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The improved virtual orbital (IVO) complete active space configuration interaction (CASCI) based
multiconfigurational quasidegenerate perturbation theory (MCQDPT) and its single-root version
(termed as MRMPPT) are applied to assess the efficacy and the reliability of these two methods.
Applications involve the ground and/or excited state potential energy curves (PECs) of N,, LiF, and
C,H¢ (butadiene) molecules, systems that are sufficiently complex to assess the applicability of
these methods. The ionic-neutral curve crossing involving the lowest two 'S * states of LiF molecule
is studied using the IVO-MCQDPT method, while its single-root version (IVO-MRMPPT) is
employed to study the ground state PEC for isomerization of butadiene and to model the bond
dissociation of N, molecule. Comparisons with the standard methods (full CI, coupled cluster with
singles and doubles, etc.) demonstrate that the IVO-based MRMPPT and MCQDPT approaches
provide smooth and reliable PECs for all the systems studied. The IVO-CASCI method is explored
to enable geometry optimization for ground state of C4Hg using numerical energy gradients. The
ground spectroscopic constants of N, and LiF determined using the numerical gradient based
IVO-CASCI method are in accord with experiment and with other correlated calculations. As an
illustration, we may point out that the maximum deviation from the experiment in our estimated
normal mode frequency of LiF is 34 c¢cm™!, whereas for the bond length, the maximum error is just

0.012 A. © 2008 American Institute of Physics. [DOI: 10.1063/1.3046454]

I. INTRODUCTION

The study of chemical reactions occurring in the ground/
excited state requires accurate knowledge of the potential
energy curves (PECs) of the systems of interest. The genera-
tion of accurate and reliable PECs is one of the most non-
trivial problem in quantum chemistry. Despite tremendous
methodological advances, the development of computation-
ally inexpensive schemes capable of providing global poten-
tial energy surfaces/curves with uniform accuracy still re-
mains an active area of research in quantum chemistry. The
great success of single reference (SR) formulations' ™ in de-
scribing systems that are predominantly of single-
determinantal character has motivated numerous attempts to
extend the limit of its applicability to the bond making/
breaking regions by treating the quasidegeneracy through the
inclusion of the higher-body cluster operators. The low order
perturbative approximations to SR approaches are incapable
of providing a viable, accurate computational scheme in
these quasidegenerate regions.z‘4 On the other hand, the treat-
ment of large systems with varying degree of quasidegen-
eracy and with actual or avoided curve crossings would
greatly benefit from an accurate low order perturbation
method.
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Multireference (MR) generalizations of the SR theory
describe the nondynamical electron correlation by using an
active space containing reference functions that can ad-
equately describe the quasidegeneracy, while the dynamical
electron correlation is introduced via MR-perturbation theory
(MRPT) schemes. Some effective Hamiltonian based MRPT
methods, however, are often plagued by ubiquitous intruder
problems,5 thereby seriously limiting their viability for glo-
bal potential energy surfaces/curves. Among several recent
attempts at devising a chemically accurate MRPT
approach6_11 for computing smooth potential surfaces, the
most promising MRPT methods include those based on the
use of a zeroth order multiconfigurational self-consistent
field (MCSCF) or complete active space configuration inter-
action (CASCI) approximation, viz., the H'.° MRMPPT,’
MCQDPT,® CASPT2,” MRMPPT using APSG,'’ etc., meth-
ods. The state specific second-order MR PT (SS-MRPT)
(Ref. 11) and the generalized van Vleck second-order PT
(Ref. 12) (GVVPT2) have also promising applicability.

At this point it is pertinent to mention the fact that the
MRMPPT method of Hirao’ (MRPTMP) can be viewed as a
single-root version of MCQDPT scheme. Hereafter, we will
call these two methods as Hirao—Nakano perturbation theory
(HNPT) for convenience. In the HNPT method, the refer-
ence(s) wave function is (are) first determined from the com-
plete active space self-consistent field (CASSCF) method
and then the perturbation calculation is done with those wave
functions used as reference based on Rayleigh—Schrodinger
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(RS) PT in MRMPPT and van Vleck PT in MCQDPT. It is
important to mention that the CASSCEF is an iterative method
and involves transformations of two-electron molecular inte-
grals and subsequent matrix diagonalization in each iteration
and, hence, becomes time consuming which is primarily re-
sponsible for the increasing computational cost of HNPT
method. This can seriously limit the wide applicability of the
HNPT method. To overcome these difficulties associated
with the CASSCF calculation, one can focus on the im-
proved virtual orbital (IVO)-CASCI scheme> ™" which
avoids the convergence problems without sacrificing accu-
racy at considerably reduced computational labor. The com-
putationally efficient IVO-CASCI scheme can thus be used
to remove the problem of convergence and to reduce the
computational cost of the HNPT (MRMPPT/MCQDPT)
method”® without undue sacrifice in accuracy.

Recently, Chaudhuri et al.'®"’ proposed a computation-
ally inexpensive version of HNPT in which the first order
reference functions are generated from the IVO-CASCI
method">'®?! and are then used in subsequent MRPT calcu-
lations. The IVO-CASCI scheme is computationally simpler
than CI singles (CISs) and CASSCF methods. The latter
arises because the IVO-CASCI calculations do not involve
iterations beyond those in the initial SCF calculation, nor do
they possess features that create convergence difficulties
with increasing size of the CAS in CASCI calculations.
Since the IVO-CASCI approach contains both singly and
doubly excited configurations in the CAS (in addition to
higher order excitations), it provides descriptions of both sin-
gly and doubly excited states with comparable accuracy to
CASSCEF results. The CIS method, on the other hand, cannot
treat doubly excited states. Thus, the main computational ad-
vantages of our newly proposed IVO-HNPT approach over
the traditional HNPT method are (i) the absence of iterations
beyond those in the initial SCF calculation and (ii) the lack
of convergence difficulties due to the intruder states” that
plague CASSCF calculations with increasing size of the
CAS. Consequently, the IVO-CASCI based MR strategy is
attractive in terms of the applicability to bigger systems.
Thus, for a potential utility for treating large systems with
varying degree of quasidegeneracy and real or avoided curve
crossings, IVO-HNPT theory would be of enormous utility.

To assess and demonstrate the applicability of the IVO-
HNPT method (which is now in the GAMESS package®), a
few test case calculations have already been presented in our
previous papers dedicated to the IVO-HNPT.'*!'” The IVO-
HNPT method has already been applied successfully to cal-
culate the state energies and various chemical properties of
different chemically interesting systernsm’17 such as cis effect
in 1,2-dihaloethenes, PEC of isomerization of N,H, and
C,H,, and so on. A particularly severe test, involving vinyl
cation PEC has been reported by Chaudhuri and Freed."”
Prompted by encouraging results of Chaudhuri et al.,'*"" we
have attempted to use the IVO-NHPT method to investigate
the systems for which both nondynamical and dynamical
correlations have to be considered at a sufficiently high level
in a balanced manner. This paper presents the difficulties met
by the MRPT method during the computation of PEC of LiF
neutral/ionic avoided crossing and the N, ground state wave
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function despite the tremendous methodological develop-
ments of MRPT approaches. In this paper, we also provide
the calculation of the cis-trans reaction path of C,Hg¢ through
C-C single bond rotation. The systems considered here are
sufficiently complex for demonstrating the potentiality and
generality of the IVO-HNPT method.

The accuracy of the MRPT theory decreases signifi-
cantly in the presence of avoided crossing in a PEC. The case
of weakly avoided crossings is especially difficult to handle.
Around the crossing region, the exact extent of splitting of
the two states as well as the barrier height generated due to
the weakly avoided crossing becomes very sensitive to the
accuracy of the formalism used. Of course, the most strin-
gent tests for the generality of IVO-HNPT formalism (or of
any MRPT) would be in situations where the orbitals change
very rapidly as a function of minor geometrical distortions,
as happens in weakly avoided crossings. We have shown the
effectiveness of IVO-HNPT formalism in one such difficult
system, namely, LiF. Nakano® and Spiegelmann and
Malrieu™ showed that in the case of a second-order MR-
perturbation approach, a spurious double crossing is found
instead of weakly neutral/ionic avoided crossing in the case
of LiF. For this reason, the LiF system has often been used to
establish the applicability and generality of new methods de-
veloped with the aim to demonstrate the efficacy of the
methods to compute the PECs consisting of ionic-covalent
curve crossing. We also consider the torsional barrier in the
C,4H¢ molecule. This example, although simple, represents a
wide class of chemically important problems such as transi-
tion states and diradicals. Another important advantage of
our study is that we can describe with reasonable accuracy
C—C single bond rotation in C4H, without altering the active
space throughout the PEC. This advantage is of tremendous
importance where chemistry in polyatomic molecules is con-
cerned: very often several reaction channels can be opened
for the same molecule, and it is impossible to calculate reli-
able relevant energetics for them when the active space is
different for each channel. To establish the efficacy of a MR-
based method, the results generated via triple bond breaking
(such as of N, molecule) are more instructive than those for
single bond as the matter becomes more complex around the
dissociative region for triple bond systems. It is worth men-
tioning that the problem of SR-based method to compute
highly accurate PECs manifests itself most emphatically
when the computations of the multiple bond breaking and
avoided curve crossing phenomena are considered. It is nev-
ertheless interesting to compare the potentiality of the tradi-
tional MRMPPT/MCQDPT and IVO-HNPT methods to
compute the dynamical and nondynamical correlations in a
balanced manner in such systems as studied by us in this
paper. We will discuss this issue in Sec. I'V.

The organization of the article is as follows. We begin
with a brief description of the IVO scheme (Sec. II) followed
by the theoretical background of IVO-HNPT method
(Sec. III). Numerical results are presented and compared in
Sec. IV.
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Il. GENERATION OF IMPROVED VIRTUAL ORBITALS

Because the basic philosophy of generating the IVOs
applies equally for restricted and unrestricted Hartree—Fock
(HF) orbitals, the approach is illustrated for a closed shell
restricted HF reference function as used in the present
calculations.

When the ground state of the system is a closed shell, the
HF approximation to the ground state wave function is ex-
pressed in terms of HF molecular orbitals (MOs) as @,
= Al ¢, by - b, b,], where A is the antisymmetrizer.
Let the indices i,j,k,... refer to the HF MOs {¢;} that are
occupied in the ground state and u,v,w,... to the remaining
unoccupied HF MOs. All the HF MOs are eigenfunctions of
the one-electron HF operator 'F,

occ

1F1111=<¢1|H1+2(2Jk_Kk)|¢m>=51mEl’ (1)
k=1

where [ and m designate any (occupied or unoccupied) HF
MO and ¢ is the HF orbital energy. The operator H; is the
one-electron portion of the Hamiltonian, and J, and K, are
Coulomb and exchange operators, respectively, for the occu-
pied orbital ¢;.

An excited state HF computation would provide a new
set {x} of MOs that produce the lowest possible energies for
the low lying singly excited W¥,_, , state,

\P(a - Iu’) = A[Xl)?lXZ)?Z e (Xai,u, * X,u,)?a) tt Xnin]’
(2

corresponding to the excitation of an electron from the or-
bital y, to x,, where the + and — signs correspond to triplet
and singlet states, respectively. The new MOs {x,} and {x,}
may be expressed as a linear combination of the ground state
MOs {¢;, ¢,}. If, however, the orbitals are further restricted
such that the {y,} are linear combinations of only the occu-
pied ground state MOs {¢,} and the {),} are expanded only
in terms of the unoccupied {¢,},

occ unocc
Xa:E aai¢i’ X/,L: 2 c,u,ud)u’ (3)
i=1 u=1

then the new orbital set {y,, X,u} not only leaves the ground
state wave function unchanged but also ensures the orthogo-
nality and applicability of Brillouin’s theorem between the
HF ground state and the V¥ ,_, “ excited states. In addition,
this choice also benefits from using a common set of MOs
for the ground and excited states, a choice that simplifies the
computation of oscillator strengths, etc. However, we avoid
the computationally laborious reoptimization of the occupied
orbitals by setting {x,}={¢,}, i.e., by choosing a,;= 5,
thereby simplifying enormously the procedure for generating
the IVOs. Hence, the coupled equations determining the co-
efficients a,; and ¢, reduce to a single eigenvalue equation
of the form F'C=CT, where the one-electron operator F’ is
given by

F, ='F  +A“ (4)

ow vw?

'F is the ground state Fock operator and the additional term
Ay, accounts for excitation of an electron out of orbital ¢,
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Agw=<Xv|_Ja+KatKa|Xw>' (5)

The minus sign in Eq. (5) applies when ¥, 18 a triplet

state, while the plus sign is for the singlet "W, “ state.”*%
The corresponding transition energy is
SAE(a— p) =Ey+ Vi~ 'F s (6)

where E, is the HF ground state energy and v, is the eigen-
value of F'C=CT for the uth orbital.

lll. THEORETICAL BACKGROUND FOR IVO-HNPT
METHOD

The following is a succinct recapitulation of the essential
issues of HNPT method pertaining to our recent develop-
ment.

The HNPT is based on the RS perturbation theory
(RSPT) where CI coefficients as well as MOs are computed
first through IVO-CASCI and then RSPT is applied using the
IVO-CASCI wave function as reference. As in conventional
many-body perturbation theory, the IVO-HNPT method be-
gins with the decomposition of the total Hamiltonian H as

H=Hy+V, (7)

where H, is the unperturbed Hamiltonian and V is the per-
turbation. In this method, the zeroth order Hamiltonian is
defined as

Hy=|a)E)(al + 2 OEXK + 2 |9)Eq
k q

: (8)

where ¢ is the gth determinantal state, or configuration state
function (CSF), outside the CAS and k is the kth multideter-
minantal state from the CAS that is orthogonal to .

The zeroth order Hamiltonian H, can be defined more
conveniently using the following expression:

HO = E qua;aq’ (9)
rq

to obtain the zeroth order energies as a sum of orbital ener-
gies €,. The matrix f,, in Eq. (9) is defined as

1 1
Fog=hog+ 52 Df’{(mllqﬂ - 5<pr||sq>} : (10)

where £, and (pr||gs) (or (pr||sq)) represent one- and two-
electron integrals and D;‘q denotes the average of the one-
particle density matrix over all the IVO-CASCI states in the
CAS. The one- and two-electron integrals appearing in f,,
(and in subsequent HNPT calculations) are computed using
the IVOs. (Hunt and Goddard" and Bair and Goddard'* also
used a similar approach in their IVO based CI calculations.)

The effective Hamiltonian within the IVO-CAS refer-
ence space through first order is the diagonal matrix

(o1 B) = £ 0, (11)

where ELVO'CASCI denotes the CASCI/MCSCEF energy.
The second-order energy for the target state is
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2 2
q

where

£ _ elVlaXalV]e)
=" ARO

b}

with
AEY =EO - EY), (12)

a

a is a IVO-CASCI wave function and is defined as {a|
=3 c,(p|, where {p| is the pth single-determinantal state
from the CAS. In this case, a single wave function that is
multiconfigurational is used as reference and hence the name
multiconfiguration basis single state PT.

In the IVO-HNPT, the reference function is constructed
via IVO-CASCI scheme, then the energies of interest are
obtained via diagonalization of the effective Hamiltonian.
The effective Hamiltonian to the second order is given by

(o] V]g){q|VIB)

(H ) o= el + 53 {

(0) (0)
q EB _Eq
(BIVIg)q|V] a)}
o (13)
(0) (0) >
EY - Ef

where the reference functions a and S are multiconfigura-
tional in nature. The specification of an active space, the
choice of active orbitals, and the definition of H determine
the potentiality of the perturbation approximation.

We are now in a position to mention the fact that the one
particle density matrix is the CASSCF density matrix in the
case of CASSCF scheme, but in the case of IVO-CASCI
scheme it is not the HF density matrix as the active space
includes some HF virtual orbitals. The IVO modification of
the HNPT scheme retains all the advantages of the traditional
HNPT theory without sacrificing its accuracy. In addition, as
we have already mentioned in Sec. I, the IVO-HNPT method
does not require tedious and costly CASSCEF iterations be-
yond those in an initial SCF calculation.

IV. NUMERICAL APPLICATION

In this section, we consider the numerical application of
IVO-HNPT method to various chemically interesting situa-
tions (such as PEC of N, and LiF and C,Hg), where the
dynamical and nondynamical electron correlations play a
crucial role. A balanced description of both dynamical and
nondynamical correlations over the entire range of internu-
clear distance is a challenging problem for all MRPT
methods.

A. The ground state PEC of N, molecule

The reliable description of the dissociation profile of the
ground state of the N, molecule is a very difficult problem
for any ab initio method due to the presence of strong dy-
namical and nondynamical correlation effects. This system
possesses very significant quasidegeneracy not only at the
region of large internuclear separations but also at equilib-
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FIG. 1. (Color online) The ground ]E; state PEC of N, obtained using the
FCI, CCSD, CR-CC(2,3), IVO-MRMPPT, MRMPPT, and HF-MRMPPT
(MRMPPT using the HF orbitals) methods with DZP basis set.

rium region. Hence this system provides a critical test case
for any MR-based methods. ™

In the present communication, we consider the bond
breaking of N, molecule using a DZP basis,”® for which an
exact treatment of electron correlation [full CI (FCI)] is
available.”® The active space used in our calculations com-
prises three bonding MOs (o, 7, 7,) and three antibonding
MOs (0'*,77;,77;). This is the minimal set of active orbitals
and active electrons (6e,6v) that is required to study the
PEC of triply bonded systems such as N2.29

Figure 1 compares the ground X 12; state potential
curve of N, as computed using the IVO-HNPT (such as
IVO-MRMPPT) method as well as MRMPPT method with
MCSCF orbital (termed as MRMPPT) and HF orbital
(termed as HF-MRMPPT) with the FCI and with SR based
coupled cluster singles and doubles (CCSD) and its variants.
The errors in all these approximate methods may be exam-
ined more critically in Fig. 2 which presents the deviation
[E(FCI)-E(theory) = AE] of the computed ground state en-
ergies from the FCI as a function of internuclear distance.

0.06
0.04 | (+) IVO-MRMPPT ]
(x) MRMPPT
(+) HF-MRMPPT
0.02 (0)) CCSD ]
2000
4
-0.02

-0.04

-0.06 . . . . . . . . .
20 22 24 26 28 30 32 34 36 38 40
Ry (in a.u.)

FIG. 2. (Color online) Plot of E(FCI)-E(theory) (=AE) (in a.u.) for the
ground state of N, molecule as a function of N-N internuclear distance with
DZP basis set.
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1 2 3 4 5 6 7 8 FIG. 5. (Color online) Plot of E(FCI)-E(theory) (=AE) (in a.u.) for the
Ry (in a.u.) ground state of LiF molecule as a function of Li-F internuclear distance.

FIG. 3. (Color online) The IVO-MRMPPT, CCSD, CR-CC(2,3), and 8R-
RMR-CCSD ground state energies (a.u.) of N, as a function of the N-N
bond length with cc-pVTZ basis set.

Figure 3 effectively displays the nonparallelity errors (NPEs)
of these approximate methods. The parameter NPE is a mea-
sure of global accuracy of these methods and is defined as
the difference between the maximum deviation and the mini-
mum deviation from the FCI estimate over the entire PEC/
surface. It is evident from Figs. 3 and 4 that the quality of the
IVO-HNPT results is quite encouraging. The errors (AE) for
IVO-HNPT method are generally small at large bond dis-
tances, but become larger at shorter distances. The PEC for
IVO-HNPT is very close to the FCI beyond 3.8 a.u., and
hence the corresponding error curve (AE) (see Fig. 5) is
nearly flat. Although the performance of the completely
renormalized CC theory’**! [CR-CC(2,3)] and IVO-HNPT
is very close in proximity at shorter bond distances, the qual-
ity of CR-CC(2,3) method goes down with increase in bond
length (after 3.4 a.u.). The NPEs for CCSD, CR-CC(2,3),
and IVO-MRMPPT are 47.70, 48.29 and 15.85 kcal/mol,
respectively. Thus the quality of PEC computed via IVO-
HNPT method is better than that of the CCSD and CR-
CC(2,3) methods. From the given figures and NPEs we may
conclude that the overall performance of the IVO-HNPT
method is consistent and promising to compute the total en-
ergy of the ground state of such a challenging system as N».

-106.80

-106.85

-106.90

-106.95

-107.00 x IVO-MCQDPT

« MCQDPT

Energy(in a.u.)

-107.05

-107.10 |

107.15 S S SR
2 3 4 5 6 7 8 9 10 11 12 13
Ryr (in a.u.)
FIG. 4. (Color online) PECs with respect to Li—F bond length generated via

IVO-MCQDPT, MCQDPT, and FCI methods for the ground X 'S* and first
excited singlet B 'S* state of LiF molecule.

In passing, we note that the performance of IVO MRMPPT
is better than HF orbital based MRMPPT but slightly poorer
than the traditional MRMPPT. It is worth mentioning that the
traditional MRMPPT is computationally more expensive
than the IVO-HNPT.

We also compare our calculations with the MR based
CCSD method to assess the performance of the IVO-HNPT
against the state-of-the-art MR approach. The cc-pVTZ basis
set is used” to generate the ground 12; state PEC of N,. The
same basis set was also used by Li and Paldus™ in their
8R-RMR-CCSD calculations for the ground state PEC of N,.
Figure 6 plots the IVO-HNPT, CCSD, CR-CC(2,3), and 8R-
RMR-CCSD (Ref. 29) ground state energies of N, as a func-
tion of N-N internuclear distance. For clarity of comparison
between these methods, the IVO-HNPT, CCSD, and CR-
CC(2,3) ground state energies are shifted so that they all
become equal to 8R-RMR-CCSD at R(N-N)=1.30 a.u.
Figure 7 clearly exhibits that the CCSD and CR-CC(2,3)
methods fail badly upon dissociation. Moreover, the CR-
CC(2,3) produces an artificial hump in the PEC around
R(N-N)=3.7a,. However, this type of behavior of the CC
PECs near the bond breaking region is quite common and
appears even in other diatomic systems.3 3

FIG. 6. Geometrical structure of cis- and trans-butadiene molecules.
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FIG. 7. (Color online) PECs (kcal/mol) with respect to the C,—C,—C,-C,
torsional angle generated via IVO-MCQDPT, CCSD, and CR-CC(2,3)
methods for the ground state of butadiene molecule.

It is pertinent to remark that the CCSD calculations (and
hence CR-CC) do not converge at all beyond R(N—-N)
>4.5a. Thus, the SR based CC methods fail in the ultimate
challenging case of N,. The difficulties faced by the SR
based CCSD and MBPT methods to generate the total PEC
of N, molecule were first pointed out by Laidig et al.”’ Our
study clearly shows that in order to compute energy of a state
with pronounced degeneracy or quasidegeneracy (usually
present with stretching and/or breaking of chemical bonds),
one has to use a MR-type formalism. Figure 3 makes clear
that the IVO-MRMPPT scheme yields a smooth curve even
at highly stretched geometry and the maximum deviation
from the full-blown 8R-RMR-CCSD energy29 is 16 mH. In
passing, we want to say that the 8R-RMR-CCSD is compu-
tationally more expensive than the IVO-MRMPPT method.

B. lonic-covalent avoided curve crossing between
singlet PECs in LiF

In our next application, for a different type of dissocia-
tion phenomena, we have calculated the total energies of the
two lowest singlet states ('3*) of LiF molecule®*® as a
function internuclear distance via IVO-HNPT method,
which, in fact, provides a smooth and continuous curve even
close to the avoided crossing. The accurate calculation of the
ionic/covalent curve crossing of this molecule has been the
subject of various studies. It has been observed that the re-
laxation of the orbitals in ionic/covalent structure plays a
crucial role in the accurate calculation of the curve crossing
zone. The avoided crossing is also found in other alkali ha-
lides, but the LiF molecule is particularly interesting due to
its small size and availability of the FCI results.** The ionic-
neutral curve crossing phenomena involving the two lowest
IS+ states of LiF have been extensively studied to model
various chemi-ionization processes (M+X—M*+X").
Needless to say, the interest in the ionic-neutral curve cross-
ing in LiF goes well beyond the methodological point of
view. The real-time dynamics experiments have been re-
ported for Nal, NaBr, and Lil.¥ In fact, these experiments
can be used to locate the crossing point and the coupling of
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electronic states. In passing, it is worth mentioning that it is
difficult to obtain a good approximation to FCI energy values
at the point of the avoided crossing of LiF molecule using
general quantum chemical methods.

The computational study of the avoided curve crossing
problem of LiF is a critical test case for MR-based methods
as it involves a narrow avoided crossing between two lowest
IS+ states which have a very different orbital character. In
the equilibrium region, the ionic state [(Li*F~)] is lower in
energy, whereas the neutral [(Li---F)] state is lower at the
dissociation region. In avoided crossing zone, the relative
contribution of the two-state functions tends to change very
rapidly and strongly with slight variations in nuclear dis-
tances. Thus, internally contracted MR-based methods may
not be suitable to study such curve crossing phenomena. The
principal problem with this approach is the lack of relaxation
of the zero-order function. The effect of correlations is strong
for the ionic form than that for the neutral one. An unbal-
anced treatment of the correlation effects changes the relative
energy of these two states with respect to each other, and
thus the crossing zone changes from its appropriate position.
Thus, this system has often been used to assess and calibrate
the performance and reliability of multiroot MRPT methods.
The single-root MRPT methods are known to fail in this
situation, and hence, the multistate version of IVO-HNPT
(IVO-MCQDPT) method is employed instead of IVO-
MRMPPT method (the single-root formalism) to describe the
PECs of LiF system. In this paper, our aim is to assess the
stability of the IVO-HNPT method in the avoided crossing
region as well as to show the accuracy of the results provided
by the IVO-HNPT method with respect to the FCI energy.

Bauschlicher and Langhoff34 studied this system at the
FCI level to delineate the performance of the truncated
CASSCF/MRCI method. In this paper, the ground and the
first excited 'S* state energies of LiF are calculated using the
IVO-MCQDPT method with the same basis set and active
space.8 Results are displayed in Fig. 4. For comparative pur-
poses, the IVO-HNPT and MCQDPT (reported in Ref. 8)
state energies are shifted so that they are all equal to the FCI
energy at R=12.5 a.u. As can be seen from Fig. 4, the IVO-
MCQDPT calculation yields smooth PECs for both the adia-
batic states. The figure makes clear that the IVO-HNPT
method provides very close results to the FCI results. The
errors (AE) of the IVO-HNPT and MCQDPT are plotted in
Fig. 4. The overall error for IVO-HNPT is smaller than that
of the parent MCQDPT method. It is worth noting that the
NPEs of IVO-HNPT for the ionic and neutral states are 3.6
and 2.0 kcal/mol, respectively. It is thus evident that the
IVO-HNPT results of the two lowest 'S* (adiabatic) states
are overall consistent, and the method is capable of provid-
ing results which are reasonably close to FCI.

C. Study of internal rotations of butadiene

In our last example, we consider the computation of the
torsional potential of butadiene due to the rotation about the
C—C bond in order to demonstrate the efficiency of the IVO-
HNPT method. Butadiene, the simplest conjugated hydrocar-
bon molecule, exists as a mixture of cis and trans conformers
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TABLE 1. The ground state spectroscopic constants for N, and LiF using cc-pVTZ basis. Bond lengths and

frequencies are given in A and cm™!, respectively.
Parameters CASSCF IVO-CASCI” CCSD RMR-CCSD Expt.
N, R, 1.104 1.097 1.098 1.101 1.0977*
w, 2352 2336 2426 2365 2359*
LiF R, 1.578 1.555 1.580 1.564°
w 904 944 900 910"

BN

“Reference 42.
"Reference 43.

(see Fig. 7). At room temperature, 96% of butadiene exists as
trans conformer which is energetically more stable (less
strained) than the cis structure. The first ab initio calculation
of butadiene was performed by Skaarup et al.,* and since
then, many theoretical investigations have been carried out
on butadiene and its derivatives. Recent theoretical investi-
gations predict the gauche conformer (twisted by ~40°
around the central carbon bond) to be energetically more
(Iess) stable than the cis(trans) structure.

The ground state geometrical parameters and the energy
of butadiene are calculated using the 6-311G** and cc-pVDZ
basis sets, respectively. The basis set used for the geometry
optimization in these calculations is same as that used by
Gong and Xiao™ in their MP2 level calculations for this
system. The IVO-CASCI and CASSCF geometry optimiza-
tions are carried out with (8¢, 12v) CAS, whereas a (4e,4v)
CAS is used for generating the ground state torsional PEC
via IVO-HNPT procedure. Figure 7 compares the torsional
PECs of butadiene obtained at IVO-MRMPPT, HF-
MRMPPT, CCSD, and CR-CC(2,3) levels of theories. It is
pertinent to note that the MCSCF-based MRMPPT calcula-
tions suffer from convergence difficulties near the cis-trans

geometry. Moreover, the PEC generated from MCSCF-based
MRMPPT is not smooth over the entire torsional PEC. Our
calculations show that the MRMPPT method with HF orbit-
als yields smooth PEC but overestimates the barrier height.
Inspection of the results depicted in Fig. 6 leads to the fol-
lowing conclusions: (a) there is a substantial energy differ-
ence (~4 kcal/mol) between the cis and the frans conform-
ers, (b) the conformer (gauche) having a dihedral angle of
approximately 40° is ~2.7 kcal/mol above the most stable
trans-isomer, (c) the shape of internal rotational PEC of
butadiene generated via IVO-HNPT method is almost iden-
tical to those obtained from CCSD and CR-CC(2,3) meth-
ods. The present calculation further shows that the rotational
barrier height (5.6 kcal/mol) between the frans- and gauche-
conformers predicted from IVO-HNPT is in good agreement
with experiment (5.7 kcal/mol).*

D. Spectroscopic constants

The ground state spectroscopic constants of N,, LiF, and
C,Hg¢ determined from the gradient based IVO-CASCI
method*! are compared with experiment and with other cor-

TABLE II. Comparison of selective ground state geometrical parameters of butadiene obtained from CASSCEF,
MP2, IVO-CASCI, and CCSD methods with 6-311G** basis. Bond lengths (R), bond angles (£), and relative
energies (E,) are given in A, degrees, and kcal/mol, respectively. Entrees within parentheses are energy
differences calculated via IVO-MRMPPT procedure.

Parameters CASSCF MP2 IVO-CASCI CCSD Expt.
trans

R(C,-C,) 1.463 1.460 1.464 1.469 1.476

R(C,=C}) 1.356 1.345 1.344 1.344 1.337

£C,~C,-C, 124.0 123.6 124.3 123.7 122.9

£C,~C,-C,-C, 180.0 180.0 180.0 180.0 180.0

E, 0.0 0.0 0.0 0.0 0.0

cis

R(C,-Cp) 1.476 1.474 1.479 1.483 1.472

R(C,=C}) 1.356 1.345 1.342 1.343 1.349

£C,~C,-C, 126.9 126.3 126.6 126.4 124.4

£C,~C,-C,-C, 0.0 0.0 0.0 0.0 0.0

E, 3.56 3.67 2.82(3.81) 3.49 3.45
gauche

R(C,-C,) 1.476 1.472 1.474 1.481

R(C,=C,) 1.357 1.344 1.341 1.342

£C,~C,-C, 125.3 123.8 125.2 124.2

£C,~C,-C,-C, 352 39.9 345 39.7

E. 4.57 2.74(2.80) 2.57 2.86
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related calculations in Tables I and II. The basis sets used in
these calculations are same as those used for the state energy
calculations (see Secs. IV A-IV C). The IVO-CASCI pre-
dicted geometries agree well with experiment and with other
theoretical calculations. The average discrepancy in our esti-
mated equilibrium bond length is 0.006 A, while the corre-
sponding CASSCF and CCSD deviations are 0.01 and
0.007 A, respectively. The maximum deviations in the bond
lengths and bond angles obtained using IVO-CASCI method
are 0.012 A and 2°, respectively (see Table II). The IVO-
CASCI estimated vibrational frequencies (computed only for
N, and LiF) are also in good agreement with experiment.‘n’43
The maximum error in our estimated harmonic vibrational
frequency (w,) is only 34 c¢cm™' for LiF molecule.

V. CONCLUDING REMARKS

In this work, we have presented the numerical applica-
tions of the IVO-HNPT method which is computationally
cost effective and designed to capture the essential strength
of the parent MRMPPT/MCQDPT method without signifi-
cantly sacrificing its accuracy. The present communication
demonstrates that the IVO-HNPT method is capable of pro-
viding reliable PECs of N,, LiF, and C,H¢ systems over a
wide range of geometries (in the presence of near degen-
eracy) for which a proper and balanced treatment of both
dynamical and nondynamical correlations over the entire in-
ternuclear separations is very essential. Summarizing our
feeling from the results using the IVO-CASCI based HNPT
(IVO-HNPT) approach, we may say that the IVO-HNPT
method can be viewed as a reliable and computationally in-
expensive method to compute continuous PECs of N, as well
as C4Hg and smooth LIF ionic/covalent curve crossing. We
have also performed calculations for spectroscopic properties
using numerical gradient technique. The spectroscopic con-
stants presented here show that the numerical gradient based
IVO-CASCI works very well despite our use of the concep-
tually minimal choice of the reference space.

The IVO-HNPT has more room for further development
and wide chemical applications. More extensive applications
of the method are underway and be reported in our forthcom-
ing publications.
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