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Abstract. Recently it was pointed out that a non-zero cosmological constant can play a role in the formation
of neutrino halos only in the case of neutrinos of very low rest mass (m, < 0.1 eV). However, phase-space
considerations would require m,> 50 eV if neutrinos dominate the missing mass in halos of large spiral
galaxies and moreover m, > 200 eV is implied in the case of dwarf spheroidals. These larger neutrino masses
would be in conflict with observed constraints on the age of the Universe unless a cosmological constant
is invoked.

In a recent paper, Stuchlik and Calvani (1984) concluded that a non-zero cosmological
constant (A) can play a role in the formation of neutrino halos only for very light neutrino
rest masses. Using observational upper limits of A <107>>cm~2 on a possible
non-zero cosmological constant they find it is relevant only for very low neutrino rest
masses of m, < 0.1 eV. However, if, as seems probable, the dynamics of large spiral
galaxies are dominated by dark unseen matter (the flat rotation curves suggesting a
progressive increase in such matter with radius) and if this non-luminous matter was
chiefly non-zero rest mass neutrinos then phase space considerations would imply that
m, > 50 eV for galactic halos (see, e.g., Datta et al., 1985). Put briefly — neutrinos being
fermions — their phase space density must satisfy the inequality d*> x d3p > A> (4 being
the Planck constant) which translates into n,/(m,V ) = h~3 or m,= (h3p,,/V?)'/*
where p,, is the density in missing matter with velocity V. For a typical spiral galaxy,
P~ 1072 gcm ™3, ¥V ~ 200 km s~ !, which gives m, > 50 eV. Further, it appears that
unseen matter may dominate the gravitational potential of dwarf spheroidal galaxies also
(Aaronson, 1983) in which case the rather fundamental phase space constraint would
imply m,=300eV!, which is rather incompatible with the Russian experiment
(Lubimov et al., 1980), which gives the range for m, as 14-46 eV. Neutrino rest masses
with m , ~ 50-100 eV, are incompatible with the known ages of Friedmann universes
without a cosmological constant. This applies to both open or closes Universes. Thus,
a cosmological constant would have to be invoked if one has to accommodate the rather
large neutrino rest masses implied by phase space considerations. We shall discuss this
in some detail below.

The number density of relic neutrinos is given by n, = 7.5g  T> and the mass density
as p,=1.5g,T° x Tm,, g, = 2 for each flavour of Dirac neutrinos and three flavours
are known (i.e., those corresponding to the electron, muon, and tau leptons), T, is the
neutrino background temperature which from statistics is expected to be (%)!/® x pho-
ton background temperature (for the electron neutrino). The sum Xm , denotes that of
the masses of the neutrino species; so that the constraint is on the combined rest mass
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of the three flavours. To give some numbers: if the Hubble constant H, is
50kms~'Mpc~!, then the critical density for a closed universe is
p.=3HZ/81G~5x10"%**gcm 3, for H,=100kms~*Mpc~!; corresponding
p.=2x10"2° gem 2. For T, in units of 3 K, p, = 2.8 x 1073! (7,/3)? Zm, and if all
the neutrino flavours have the same value of the rest mass given by m,c? = 30 eV, then
p,=25x10"2° (T,/3)*gcm~>. Then the Hubble age of a neutrino-dominated
universe would be given by (without the cosmological term):

dz

ty = 1 J (z = redshift)
Ho ) (1427 [1+(p/p)z]'"2

= 2 x 10'° yr/[(H,/50) + {(T,/3)? Zm,c/40 eV}!/2] . (1)

For a low-density open universe, where p, < p,, t;; = 1/Hy, = 2 x 10° (50/H,) yr. For
a closed universe with

o0

o= pes  lm= 1/HOJ dz/(1 + 2)°? = 2H; .
0

The implication is that for Zm c? = 90 eV (i.e., each species of neutrino has a mass of
30 eV and three species), we have p /p, = 5, t;; ~ 0.45H; ' ~ 8.5 x 10° yr, which is
rather too short a time for stars and galaxies to evolve.

A recent estimate for the age of the Universe based on quasar double images (caused
by gravitational lensing) gives t,; = 1.3 x 10'° yr (Borgeest and Refsdal, 1985). Now the
maximum possible age ¢,, for closed Friedmann universes (with deceleration parameter
qo > 0.5) is given (cf., for example, Joshi and Chitre, 1981) by

3 1/2
o = ( ) ;
32nGp

and for open models (0 < g, < 0.5), t,, = (:1Gp)!/2. With t,; = 1.3 x 10'°yr < ¢,,, and
with n,~ 100 x no. of flavours cm ~3; this would imply upper bounds on the neutrino
rest mass of 40 eV and 7 eV for closed and open Friedmann models, respectively
(without a cosmological term).

Thus, for neutrino rest masses > 50 eV required for galactic halos as implied from
phase space considerations it would be difficult to reconcile with the ages of Friedmann
universe models. The contradiction with the Hubble age can be ameliorated to some
extent if universe models with a cosmological constant are allowed (Doroshkevich ez al.,
1980). This can be seen as follows: the Hubble rate of expansion in models with a A-term
is given by

R? _ 87Gp N Ac®  Kc?

R> 3 3 R @

2
0
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with a corresponding age given by the expression

(oo}

d
tb{:Ho_1 :

0 z z)? 'D—vz - Ac® z z .
(1+ )[(1+ ) (1+Pc > (SRGpC) 2+ )}

thus indication that for an arbitrary (p,/p.) (i-e., for larger and larger p, values) we can
still get as large an age as required by allowing an increased value of A. So an increase
in p, can be offset by a A-term, and still giving a lower value for the age ¢,,. Of course
there would be a critical value for A, which occurs when the expression within the square
brackets vanishes and as we require the Universe to have evolved from an initial dense
state, we must have A < A_,;,. The value of m, corresponding to A_;, would be given
by Zm c? ~ 180 eV and is thus a stringent upper limit even allowing for the cosmological
constant. For Tm ¢? ~ 50 eV, p,/p, ~ 3 and Ac?/8nGp, would be between 4.5 and 5, so
as not to contradict data on the Z-distribution of galaxies and quasars. As an example
of a K = + 1 model with A close to A_,;, and, hence, a very prolonged period (large z,,)
of slow expansion near a certain radius R_;, we have the Eddington-Lemaitre model
which was briefly revived to account for a clustering of quasar redshifts at around z = 2
suggesting they formed around that epoch of nearly constant radius. Interestingly, this
model can be used to predict the matter density p,, at the present epoch along with the
value of A. As A is close to A, (A,) we can write A = A_,, (1 + €)%, with ¢ a small
positive number. The period of constant radius would have radius R ~ A, '/? and
density A.c?*/8nG. With pR> = const. = ¢*(1 + ¢)/4nA'? G; we have: (K = +1);
R? = 1Ac?R? — ¢% + 2¢2(1 + &)/3AY? RG = F(R), which for small R has R*> ~ 1/R and
R oc t*. F(R) has a minimum when R = R_,, = (1 + ¢)'/®* A~ '/2, Expanding F(R) for
R close to R, ;, as Taylor-series and integrating, we obtain

;o ()

(1+¢)'7? —2/311/2 ; 1/2
R=~/\IT [1+{1—‘(1+8) / }/ SmhA/ C(I—tmin)], (4)
where R = R;, at t = t_, . For small ¢,

R~R,_ ;. [1+3esinhAY2c(t - t,,.)];

implying R remains at around R,, till ¢sinhA'Y?c¢(t - t,,;,) ~ 1, that is for a time
(t - t.;,) =~ A~ 1?log(1/e), which means for sufficiently small ¢, the time of expansion
can be arbitrarily large (for A = A, it is co). If quasars form at z = 2, then R = R, at
z=2,ie, Ry =R, (1 +2)~3R_,, =3A"'2 where R, refers to the present value.
Then with ¢ < 1, the present density of matter must be

po = (4nGRIA?[c?) ™!

and present H,, is given by

: 1 A Y
HO = (R/R)O = <§AC2 - —2 + T}}) N
R2 3AV2R3G
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and substituting for R, in terms of A from above we have

_(20A)2 ¢

H, 9

which for an observed H, ~ 10~28 cm ™!, gives A = 4 x 10~ °% cm ~ 2, corresponding to
a present density of p, ~ 1.5 x 107 3% gcm 3. This would imply a neutrino mass of
m,c? < 6eV. Again for K =0 and K = -1, the solutions of Equation (2) have a
minimum value for R as R, = (4nGM/3c>A)'/? which again gives a constraint for the
present density from known observational limits on A (<10~ °7 cm ™ ?).

In general, one can write for the evolution of a Universe dominated by low mass
non-relativistic neutrinos, the equation

R B [8nG(7.5)gvT§va . Ac® K02:|1/2 5)
R 3c? 3 R
Assuming adiabatic expansion (R/R = — T/T), we can obtain a solution of Equation (5)
for the temperature 7" which for K = 0 (without loss of generality) is of the form
Act 1/3
T,=| ————| [cosech(3t/7)]*?; (6)
[6071va2m,:| 2

where © = (Ac?/3)~ /2. With known present limits on A and T ,(now), one can get a
constraint on Xm,. As an example for A ~ 10737 cm ™2, cosech(t/1) ~ 1, and

Ac?

Smel= ——
60nGg, T?

v

~100eV (T,=2K;g, =6).

If only one of the neutrino types has mass, this would give m,c?~ 300eV
(A= 107> cm—2).
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