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Abstract. In this paper we discuss a method of finding physical parameters by studying the pulses in the Sun.
For the sake of a mathematical approach, we consider an ideal, highly relevant model which could exist in
the Sun with the effects of ionization, due to which there will be a continuous formation of ionized particles.
It is observed that the pulse originated at the centre of a dipole field propagates along the magnetic field. We
derive a dispersion relation for these types of pulses, propagating from the centre to the solar surface. The
time taken by the pulse from its source to the solar surface is also estimated, with due account of the
ionization effects on the pulse. Without proper account of these effects, the technique employed in determing
the physical parameters may lead to error. Temporal and spatial damping of the pulses lead to estimates of
the velocity distribution of the ionized particles and of the amplitude of the magnetic field of the wave in
pulse.

1. Introduction

The study of rotating stars, since first observed by Schlesinger (1911), has evoked much
mterest and has focused on the advantages of the dynamics of these stars. Several
workers have studied rotating stars in different aspects to establish the close relation
between mathematical theory and observations. Studies were based initially on
observations, but some mathematical developments, on the basis of several obser-
vations, were later achieved especially through the study of magnetohydrodynamic
waves in the Sun. Chandrasekhar (1953a, b, ¢) was first to show that, even for a slow
rotation, magnetohydrodynamic waves in astrophysical problems are influenced by
rotation. Later, Lehnert (1954) pointed out that the Coriolis force playing in a rotating
medium is very much prone to change the various important phenomena of the Alfvén
theory on sunspots (Alfvén, 1950). Lehnert has shown that the Coriolis force could
play a more dominating role than magnetic force does in the solar system, and, as an
example, he has shown that for a typical value of rotation Q =2 x 107°s~ ! and
Alfvén velocity ¥ = 2 m s ™!, together with the assumption of a polar strength of less
than 25 Gauss and wavelength larger than one-hundredth of a solar radius, the
Coriolis force is fourteen times the magnetic force. Very recently Das (1979a) con-
sidered the model of a rotating ionized medium and estimated the group travel-time
that the pulse travels along the magnetic field in the Sun. The group travel-time, from
the source of the pulse to the solar surface, is given by the line integral

0 dh
o) :j , W

hUg

Astrophysics and Space Science 71 (1980) 353-361. 0004-640X/80/0712-0353%01.35
Copyright ©) 1980 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980Ap%26SS..71..353D

N&SS. .71 353D

R

rTIBDA

354 G. C. DAS

where v, is the group velocity of the wave along the path A. To use this integral, Das
(1979) further modified the integral (1) on the assumption that the wave frequency is
almost equal to twice the rotational frequency. This assumption leads to the integral
being evaluated in linear form, from which the density and rotational frequency can be
obtained. Although the model under consideration may be ideal for diagnosing the
physical parameters, the present model is, to some extent, highly relevant and can be
observed in the Sun. We consider the model as follows: As the pulse, which originated
in the Sun, progresses along a certain magnetic field path, ionization occurs and there is
consequently a continuous formation of ionized particles. It is assumed that the newly
ionized particles observe the mean streaming velocity along the magnetic field and
gyrate around the field lines with a mean transverse velocity. lonization may cause
instability of the waves or there may be some other effects, but we shall not consider
them in this paper although the stability of the waves may be the subject of a
subsequent paper.

In Section 2 we derive the group travel-time in the considered model. We also
develop relations for the temporal and spatial damping rates for the pulses, and
investigate the possibility of using these characteristics to estimate other physical
parameters of the Sun.

2. Basic Equations and the Derivation of Group Travel-Time for the
Rotating Medium

We consider the ionized medium consisting of electrons (subscript e), and ions
(subscript i) together with a newly born ion (subscript #) having a streaming velocity
along the magnetic field and gyrating with a mean velocity around the field lines. We
assume that the medium, in equilibrium state, is pervaded by a uniform magnetic field
and is rotating with angular velocity Q around the axis of the magnetic field. Since we
are mainly interested in astrophysical problems, we can justifiably neglect the effect of
centrifugal force from the dynamics of pulses in the Sun. The basic equations (with
respect to a rotating frame of reference) are the Equation of Continuity

on,

ot

+ div (nw,) =0 2)

and the Equation of Motion
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supplemented by Maxwell’s equations
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10H
E= -2, 5
VX ¢ Ot ©)
V-H=0, )
V-E=) 4nq,n,; (7)

where o = i, e, n; v, is the velocity of a-type particles having mass m,; and n, is the
number density. Forions, g, = e when o = i, n, and for electrons, g, = —e when o = e.
Further, we assume that the newly born ionized particle observes the mean streaming
velocity v, along the magnetic field and gyrates around the field lines with a mean
transverse velocity v, .

Now we consider a plane wave propagating along the magnetic field in such a way
that the first-order quantities are assumed to vary as exp [i(kr — wt)]. Following
Montgomery and Tidman (1964) and Uberoi and Das (1970), the dispersion relation
can be written as

2

-+
ot owFmnm,

2
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(w — kvyws, k*viw?,
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(8)

where w; = w,; + 2Q, n, = 0, + 2Q, n,= 0, —2Q and all other conventional
symbols have their usual meanings. The + signs represent the right and left circularly
polarized waves.

At present we have simplified the medium by freeing it from an applied magnetic
field, but this has not been done for mathematical simplicity, as will be made clear later.
Now, as the effect of the mean streaming velocity only accelerates the ionized particles
along the axis of rotation, we consider only the influence of the mean gyrating velocity
around the axis of rotation. Further, we consider the case where the wave frequency is
almost twice the rotational frequency, and consequently, the group travel-time receives
a major contribution from the left circularly polarized (LCP) wave, which is given by

2 k2 2.2
(S e B ©)
202Q —w) 20°(2Q — w)
where
ck
= — a d 2 — 21’
n=— n w, =) w;
while the corresponding group travel-time reduces to
®dh
Hw) = J ) (10)
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where u, 1s the group velocity of the LCP wave and is obtained from

.
"9 T 0+ w(onfow)

(1n

By use of (9) in (11), the group velocity can be obtained as
k21 Q|2
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where y = (w,,/®,)*.
We assume that the propagation vector & can be represented as that obtained for a
simplified ionized medium — i.e.,

w? w? _
K :7[29(29—(9)} (13)

and the corresponding value of k(0k/0w) assumes the form

- Ok 200;2Q — w/2)
do 2620020 — w)?

(14)

If we substitute (13) and (14) in (12), u, is further modified in the case where — for the
mode propagating with frequency 2Q and for small v, — the contribution of
Yk*v1Q/e*(2Q — w) is very small in comparison to unity, and u, is then given by

wp
1 20ca - w)”

u = ) (15)
I wi(2Q — w/2) B Yo v (2Q — w/2) Ve 33w — 4Q)
2Q2Q — w)? 20020 — w)* 4 720020 — w)*
where vy = v, /c. The group travel-time (1), using (15), becomes
() = 1 ¢ 0,20 - w/2) dh 1 (0 yw,052Q — w/2) 4 —
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Integral (16) is the equation to use as a diagnostic technique through the observations
of several pulses in the Sun travelling towards the solar surface. In order to evaluate the
integral (16), we make the valid assumption that the density variation along the path of
the pulses is negligibly small. Moreover, since we know that the rotation and presence
of additional ions in the medium introduce the crossover frequencies at which there
will be a wave change from left circularly polarized to right circularly polarized, and
vice versa (Uberoi and Das, 1972) — and also since there is an abrupt change of group
velocity at these crossover frequencies — we consider the path where the propagation of
the pulse is completely an LCP wave. The rotation is assumed to vary linearly, and one
of the best variations is probably

Q(h) = Q0) + hY(0), 17)

where Q(0) is the rotation at the origin of the pulse and €'(0) is the gradient along the
path A. Putting (17) in (16), the integral is evaluated approximately as

_lwp(O)[fZQ(O)]l/z 1 >1/z ~ (#)UZJ

o) =~ 20(0) <Aw(0) Aw(h) B
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~ 10c [2Q'(0)] Aw(0))  \Aw(h)

Expanding to first order in terms of the small quantity Aw(0) [i.e., Aw(0) « Aw(h)],
Equation (18), after straightforward mathematical manipulation, can be obtained as

1 0,ORMI'* 3y w0p0)p[2Q(0)]"/? o
¢ 2Q'(0)[Aw(0)]*/? " 10¢ 27 (0)[Aw(0)]°72 . (19)

Hw) =

Finally, the equation for the group travel-time (Equation (1)) is modified to Equation
(19), which is very similar to Equation (11) obtained by Das (1979) except for the
contribution of the newly born ions. The method of obtaining the rotational frequency
and the density of the medium is now well defined and will not be discussed in detail
here. When charged particles moving along an equivalent magnetic field are subjected
to the oscillation from a perpendicular electric field, the particles absorb energy from
the field. When an electromagnetic field is produced in the medium, the absorption
causes the wave to be damped out with time or with distance. To estimate the damping
rates of the pulses, we consider the Maxwellian velocity distribution for the ionized
particles and, following Stix (1962) and Das (1979), the dispersion relation for an LCP
wave can be written in the form

1 Kdel e
2 _ 1 Wy _ 1% pn _ 2 52 , 20
W=l 00 @) 2020 — w)  ake, PP P (7)) (20)
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where z = Aw/kvy,, Aw = 2Q — w and vy, 1s the thermal velocity of ionized particles.
To find the temporal and spatial damping rates, we consider that either w or k is
complex. We consider first that & is real and w is expressed as w = w, + iw; with the
condition |w;| « |w,|. Substituting the expression for w into Equation (20), we obtain
approximately the damping factor, w;, for the wave frequency equal to 2Q, as

o/n[A0(0)]%? 1

w; = o O] v exp [—n(0)], 21
where
Ao’
1) = 20502 od

We now define the fraction contribution, ¢, of the newly born ion to the group travel-
time #(w) as
o 3y 0,(0)o3[2Q(0)]'
" 10c 2Q(0)[Aw(0)]52

(22)

where 6 = 1,/t, and thus Aw(0) is obtained as

3y )2/ <9‘p§)l>6/501/5[29(0)]1/5
Ao = <@> OO )

Combining (23) and (21), we find the damping rate w; to be given by

w; = At~ exp [— Bt~ °?], (24)
where
3y /7 vjwy0)
T 100 vy, 2Q(0)
and

3\ (AN s
106 ¢ +

VE2Q(0)12°[2Q(0)]°7°

Again, the damping rate of the particle is related to its velocity distribution function,
and can be represented as

"~ _26712[Aa)(0)]5/2
T w,(0[29(0)]

FQ), (25)

where F(v) 1s the velocity distribution of the particles. By use of (22) and (24) in (25),
the velocity distribution function F(v) can be obtained as

Fv)y=cexp[— Bt °°], (26)
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where

_ 1 1
(=—5—
3/2
2em?’? vy,

Alternatively, we assume w is real and k = k, + ik; with |k;| « |k,|. As before, a
separation of the real and imaginary parts of £ in (20) gives

k=2 o Kled,
T 20020 - ) 20%°QQ — )

and

Aa) 1
=70 Lo 1o, e
th
where #(s) is deﬁned by (21). The total attenuation for the damping pulses is obtained

by integrating k; over the path of propagation, and is given by

Aw(0) A
) jk dh = J 2;/; o ((‘8) _exp [—n(5)] d(Aw). (28)
Aw(h) th

The integral is evaluated by expanding to the first order in terms of the small quantity
Aw(0) [i.e., Aw(0) « Aw(h)], and we have

3cw?(0) \ 29Q(0) 2Q/(0) v 1(0)

Incorporating the expression for Aw(0) obtained in Equation (23), the total
attenuation takes the form

B= At exp[—B't %] (30)
where
2/5
v/ [m(on‘”f’[mﬂ
"~ 3[w,(0)]TP2Q(0) ] [vo] 7"
and

B’ = B [given in (24)].
From (30), the variation of the wave magnetic field B, with time can be expressed as

|B,| ocexp [—f]. (3D

The total attenuation of the wave can be related with the electric field and the magnetic
field on the assumption that the wave-energy of the pulses along the equivalent
magnetic field should be constant per unit bandwidth of the pulses. This leads to an
expression of the Poynting flux, P, in the form

da)

P o
dr |’
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and, using (19), we find that

d
Poc— (A
Ocdz(w)

or
|E]1By] oc (Aw)*? oc 177, (32)

where ¢ is defined by Equation (19); B, is the equivalent magnetic field introduced by
rotation; and FE, is the electric field. Again, for the constant Poynting flux, the ratio
between the magnetic field and the electric field is equal to the refractive index, and thus
we have

E,|

5" (Aw)V? oc 171 (33)
1

Combining (32) and (33), we find the magnetic field B, to be of the form

|B,| oc (Aw)*? oc t™! (34)
and
|E,| oc (Aw) oc 172,

Using (23) and (31), we find the magnetic field to vary as
1 _
|B,| ocﬁexp[—A’tz/s exp (=Bt~ 9], (35)

where A’ and B’ are as previously stated in (30). Thus, Equation (35) gives the relative
wave amplitude of the equivalent magnetic field as a function of group travel-time,
rotational frequency and density of the medium. The determination of the group
travel-time for the different pulses determines the rotational frequency and the density.
The inclusion of damping effects gives the temporal and spatial damping from which
the velocity distribution of ionized particles and the magnetic field can be obtained.

So far, we have discussed a method for determining the physical parameters of the
Sun by observing the pulse propagating from its source to the solar surface. Dispersion
effects play some part in the considered model by an equivalent magnetic field, but the
presence of an applied magnetic field does not change the mathematical development
as the treatment can run in parallel if we simply change the rotational frequency 2Q by
an equivalent rotation frequency 2Q = w,, + 2Q, where w,, is the cyclotron frequency
of the a-type particles. In the case of a non-uniform magnetic field or non-uniform
rotation, it is necessary to have an expansion similar to that for rotational frequency,
and the technique needs some mathematical manipulation if we are to determine the
group travel-time and thus to diagnose the physical parameters.

3. Conclusion

In this paper, we have developed a mathematical model for diagnosing the physical
parameters of an ionized medium rotating with uniform angular velocity. However,
the chosen model is idealistic, and needs further analysis.
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