subatomic and subnuclear world; this
latter theory has been formulated £or three of the four
forces of nature, namely the strong, weak and
electromagnetic interactions. In recent times unification of
electromagnetic and weak interactions has been reached
through gauge theories and one can try to include also strong
interactions. Gravitation appears to be the more elusive to
include 1In a true wunification with all the other
interactions and this may be due to the fact the energy at
which gravity and quantum effects become of comparable
strength, that is the energy at which one may hope to have
unification of gravitational interaction with the other
interactions 1s given by the so-called Planck energy

(:5 /2 15
EpL = e} ] B3 10 "Gev

But perhaps the main difficulty for unifying gravitation
with other interactions lies in more deep property of this
phenomenon known as 'force of gravity'. In fact, according
to Einstein, gravity 1s npnot & force at all but is an
intrinsic property of the space and time: this follows from
the chief, very peculiar fact, that is the famous
"equlvalence principle" for which inertial and gravitational
masses are equivalent.

80 we are faced with the situation for which while 3/4
of modern physics (the physics of strong, weak and
electromagnetic interactions acting at a microscopical
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level) are successfully described at present in the
framework of a flat and rigid space-time structure, the
remaining 1/4 (the macroscopic physics of gravity) needs the
introduction of a curved, dynamic geometrical background.

In order to overcome this dichotomy, first of all we
wlll try to extend the geometrical principles of general
relatlvity also to microphysics, with the alm to establish a

direct comparison, and possibly a connection, between
gravity and the other iInteractions. Now we know that 1in
general relativity matter is represented by the

energy-momentum tensor which provides a description of the
mass density distribution 1in space time, so that the
mass-energy concept 1s sufficient to define the propertles
of the classlcal, macroscoplc bodies; but if we go down to a
microscopical level, we £find that matter is formed by
elementary particles whlch are characterized not only by
mass but also by a spin. In that case, therefore, the
energy-momentum tensor alone 1s no longer sufflcient to
characterize dynamically the matter sources, but also the
spin density tensor is needed and the simplest and more
natural way to take account of the spin 1i1n the Einsteln
theory, 1s the Introduction of torsion, that |is the
antisymmetric part of the affine connection.

Of course this does not exhaust the problem to
reconcile guantum mechanics with gravity and the aim of this
course 1s to understand better +the influence of gquantum
effects on gravity, or, viceversa the influence of
gravitational flelds on the guantum mechanics. This route
seems to constitute a further step toward unification
of all forces, including gravity and we believe also that
the argument o¢f gquantum mechanics in curved space
constitutes a necessary step to go toward the more difficult
subject of quantum gravity. We like to understand better the
influence of external gravitational fields on quantum matter
and for that reason we have chosen to inguire what happens
in the final state of an evaporating black hole. It 1is a
problem that is strictly connected with the study of gquantum
fields in the presence of strong gravitational £fields. Ve
can say that the massive modes of closed superstring
theories may play a crucial role in the last stages of black
hole evaporation, and if the Bekenstein-Hawking entropy
describes the true statistical entropy (the true degeneracy)
of an evaporating black hole, it becomes favorahle
(entropically) that the black hole makes a transition to an
exclted state of massive string which, in turn, can decay to
massless radiation, avoiding the naked singularity and also
preserving quantum coherence as we will see.

2. BRlack hele evaporation

Are well known the consideratlon of Hawking [11 about
the evolution of quantum £field 1in background metric of
classical black hole. He find that particle creation takes
place and his semiclassical treatment of evaporation 1is
valid if Schwarzschild radius »>> Compton wave length 1i.e.

GM/c®  »> h/Me, or GMT/(hc) >> 1.

This guantity is also proportieonal to the entropy or
area of the black hole. Emitted particles build a thermal
spectrum and are uncorrelated among themselves. As black
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hole loses masses, 1ts temperature rises, and evaporatlon

accelerates (the rate 1is proportional to H_z) as mass

approaches the Planck mass = (hc?/6)y*? = 10*°Gev).
However at this stage the Compton 1length 1s comparable
to the Schwarschild radius, i{.e. eMsc? = h/Mc
for M = Hpu i.e. GM;/hc 24 1, so that a gquantum

treatment of the gravitational £field 1s required. The
semiclasslcal approach would suggest explosive decay of

black hole of mass MPL (temperature = (1/k) {hc®s6)Y7*

10**) in a burst of duration (hG/c”)*® = 107*%sec. 1In

the absence of any conservation law prohibiting the decay
one might expect decay into various elementary field quanta.
This explosive disappearance when M reaches MpL would

X

leave behind residue of thermal radiation which is a mixed
state,in quantum mechanics term, i.e. the initial pure state
has evolved into a mixed state of thermal radiation as seen
by an observer at infinity. Such converslon would vlolate
the fundamental tenets of quantum mechanics in £flat space
such as 1loss of quantum coherence; it appears also
inconsistent with quantum unitary postulate: "time evolution
is governed by unltary operator in Hilbert space of states”®
which will be maintained in a pratilcally stable remnant. The
emitted guanta are an uncorrelated ensemble and cannot be
described by a single wave function; some 1nformation about
emitted radiation is contained inside event horizon In the
form of correlations between photons absorbed by black holes
and those emitted to infinity; 1.e. wunitary postulate is
maintalned by correlating each state v, of radiation with

a corresponding state @ of black hole so that the Joint
system has a well defined overall wave functlon
v > EAn|w:°d) = |¢:h) that is we have a quantum
state Inslde a black hole comblned with thermal state

of radlation to construct a pure state Ivuog so0 that
the wunltarlty 1is maintained.

Hawking process consists of palr creatlon ln strong
gravitational fileld, that 1s one member is emitted to
infinity and the other is staylng near horizon. When the
degrees of freedom of the black hole are integrated out,
external radiation is described by a density matrix Prad

2 r rad -
Ela | |u;°d) <@; | (only stationary states £found for a

black hole are consistent with the statistlical nature of
thermal radiation suggesting continous random emission of
thermal radiation). If the resldual mini black hole
dlsappears completely by decaying into orxdlnary particles we
will be deprived of the large reservolr of states 1In the
black hole which 1s required for the construction of the
overall wave functlion; the whole system will be described
by the density matrix and unitary postulated ls violated.
Again as the initlal and flnal states do not contain black
holes we have to abandon even the weak assumption that

an S-matrix exlsts between arbitrary 1nitial and £inal
asymptotic states, that 1s as the black hole evaporates,
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the entropy o (GM*/he) k, decreases contlnously.

In order to preserve unitarity and coherence, residual
mini black hole should not decay completely. Stable remnant
should survive. Final state 18 not known but it is
reasonable to assume from tlme reversal invariance that
final state consists of particles not more exotic than the
ones that made the black hole in the beginning.

There are essentially three possibilities:

a) the final state of evaporation may leave behind a naked
singularity. This entalls violation of cosmic censorship at
gquantum level [2]

b) black hole may evaporate completely 1leaving no residue
giving rise to serious problem wilth guantum conslistency
descrilbed above; moreover by CPT theorem if there is no
singularity initially, system must zreturn to state with
no singularity

c) stable remnant or residue of around Planck mass might
remaln; semlclassical back reaction and surface correction
terms suggest that emission process might stop, but stll1
better, and surely more physical, one may consider the
possibility of a le black hole with spin (h).

For a black hole with mass and spiln of a = s/Mc, s being
total spin, the black hole temperature is given by

2z 1rz

n® (M- a*)
T = (1}
bk 32 m KM DM+ (M7 - a%)TR

and can be zero for M = a.
= i 2 =
For M = Mm , indeed, we have GMP/C = h/Mﬂc ;s L.e. M= a

that is Ten = O for Planck mass black holes provided

they have a spin of ~ h. So In that case black holes may
indeed be stable! With the attalnment of =zero temperature
such black holes would stop radiating and may be stable.

A natural way of understanding spin effects in
gravitation is through torslion. The modification of the
metrlc by inclusion of torslon can be expressed as:

26M 36%s*
R @

The surface gravity of a black hole with torslon can be
written as [31:

GM 3¢®s”
x = (= + ———)-const. {3)
r* 2c*r®
For a mass M = (hc/G)*" and radius R = (he/c”)%,
the Planck length, zero surface gravity would correspond to
s = (2/3)(c*/6) (there)Thase™ ¥ = (272087 (1)

implying that for a spin s =~ %, for such a black hole, the
surface gravity and hence the temperature vanlshes. Thus in
this case the torslon effects which enter wilth opposite
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sign, cancel those of gravity. This gives a minimum radius

of = (3/4)*°R_. writing s = ok’ , o belng the spin
density, the torsion term in eq.(2) would correspond to that
of an effective cosmological term of type A.”Rz, the
ne

corresponding temperature being of the form (

BﬂGKBM
AOMMGh
- K;E__ Vs, vanishing for particular Aoﬂ, i.e.for

Schwarzschild-de Sitter metric. The entropy of this residual
black hole of Planck mass and spln h, would be ~ Kn' sao that

the entropy of these black holes is quantized in units of
K, Just as their spin is guantized in units of h.
’

It is to be noted that only black holes with spln can
transform lnto a massive string (also an object of negative
specific heat) as massive strings 1nevitably have angular

momentum proportlonal to ' , the same as for black holes
with maximum spins. Otherwise we would have viclation of
angular momentum conservatien. In all such transition,
entropy would change in discrete units of K,- Now, if this

were the case then all primordial black holes formed with
mass < (ho'/G*H )Y (- 5-10"9., H_ being the Hubble's
constant, guite insensitive ta Ho going as an@) would now

be Planck mass remnants! For the scale invariant
perturbations in the early universe the number density of
black holes in the initial mass range (M, M + dM) (with P =
v aM  where

-z

e equation of state) is dn = (B - 2) F&hpcnﬂu

P, is the critical density and # = (3y-1)/(2+r), M, = c’t
a
the horizon mass, » = 1/3 7 =5/2 in early universe.
That means that the number density of Planck mass relicts
left by evaporation of primordial holes is {41]:
1,2 ~372

n = (l/J)QBHPCH“ M (5)
©

Pl wn

where M"‘is the mass of initially formed black holes.

-25 z, 2 -3
n, = Q e /M, ES 110 "a (H /10 )" cm . (6)

3. Black heles and strings

So we have seen that Planck mass black hole's may
undergo a transition to a masslve superstring. As string
theory ylelds general relatlvity in low energy 1llmit, thls
suggests that the Rlemann geometry is embedded in a more
general geometric structure. As a black hole is an excited
state of gravitational field in general relativity, it can
make a quantum transition to a new geometry. Agaln string
theories unify all interactlons supposedly at about Planck
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energles and that too in ten dimensions. So our understanding
of the final state must incorporate these aspects.
Fundamental object 1i1n string theories is one-dimension
extended structure characterized by a string tension a =

1/H; and interaction strength g. Their excitation

spectrum 1ncludes an infinite tower of masslve states with
exponentlially rising level starting at MPN

Now as reqgards the string tension a we have some
interesting implications in the context of strong gravity
theory when considerlng also the dual models of hadrons [5].
In fact in the zero slope 1imit dual resonance models
reduce to lagranglan field theories of +the Yang-Mills or
gravitational type.

In particular, the quantum theory of gravity (for e.g.
the Gupta-Feynman theory) can be obtained as a zero-slope
limit of the generalized Virasaro-shapiroc model where the
Regge intercept is fixed at two. One way teo demonstrate such

a correspondence involves computing the amplitude for
graviton Compton scattering both in the Virasaro model as
well as in linerized general relativity through

Gupta-Feynman quantizatlon [6]. The two expresslons agree
provided the i1dentification

z =
9 o, = G (7)

1s mage. Here gz 1s the strong interaction coupling (glven
as g /hc =~ 1), o is the universal Regge slope (related

to the supestring tension p} and G 1is the gravitational
constant. So in general the corrispondence between dual
resonance model and Yang-Mills-Einstein theory leads to such
a relation between the gauge (strong) coupling constant and
the gravitational constant through the Regge slope a,. A5

qz = hc, we see that this gives:

a, = G/he (8)
and in order to agree with the observed slope of Regge
trajectory (i.e. o, = 1 (Gev)_zl, 1t is necessary that G be
the strong gravity coupling constant G = G =« 6.7 10°°

T
c.g.s.units.
The Regge trajectories of hadrons glven by a relation

aof type J(M) = ulMZ, 1s consistent with the observed mass
spectroscopy of a large number of hadronic resonance

states lying on these trajectorles. The above spectrum can
also be interpreted as the spectrum of the rotatlonal states
of a string with the string tension u related to the strong
gravity constant by [7]1,[81:

a, = crzmn’, a, = G/hc (9}

We can also observe that dual models glve an upper
limiting temperature as related ta o, as: T = (1/0&)"2,
the constant of proportionality being the Boltzmann caonstant
Kn' The degeneracy of the N"h energy level of the string is

given for large N by asymptotlc formula P(N} = constantA(N)
exp(MN/TH) where '1'B 1s the Hagedorn limiting temperature; 1if

490



we use for a, the expression given by strong gravity we get
(91

T o= (KRR~ 10 %k (10)
which agrees with the Hagedorn temperature given by the dual
model.

Entropy of a black hole of energy E 1is s = 4AnE'

bh
and entropy of a masslve string mode of energy E is:
s = ~a ln E + bE with a = 10 and b =~ nm(2 +
ntring
2 )Ja*® for heterotic string. All units are in Planck
unlts.

In order that there is no information 1loss, true
degeneracy of a black hole which has evaporated down to
Planck mass is ~ exp(dnHz) >» degeneracy of massive string
modes of energy E glven by Eﬂoexp(bE) where E = E_ S0 it s
unlikely £for a black hole to transform lnto massive string
modewithout also radlation, but when its mass is less than
er, SB(E) < SB(E), then the transition becomes highly

probable. o 2
Specific heat of massive string € = - (1/T7)(E"/a)

is negative! Specific heat of a black hole dM/AT « 1/7°
is also negative. Gas consisting of massive superstring
excitations behaves 1n many respects llke a black hole, i.e.
black hole and masslve string excitations can never be 1n
thermal equilibrium with an lnfinlte heat reservoir. A body
with negative specific heat can be in equilibrium with a
finilte heat bath. For a black hale the condltion for a
stable equilibrium is that enerqgy of heat bath
(l.e.radlation) be less than 1/4 mass of the black hole. The
corresponding condition for equilibrium of massive
excitations of heterotic string with massless modes of a
radlation can be obtained.

In ten dimension space-time energy of massless gas of
bosons and fermions is

E = ovr*®; o = (8r°/3465)(|n_ + (1 - 1/2”)nr where n_ 15
the number of bosons and n, 1s the number of fermions. The
most probable values of EgL , Er maximize s_l + 5 4 and
thils happens when the second derivative of total 5 is
negative.

(for nb = nr = 4032, > =6 10* and s is very high)

We ctan study the various phases of a three component

system (blach holes, string and radiation) [10]. We have
three distinct phases: (1} black hole and radiation,
{2) string and radiation {3) pure radiatiaon.

Total energy E in a volume V l1s:

Phase (1) E_ . oVT* 4+ 1/(8aT)
S ireraa = 4/3(oVI®) 4 1/(16rT") (11)
Phase (2) E_, .= oVT* + aT/(bT-1)
8_,,2,44/3(oVT® 1+ baT/(bT-1}-(1/T) (bT-1) (12)
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Phase (3) E = oVT
= 473 (ovT®) (13)

We have S and Srud as function of E and V.

bhirad ¢ Saverad
Given E and V the system with higher 8§ would be preferred.
There is a critical volume above which only the radlation
can be in thermal equilibrium for both systems: black hole +
radiation and massive string + radiation. For black holes +

radiation, as is known, Vc =9 22°aE5/125 and for strings +
radiation oV, = (E + 3a/2b - D)b*(D - 5a/2b)%/(p - 3d/2p)°

with D = [4Ea/b + (3a/2b)"1'"%
curves intersect at E =x= 7 E, and v = 10° 1in Planck
units. Below thls wvalue of E, v; for string plus radlation

is higher than that for black hole + radiatlen. Thus a black
hole bathed in radiation with total E x 5 M, can, if the

volume increases slowly, undergo a phase transition to
enter a string and radiation phase. For further increase in
volume, the massive strings will evaporate to pure
radiation.

Thus 1n this thermodynamic process black hole has evaporated
through 1ts transition to a string phase and 1if the
string theory is free of singularlty (but thls 1is not

yet known also 1f concelvable} no singularity wlll be
left. If superstring unification of gravity with other

The two critical volume

interactions takes place at = MPL , then it is

necessary to include other degrees of £freedom associated
with massive string excltation to wunderstand £1nal
stages of black hole evaporation.

4. Model for string gas

The above energy levels and corresponding degeneracles
are confined to a space volume taken as 9 dimenslons.Energy
and entropy are correlated to volume and temperature like
photon gas except that the space is 9-dimensional and the
2 polarlzatlon states of photons zeplaced by 8064 fold
degeneracy of massless string (1/2 of the states are
fermionic).

2C
Epor = 9V T 0 (14)
° _ <
Ssum = 310Qa Vv Tnum Q = 8 a /15

Gas temperature #» 8tring temperature

For subsystem consisting of all massless strings and
heaviest strings the energy is
Energy lis

E = M + Es M, = mass of

heaviest string. The dependence of entropy is:
S(N,V,M} = 8 + 8§ at fixed (V,M) or N or H"/H



we have the cases:
a) M > MN: system dominated by gas of masless stzrings

b)for 1increasing N , entropy increases: system
dominated by one string
c) Entropy is not a monotonic function of N: in general

both massive string and gas of massless strings in
equilibrium are important. For Tg < TH, massless strings

dominate.

Even at Tg = '!‘H massive strings contribute 1less than

0.3% to entropy. Gas must be in state for which

10
Mlol < 9QvVv '1‘H . The result depends on

¥y = Mﬂj o , We choose y = 10

Using mean square radlus for bosonic string in 9 dimenslon
for high N, is natural to assume the volume (V) larger than
volume of 9-dimensional sphere of radius R(N), otherwise the
string would not flt the radiatlion box.

This gives

Mo< 0.2 V°

at

MM <7 10° v®
ot iot

which 12 a negligible fractlion of total energy of string
gas. Posslibllity of the black hole golng over directly 1nto
heavy string without massless strings has problems with
conservatlon laws like angular momentum. Black hole nearing
the end of is life usually is assumed to have zero angular
momentum and heavy strings with J = 0 don't exist.

The most probable state of system of non-interactlng
heterotic strings in a box of volume V , may be a single
string, or a heavy string iIn equllibrium with a gas of
massless strings, or a gas of massless strings.

Each of these at low mass has an entropy whilch is
higher than the entropy of a black hole having the same
mass.

The d-dimensional Schwarzschild-de Sltter metrics:

2 G M F(d) Ar”
as® = - [1 - — - ] ae®
4 a -1
- (15)
2 G M F(d) Az -+ . 2
+ [1 - oS T L a ] a” o+ rraq,
, -

generalize to higher dimensions the standard asymptotic
analysls of solutions to Einstein equations in 4 dimenslons.
Higher dimenslonal de Sitter space behaves as though 1t has
intrinsic temperature

12

T o= (207 [ (d - 1)/A 17 (16)

For given values of A, the number of space dimensions
tends to decrease the de Sitter temperature.
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For d-dimensional black holes:

entropy scales as « Mm_m/m_a’(that is as Min 4-dimenslons}
Schwarzschild radlus scales as = (26M) 4R
and temperature scales as « 1/M%?
(26M and 1/M respectively for d = 4).
Effect of shadow state particles 1in E- x E;

superstrings 1s to accelerate the decay of black holes by a
factor of about 2 [121. Compactlfied manlfold with radius of
curvature - Rnlahm>R imply black holes with
R > er or M > Mrl

Considering higher dimensional black holes, the
Schwarzschild solution fozr d-dimenslons ls glven by (15). The
temperature of higher dimensional black holes scales as

PL

1
T = . that for d = 4 gives T = 1/M.
M
Entropy scales as § o Hm_m/“kmthat for 4 = z‘ glves
8§ « M® . Evaporation rate is o M4 Pipat  for
d = 4 gives ME. 2 2
Lifetime is o (M™% ay «x M **™ por a = 4,

1.e. the usual four-dimensional case, the llfetime is given

% M*°
t = — (17
hoc

For the d-dimensional case, this generallizes to:

h H(dz— 4d + n:G (A%~ ad + 4rr2
t = (18)
d z 2 2
c htd - 4d + a>3-2 c(d - 4d + a>r2
2 3
_n (d”—ad+a G W -adtarsz
B 2 h c
[
For d = 4 , we set the usual formula. As G/he = Hﬂ'ﬂ
this can be written
a%- 4a + 3> 2
nh oMo L] " ~4de
t = = [H/H (19)
4 c* dez- “d o+ e M“cz bk
PL

Then for M =z 10° Mo black hole, the lifetime Iin 4 = 10

dimension, for instance, 1s >> age of the unlverse, so
it 1s practically stable unlike in 4-dimensions. This zaises
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the possiblllity of a stable remnant of the order of a few
Planck masses of the evaporating black hole 4in higher
dimensiaons, solving problems of unltarity and coherence.

The temperature of a 4-dimensional black hole is:

nc?

T * GmeRw t20)

Correspondingly for a d-dimenslonal black hole lt is:

hd‘acd—’
T x
d an Gd—s Kn Mci—s

(21)

thus much reducing the temperature for a black hole with
M >> MPL as compared to four dimenslonal case.

For 4 = 10 entropy = M‘/7, lifetime o« M™ and

temperature T M. Thus temperatures are much lowered
for higher dimensional black holes and 1life +times much
enlarged. Similarly for d-dimensional de Sitter space

T ox (2m)* [ (4 - Ly/A 1TVF
much lower for increase in 4.
For d-dimensional black hole solutlons of these models, we
have that metric tensor has the form

l.e. temperature is

g, = 1- 206M/R%® and the Schwarzschild radius is
(ZGH)‘/M_E Entropy of higher 4 black holes scales respect
toMas 8§ o MYP4P ot for 4 = 4 gives the usual

5 « M®" Each Planck mass black hole has one unit of entropy.
If we assume that in the earliest epoch the unlverse began

with ~ 10° Planck mass black holes in d-dlmensions which
evaporated to give the obsexrved 4-dlmensional entropy, then

the total entropy S of the universe of ~ 10% M black

P
holes would scale 1in d-dimensions as (I‘I/M‘,‘)‘d_zv(d_5> -

o0 | (d-23/d-a>

(107) This entropy when released by black hole
evaporation cannot exceed sm‘m@vav. in microwave
vackground, i.e. S~ 10°"., For 4 = 6 this gives

g ~ 109073 ~ 10'0; for 4 = 5 we have ~ 10°° which iz a

few orders larger than that of the aobserved entropy S"l of

the mlcrowave background. Foxr d = 2 na entropy release
{an lmpossible sltuatlon) and for d = 3 8 & Iinfinltel;
d = 7 gives too small an entropy. So as far as the entropy
release 1n the d-dimenslonal black holes arising £from the
compactified dimenslonal space 1In the early universe Iis
concerned, 4@ = 6 seems to be the optimum dimension of the
compactlfied space.

The scenarlo we have here is as follows: we already
have an expanding four-dimenslonal space-time wlth several
compactified objects of mass ~ Hﬂtstrings, membranes etc.),

in d compact dimensiona which collapse to form black holes;
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a5 when exclited, these objects produce an energy spectzrum of
states with energies several times Planck mass. So the
compactified objects collapse to form higher dimensional
(d-dimensional) black hales which then evaporate to produce
entropy, particles etc. This total entropy released on thelr
evaporation must be comparable to that in the mlcrowave
background observed now. This would reguire a4 = & for
the dimension of the compact space as other values of a ,
as seen above, are inconslstent with the observed entropy.
Again as entropy of black hole is connected with area, this
mlght have to do with geometrical property of area 1In
d-dimensions which as we shall see below is maximized for

d = 6. So the two pictures can be connected.

5. Ten dimension 2

We have In fact another argument [13] that also 1leads
tod=6: it is an 'a prlorl' argument that can privilege 10
space-time dimensions. 10 dlmensions in all means 9 + 1
that is 9 spatial dimensions. As we 1live Iin a three
dimenslonal space, six dimensions must be hidden from vlew,
thereby leaving only the four familiar dimensions of
space-time to be observed. The six extra spatlal dimenslions
must be curled up to form a structure so small that it
cannot dlrectly be seen.

Now why six compact extra dimensions appear to be
preferred? We can observe that when we calculate the area of
an hypersurface, we £find that (referring to a unitary
zadlus) 1t is maximum when 1t 1s an esasurface [14]1. We know
that there is a general principle 1in physies £for whilch
every physical system tends te put 1tself in the state of
minlmum energy. More generally one uses the superlative in
order tc express in concise form a general przrinciple which
covers a great variety of phenomena. In this sense we say
that a straight line 1s the "shortest" distance between to
points (or in a non-euclidean, curved space-time we speake
of the "geodesic"), on the sphere such a path is the
great-clrcle route between two polnts: 1In this sense the
statement that a physical system so acts that some function
of its behaviour 1s least (or greatest) 1is the starting
point for theoretical investigations.

The mathematical formulation of the superlatlives 1s
usually that the integral of some function has a smallex (or
larger) value for the actual performance of the system. Thls
is the case of the action integral and we are led to the
varilational method: certain integral has to be minlmlzed or
maximized; in other words we search for an ‘'extreme' value
of this integral so that it has eilther a minimum or a
maximum {er a point of Inflexlon). Usually we can tell from
the physical situation which cof these cases are true.

Now 1f we investigate the area of an hypersurface of a
unitary radius we find out that it has a maximum value when
it has six dimensions. To be more precise: let En be an

n-dimensional space and 8, _,2an hypersurface whose volume is
v, and surface area A . If we indicate V, as the area of
the clircle, Vg the volume of the sphere and v" the
n-hypervolume we find:
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TABLE 1
n a A (1)
2 2nc 6.23
3 4nz? 12.56
] 2723 19.73
5 an’c*/3 26.31
6 r® 31.00
7 16n"r%/15 323,07
8 2r*r7/6 32.146
9 32a*c"/105 29.68
10 2:%r%/24 25,50
10 22*°r%%/19 1.44 1077
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kra 2k+a
Tor (27) [l

v . —_ v = — (22)
b Kt ) ers w(2k + 1)1t

{n =2k or n = 2k +1}

where k! =1 2 3.....k and (2k + L)1 = 135 7....(2k
+ 1), while 1f we indicate A as the clrcumference of a

circle, A] the area of a sphere surface and a the area of

the Sn_l hypersurface in a n-space we find:
an rzk—i (zn)zlnarzk
A = — A = — (23}
2 (- 1)1 2ket 7 (2 -13 1)
(n = 2k oxr n = 2k + 1),

For unitary radius, (see Tab.l), the maximum area 15 for
hypersurface Sa (embedded 1n a 7-dimensional space).

In this context the natural unit of measure 1s the Planck
length.

6. Inpossibility of deflation

As regards the vacuum domlnance ln a collapsing universe,
for a Lorentz invarlant and general covarlant vacuum Tyv we
require at all temperatures (s + p)vnc = 0, so vacuum
domination is characterized by p < 0, that is by negative
pressure. In early unlverse the vacuum energy dominates
radiation energy being £ + 3p < 0, whenever temperature TU

falls below Tv, that 1s cu(Tu) 4 sv(TV). The period of the

exponential expanslon ls driven by negative pressure,
negative energy becoming larger with increasing volume,
resultlng in creation of positlve energy paticles. Entropy

multiplication took place (to present ~ 10™ ) at reheating
epoch when latent heat was released.

Vacuum dominated de Sitter phase is only a supercooled state
of metastable equilibrium. Supercooled state becomes vacuum
dominated as scon as radiation temperature falls below T
during the expansion of early universe.

For contracting universe we would have the
corresponding metastable superheated phase, which always has
p > 0 , which must be always radiation dominated as only for
p < 0 , wvacuum can dominate. Thus in any contraction of the
universe there can no deflatlon that ls vacuum dominatlon
superheating leads to Instabllity afding collapse.

The mass of black holes accreting black body radiatlon
in a collapsing universe, would diverge in a finite time;
the rate of accretion is [15]:

aMtti/at =~ 4nR (tyelti/c ;  R_(E) = 26M(t)/C° ;
s s (24)

1z

plt) = at(t) ; R{t) o« L/T(t) o« (t -t)

Substituting, we see that M(t) dlverges =so does entropy;
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black hole accretion causes 1nstabllity in a collapsing
universe.

Now superstring theories are valid at very early expansion;
in late stage of collapse as the universe contracts there
would be phase transition to a system of massiver string

excltations and we wlll have a corresponding rise in entropy.
The gas conslsting of massive superstring excitations
behaves like a black hole with negatlve speclfic heat

proportional to 1/7®. In ten dimension space-time of
superstrings entropy density of a gas of bosons and fermions
is

S = 1ot ; o = (85°/3465)[n + (1 - 1/2%)n]

{(that 1is (1 - l/B)n‘ = (7/B)n‘ for 4-dlmenslion space-time)

o, no= 4032 massless modes of heterotic strings

o = & 10‘; T = HPL ~ 10"k and 8§ 1s very high.

Also in Klein Kaluza theorles, the (4 + @ ) dlmenslional
scalar curvature R is the Lagranglan and the (4 + 4} gyu(x)
describes general relativity as well as gauge fleld
in a compactified manifold with radius of curvature given by

Rc = angnwhere “g {s the gauge coupling constant. The
entropy for n-dimension is S 7 const/n".

In the d-dimensional space, Planck spectral density |is
of the form:

E=o, & T (25)
d+1
2ﬂ<3d+n/z K -]
_ ra+n)r(d+1y —— ——-
where o, = Fr@in/zl nd 4t

1s the d-dimensional Stefan-Boltzmann constant and [(x) the
Riemann zeta function.
o, is wusual Stefan-Boltzmann constant for three space

dimensions that is:

= = 2+%* 715 h'c® = 5.67 107> erg cm™? deg™*
a2 B
ﬂ'sz ﬂzK ZTZ
B 1]
°, = T3n ¢ [E‘= BarT— is the well-known case of

one-dimensional thermal radlation 1.e. Johnson noise or
Nyqulst nolse In electrical networks!)
-+ 10

1
32 = Ky

Ll 8

99 ©® ¢
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38 25

10779541504 KB

o = y appropriate for
== 1403325 h®¥ **
26-dimensional bosonic strings! etc.
Again the Schwarzschild metric at £ R may be

PL
modified by guantum corrections. 30 horizon Iis different.
For m-loop terms, corrections are:

2 _ _ n -n n zm _—(ntmy z _
ds (1 E e Rseh r + E 5 BnmRSCh RPL b4 1at ete.

For ¢ >>» RPl one recovers the usual solution. These

correctlions would make the horizon fluctuate [121].

Again law energy limit of string theories give gravity
with hlgher order curvature terms with dilatons. Here the
corresponding Schwarzschild solutlon has smaller horizon.
G.'t Hooft [16] has pointed out that black hole theory 1is
related to string theory provided the string constant egual
T = 1/(8%G), with negative sign however! We point out
the correspondence between action leading to egqguation for
oscillatlions of black hole horizon and the string action

used in describing Veneziano amplitude, provided T is
identified as 1/(8aG). Thus end point of a black hole
evaporating may be tied up with unificatlono of

interactions!
It turns out that string corrections reduce the black
hole temperature [17] with

_ - 3,5

T = Tbh(l FD a' /M1, with FD constant and
a' the string slope expansion parameter. One sets a
vanlishing value for temperature at a particular value of
mass of black hole. Gauss-Bonnett corrections (R?

corrections) also have similar effects. Again back reaction
effect of Hawklng radlation aon the Schwarzschild geometry in
the presence of massless graviton, lowers the black hole
temperature.

For a number N of weak boson fields, with a

vacuum contribution due to polarization of & = 41-N/7680 nzM‘,
the black hole temperatuxe approaches zero as mass M =
(41 N/240 1)*”* which implies that T = O for M =~ SMm
ln the case of superstring theory with N = 496. 1In short
there are several ways by which the terminal stage of black
hole evaporation may be indefinitely praolonged!

A mechanism for considerably prolonglng the 1llfetime of

the remnant state of mass HPL was suggested far

instance by Carlltz [18] where the period of Hawking radiation
is followed by much larger period during which remnant |1is
radiated away, produclng a pure state with unusual long range
correlatlons.

There are also arguments against the decay: in fact if
the remnant evaporates into N quanta, the average wave

length of final N qQuanta 1s = X = (M_/N)7* x N R
that is larger by a factor of N than the size of decaying

Bl
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