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INTRODUCTION :

In studying the distribution of matter in the universe,
one comes across many instances of collection of stars,
where the internal dynamics is basically governed by the
gravitational interaction of stars in that collection.
The most obvious examples of these collections are
different types of galaxies. Within the galaxies, stars
are sometime found in clusters. Here again one can
consider the system in the first approximation as self-
gravitating. The subject of stellar dynamics is concerned
with the dynamical behavior of these self-gravitating
stellar systems. 1n what follows, we will describe some
new methods of study of stellar systems made possible
by availability of fast electronic computers.

In contrastto theinvestigators in most otherscientific
fields, the astrophysicist is at a certain disadvantage. The
nature of the objects of interest in astrophysics pre-
cludes any experimentation. Even from the observa-
tional point of view, the situation is far from satisfactory,
because the time scale of most of the astrophysical
phenomena are much longer than the time for which
astronomical records have been kept. This latter
difficulty is sometimes overcome by taking a statistical
approach. In the study of stellar evolution, for example,
one can observe stars with different ages at a certain
instant of time and use their observed physical properties
to build possible evolutionary sequences, The situation
in the study of stellar systems is generally more difficult
because dynamical and morphological effects of evolution
are not clearly understood. An additional complication
in building evolutionary sequence for stellar systems
is that all members of a particular type of stellar system
appear to have been formed at approximately the same
time, a possible exception to this are galactic clusters.
This means that any dissimilarities within a type arise
from different initial conditions and not from difference
in ages. The advent of fast electronic computer has
openedanew line of attackin thestudy of stellarsystems.
The methods of modelling and simulation have been
applied to the problem, allowing experimentation with
various initial conditions, thus partly compensating for
the lack of real experiments.

THE BASIC PROBLEM:

We are interested in the evolution of a collection
of stars moving under their own mutual gravitational
attraction. Starting with certain initial positions and
velocities, our problem is to find these quantities at a
future time. If the stars are approximated by mass
points, we write down the equations of motion for a
system with n stars,

where ,. is the position and mj the mass of i th stat.

This is the gravitational n-body problem and it can be
made to represent a wide variety of stellar systems. In
actual cases, we might have to consider other complica-
tions such as the presence of gas, external gravitational
fields, but the basic problem can still be studied fitst.

THE EXACT METHOD:

If the number of stars 1n the system is not too large,
the most straight-forward approach is to integrate these
equations numerically; this would in principle solve
our problem by providing the positions ard velocities
of stars at any desired time. Before considering possible
ways 1n which this can be accomplished, let us carefully
examine the nature of system of equations (1). We
noticethat each of equations has (n-1) singularities corres-
ponding to possible collisions. Although actual colli-
sions are unlikely due to the point nature of the masses,
very close hyperbolic encounters and tight binaries are
possible. Such close formations slow down the progress
of computation drastically, and in some cases even force
it to a halt due to the accumulation of truncation errors.
The exact method cannot be applied to systems with
very large number of stars. This is basically due to the
fact that to calculate the force on all stats once, one must
perform n2 operations and therefore the computer time
needed for evolving a system for a dynamical period
also goes as nZ for most integration schemes. Theabove
difficulties limit the usefulness of stardard methods of
numerical solution of ordinary differential equation,
to the gravitational n-body problem and have forced the
investigators in the field to look for new techniques.

In the rest of this section, we will briefly describe
the development of special techniques for the n-body
problem.

The first attempt at the numerial solution of the
problem was made by von Horner (1960), who evolved
clusters with small number of stars (n < 16). The
time-step for integration was taken to be the same for all
stars and was chosen so as to be small enough to correctly
integrate the pair undergoing strongest interaction. The
difficulty of this method is that the strongest interaction
dictates the evolutionary progress of integration and slows
down the whole program. To overcome this difficulty,
Aarseth (1963) introduced individual time steps for each
star allowing separate updating. In this method, the
stars are no longer synchronized and therefore each time
one must update the star which is left furthest behind.
The recalculation of the force on a star requires synchro-
nization of the positions of all other stars to the time for
which the position of this star is known. Even with
the extra time needed for synchronization and the search
for the star left furthest behind, the method of individual
time stepsis much more efficient than von Horner’s
method. A further extension of this concept is the
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method of double individual time steps (Ahmad and
Cohen 1973a). In this method, the force on a star
atising from its neighbours (irtegular force) is treated
separately from the force due to the rest of the system
(regular force). The advantage of this separation is
that the regular force changes very slowly and therefore
does not require frequent recalculation, resulting in
considerable saving of computer time. The irregular
force, which changes rapidly ard therefote has to be
frequently calculated, does rot tzke too much time,
because it is caused by a few stars. Another scheme along
the similar lines is the category scheme of Hayli (1967),
where the stars are divided into categories zccordirg
to the strength of the gravitational interacticn which
they are undergoing, stars in different categories are then
treated differently in force calculation,

The problem of close encountets and biraries is,
to a certain extent, eased by the modifications discussed
above. Complete solution of this problem of coutse
requites elimination of the singularities in the differential
equation. For the two body problem, it is now possible
to eliminate the singularity by a cherge ir varizbles,
a technique known as regularization. In zpplication
to gravitational n-body problcm, regularizztior czr be
used to eliminate the singularity in the closest interact-
ing pair, while treating the rest of the system in conven-
tional manner. The regularization technique is patti-
cularly useful for clusters where binaties play an important
role (Aarseth 1971).

Even with the improvement in the integration
methods, the largest number of stars that have been
evolved for dynamically sigrificart times is a thousand
(Ahmad and Cohen 19732). ‘The exact n-body calcula-
tion can therefore realistically simulate orly the small
stellar systems among which the most importart are
open clusters. The evolution of open clusters has
been studied by a number of investigatofs using this
method. Among the many aspects of their evolution,
which have been studied, we might mention, escape
rate of stars from clusters (Wielen 1968), effect of galactic
field on the evolution (Hayli 1971) ard the role played
by the binaries (Aarseth 1968). Acother type of gravita-
tional system that can be simulated is cluster of galaxies
(n < 1000). Peebles (1972) and Aarseth (1963) have
used the exact method for the study of cluster of galaxies.
The exact schemes have been also fourd to be useful in
studying difterent types of dynamical processes and some
interesting insights have been obtained. Wielen (1967)
for example, found that a star acquires escape energy
in 2 single encounter rather than by a slow diffusion
process envisaged by Chandrasekhar. Similarly, van
Albada has done a detailed study of mechanism of forma-
tion of binaries and multiple systems. Recently, some
of the statistcal theories of gravitational systems, first
proposed by Chandrasekhar ard von Neumarn (1943),
have been tested (Ahmad and Cohen 1972, 1973b, 1974).

We should point out at this stage an instability
of the exact n-body integrations, first noticed by Miller
(1964). He found that two systems which were very
similar initially, exponentially diverged in 6-n dimensional
pbase space, as they were evolved on a computer,
Standish (1968) has shown that this instability is caused
by the singularity in the force law. Another manifesta-

tion of this instability is the fzct that irspite of the time
reversible nature of the equatiors of motior, zctual
computer integrations ate not exactly reversible, even
for small integration times. 'The introduction of regulari-
zation technique would terd to reduce this instability
but not eliminate it.

The basic usefulness of the exact n-body calculations,
apart from the simplicity of the direct approach, is that
it is free of any questiorable simplifyirg assumptiors.
This fact is particularly advantageous in testing predic-
tions of a theory ard in studying detailed dynzmical
processes. It is for these reasons that exact integrations
have become very popular recently, inspite of the difti-
culties discussed above.

The limited number of stars that can be evolved
by exact integration method precludes its usefulness
for the simulation of most real stellar systems. For
large system, one must search for statistical methods.
Indeed, most of the quantitics of interest in the evolu-
tionaty study of stellar systems such as the density,
velocity distribution ard escipe rates are statistical
quantities ard one does rot have to know exact particle
trajectories to fird these. Before we describe how the
statistical methods atre introduced, we should have :
look at the nature of the force acting on 2 star in a stellar
system.

RANDOM FORCE AND MEAN FIELD FORCE :

Chandrasekhar (1960) has pointed out that the total
fotce Frp on a star can be divided up into two parts :

FT - FM + FRr,

where Fyr , the mean field force, is due to the smoothed
out distrnibutior of matter, and Fy , the random force,

is due to local fluctuations in the density. The mcan
field force is a deterministic quantity and can be found
by either a direct application of Gauss’s law (in systems
with symmetry) or via Poisson equation. The random
fotce, on the other hand, is a stochastic quantity and its
effect can be treated statistically. By this separation of
force, 1t is in fact possible to bypass the particle descrip-
tion altogether and write down a kinetic equation
(generally the Fokker-Planck equation) for the gravita-
tional system (Chandrasekhar 1960). Corresponding (o
these two types of forces,there are two difterent rela-
xation mechanisms operating in a stellar system which
have quite different time scales. The time scale for the
mean field relaxation is the crossing time Tc given by

R
TC'—-——’\—I"

where V is the rms velocity of stars and Ris a measure
of the size of the system. The relaxation due to the
random force, called collisional relaxation, operates
on the time scale given by the relaxation time. ‘The
telaxation time is the time taken by random encounters
to change the kinetic energy of a star by an zmount
equal to its initial value. ‘The ratio of the average value
of the relaxation time, TR, to the crossing time, is given by
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COLLISION-LESS SYSTEMS :

From the above expression, it is clear that for systems
with large number of stars, collisional relaxation is un-
important on the time scale of a few crossing times and
one could neglect the random force treating the system
as essentially collision-less. A good example of such
a system is our galaxy, where the relaxation time turns
out to be many orders of magnitude larger than its age.
In collision-less systems, the problem is reduced to that
of solving the Fokker-Planck equation without encounter
term (called the Vlasov equation), coupled with the
Poisson equation. Although in principle this can be
done directly, in practice it is found mote convenient
not to abandon the particle approach completely. The
solution of Vlasov equation is then obtained indirectly
by solving the equation of motion of groups of stats
or stars in the same cell of phase space. A particularly
simple situation occuts when the system has certain
spatial symmetries, because the force is then directly
obtained by Gauss’s law. The z-motion of the stars
in the disk of the Galaxy has been simulated by infinite
parallel sheets (Lecar and Cohen 1968). Similurly, a
modzl of concentric spherical shells has been applied
to the study of collision-less stellar systems with spherical
symmetry (Henon 1973). In absence of symmetry, the
force can be obtained via the potential by solvir.g Foisson
equation. A number of methods of solving Foisson
equation have been used to study the evolution of the
galactic disk (Hohl and Hockney 1969; Miller and
Prendergast 1968).

MONTE CARLO METHODS :

The simulation of globular cluster preserts a

differerit problem. The number of stars here (7 o= 10°)
is too large to be handled by exact method but not large
enough to make collisional relaxation regligible. The
effect of random force is important and somehow must be
taken into account.  Ore way to do this is to solve the
Fokker-Planck equation directly, but zgain an indirect
approach is found more convenient.  This is the essence
of the Monte Carlo methods used to study the evolution
of spherical stellar system. Here the stars are evolved
by calculating the mean field from Gauss’s law. The
effect of random encounters could be superimposed
on this mean field motion in a variety of ways. Henon
(1971) introduces this effect by making a randomly
selected pair to undergo an ‘“average’ binary collision,
while Spitzer and Hart (1971) incorporate this effect
via the distribution for the net momentum transfer.

The Monte Carlo methods offer a very efficient
and fast means of dynamical study of the globular clusters.
The basic assumption of this technique 1s of coutse that
the Fokker-Planck equation is the correct kinetic equation
for the gravitational systems. Much theoretical work
needs to be done either (a) to firmly establish the validity
of this assumption or (b) to find the correct kinetic equa-
tion for the gravitational system. Work of Lee (1968)
and that of Gilbert (1970) could be mentioned here as
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examples of efforts along these two different directions,
respectively.

CONCLUSION :

We would like to emphasize once again the similarity
of these simulation techniques to the real laboratory
experiments. The numerical experiments ate very useful
in a field where actual experimentation is not possible
and where analytical results are very hard to ccme by.
Such is indeed the case with stellar dynzmics.

As the field is still relatively new, there are a number
of unsolved problems. The question of the instability
of the exact method has not been fully investigated.
In particular, the effect of this irstability on the macros-
copic quantities has to be better understood. The
validity of the Monte Catlo approach has to be firmly
estzblished before its results can be taken as strictly
correct. A comparision of an identical system evolved
exactly with one evolved by Monte Carlo scheme would
be very useful, particularly ifthe erd systems are highly
evolved.
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