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FREQUENCY RESPONSE OF MAGNETIC FLUX SHEATHS

P. VENKATAKRISHNAN
Indian Institute of Astrophysics, Bangalore-560 034, India

(Received 10 June; in revised form 11 December, 1978)

Abstract. When a sound wave is incident on a magnetic flux sheath, it causes fluctuations in the mean
magnetic field of the sheath. We have calculated the space-average of the longitudinal component of these
fluctuations and plotted this against the frequency of the incident sound wave. The main result is the
presence of local maxima and minima in the response curve. If such maxima and minima could be detected
in any actual observation then these would provide an estimate of the thickness of these magnetic
structures.

1. Introduction

The coexistence of magnetic inhomogeneities and magneto-fluid waves in the solar
atmosphere raises the question of their mutual interaction. Cram and Wilson (1975)
provided some preliminary analysis on the basis of linear theory. From their results,
it can be reasoned out that the forms of the perturbations of the various fluid-
dynamical variables within the magnetic structures do depend on the frequency of
the incident wave. In other words, for a given angle of incidence, there exists a
definite frequency response of the magnetic structure, depending in turn upon the
magnetic field intensity and the thickness of the structure. The aim of the present
work is to (i) study how the shape of the response curve depends on a few of the above
mentioned parameters, and (ii) suggest a possible way of estimating the thicknesses
of very small magnetic structures. The particular fluid-dynamical variable chosen for
this study was the mean value of the linearised magnetic fluctuations in the direction
of the magnetic field. The space average of such fluctuations, when plotted against
the frequency of the incident sound wave, showed local maxima and minima in the
response curve. The separation between successive maxima contains information
about the thickness of the magnetic structure.

At the centre of the solar disc, these fluctuations associated with the vertical
structures in the solar atmosphere, will manifest themselves as changes in the
longitudinal component of the magnetic field and can be detected with the present
day magnetographs. The frequencies of maximum response, obtained from such
observations, should enable us to estimate the thickness of the structures.

2. The Mean Magnetic Fluctuation in a Magnetic Flux Sheath

The zero order magnetic field in the structure is assumed to point in the y-direction
and its intensity to vary along the x-direction. The profile of this variation is as
represented in Figure 1. The details of the modes that can propagate in such a
structure are given by Cram and Wilson. From their Equation (43), it follows that the
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Fig. 1. Profile of the variation of magnetic field intensity in the structure. Here a is the thickness of
the flux sheath.

amplitude of the velocity component along the magnetic field is given by

2 2
V =(Q,z ™" + Q)5 e *2%) (9_5&_) cos B, (1)
where Q,, and Q,, are the reflection and transmission coefficients, C is the phase
velocity of the fast magnetosonic mode, A is the Alfvén velocity, B8 is the angle
subtended by the transmitted ray to the interface and k., is the horizontal wave
number. All these quantities are associated with the region of non-zero magnetic
field and are calculated according to the formulae given by Cram and Wilson (1975).
The amplitude of V is normalised to the incident wave amplitude, I («, v) where v is
the frequency of incident sound wave. Thus V can be finally written as

2 2

CT> cos BI(a, v). 2)

V=(Q2 ™ + Qe ") (
The linearised equation for the magnetic fluctuation b is

ob

§=VX(VXBO), 3)

where V is the fluid velocity perturbation and B, is the zero order magnetic field. We
know that

B, =(0, By, 0) . 4)
For the perturbation of the field intensity we assume the form

b=bexpi(k -r—wt). ()

From the condition of phase-matching at the interface (Cram and Wilson, 1975), the
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component of k along the interface must be the same on either side of the boundary.
If k is the total magnitude of the incident wave vector, then its component along the
interface is given by k cos a, where « is the angle between the incident ray and the
interface. Hence the component of k normal to the interface within the sheath can be
given by

ke2/ky,=tan B. (6)
Thus

k.»=ky,tan B =k cos a tan . (7)
Therefore, within the sheath, we have

k= (k cos a tan 8) k cos «, 0) . (8)
Substituting Equations (4), (5), and (8) in Equation (3), we have, after some algebra,

b, = Bo(sin® a/cos a), (V/S), 9)

where V is given by Equation (2).

We are interested in those structures which are below the limits of telescopic
resolution of present day standards (like, for example, the structures mentioned in
Stenflo (1976) and Tarbell and Title (1977)). We, therefore, integrate over x to get
the net fluctuation in magnetic flux, ¢, as

¢ =2Bo(Qu+ Q,2)(1 —M cos® a) sin” a I(a, v) sin (ky2a/2)/kez . (10)

Since we can expect the sound waves to be incident at different angles, we integrate
(10) over «a to obtain

/2

@== [ ¢ da. a1
a

0

For sake of illustration let us now choose two different forms for I(a, v):
Case (i):

I{a,v)=Kf(v), (12)

where K is some constant and f(v) is the frequency spectrum of the incident sound
waves. Equation (11) corresponds to isotropic propagation. Such a choice was
prompted by the work of Stein (1967) where he obtains isotropic emission of sound
waves at frequencies far above the acoustic cut-off frequency of the stratified
atmosphere. Figure 2 shows the result of including (12) in (11) sans f(v) for three
different values of M. The means of eliminating f(») will be discussed later. In the
figure, the abscissae are the dimensionless frequencies v/v. where v, is a charac-
teristic acoustic frequency obtained by dividing the sound speed S by the thickness a
of the flux sheath. For a typical value of S (7 kms™ ") at the photosphere v, will be
~(0.07 Hz for a = 100 km and will be =0.007 Hz for a = 1000 km. The ordinates are
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Fig. 2. Frequency response with I(a, ») given by Equation (12) for three different values of the field
intensity; M =1.0, 0.1, and 0.01.

values of (¢) normalised to (Pmax) the maximum amplitude encountered in a
particular situation.

Case (ii):
Ia,v)=1, a =<30°
<
=O,a>30° for v V1,
and (13)
Ia,v)=0,a<30° for »>
=1, a=30° v

This choice of I (a, v) as a two-dimensional 7-function was prompted by the work
of Deubner (1976) where higher frequencies were inferred to be preferentially
horizontal. Figure 3 shows the result of including (13) in Equation (11) with »;/v,
chosen arbitrarily as 0.5.
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Fig. 3. Frequency response with I(«, v) given by Equation (13) for three different values of the field
intensity; M =1.0, 0.1, and 0.01.

3. Estimation of Structure Thickness

Figures 2 and 3 show local maxima and minima in the response curve. The abrupt
behaviour at »/v. = 0.5 in Figure 3 is solely due to the abrupt nature of I(a, »). The
difference between successive maxima 4v,,/ v, is given in Table I. It is seen that, on
the average,

Avp,/v.=1.2. (14)

These results lead us to believe that it may be worthwhile to attempt the detection of
local maxima in the magnetic fluctuations from observations. If the experiment yields
a consistent difference between successive maxima, then we could estimate the
thickness from Equation (14) as

a=S/A4v,,, (15)

where we have dropped the numerical factor of order unity.
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TABLE I

Dimensionless frequencies of local maxima and the differences
between successive maxima

I(v, @) M V! Ve Av,,/ v,
2.1
1.0 3.6 ig
4.8 )
2.8 1.0
From Equation (12) 0.1 3.8 ’
1.0
4.8
;"7‘ 1.3
0.01 ’ 0.8
35 11
4.6 ’
2.1
1.0 36 i;
4.8 ’
2.0 1.9
From Equation (13) 0.1 39 ’
1.0
4.9
;2 1.0
0.01 ’ 0.9
3.5 11
4.6 ’

Mean 4y, /v. =1.2.

4. Limitations

One should, however, bear in mind the following limitations while attempting to use
the above treatment to estimate the sizes of tiny magnetic structures.

(1) If many structures with a rather continuous distribution of sizes fall within the
slit of the magnetograph, the maxima will be smoothed out. On the other hand, if
there is a dominant size in the distribution, this will show up in the observations.

(2) The incident wave amplitude may itself be a function of frequency (for
example, f(v) in Equation (12)) and may contribute its own shape to the response
curve. This effect can be seen in the observations of Severny (1971) and Tanenbaum
et al. (1971) where they have observed five minute oscillations in the magnetic
fluctuations. This is due to the large power present in the incident beam at the period
of five minutes. The way out would be to have simultaneous velocity measurements
of the nearly non-magnetic regions. Even here complications can arise. The line of
sight velocity oscillations sometimes yield a structure due to the inhomogeniety of
the line contributing region (Deubner, 1976). This effect will not be seen, however,
for the magnetic fluctuations since they are weighted by a sin® a-factor in favour of
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horizontally propagating waves. Hence one should be extremely careful while
comparing the magnetic and velocity observations.

(3) The present work considers only two dimensional structures with a magnetic
field that does not vary in the line of sight. It may be necessary to include variation in
this direction to make the treatment less removed from reality. However, any
horizontal structuring of the field will certainly introduce a factor behaving like
sin (k.2a/2)/ k. because of the integration over this direction. Hence one can expect
maxima and minima in the response curve even for more realistic models of the zero
order magnetic field.

(4) It has already been shown how two different forms of I(«, v) can yield very
different response curves. A particular form of I(a, ) might sometimes drastically
reduce the detectability of the maxima.

In spite of all the above limitations one could attempt to look for magnetic
fluctuations yielding local maxima and minima in the frequency spectrum. If indeed
such a structure is obtained, and if we can eliminate the afore-mentioned sources for
the structure, then it could be reasonably interpreted as due to the presence of
magnetic elements, with a size approximately equal to S/A4v,,.

5. Summary

We have seen that when sound waves are incident on a magnetic flux sheath, they
cause fluctuations in the zero order magnetic field. If these sheaths are thinner than
the slit of the instrument used to observe them, then the fluctuations will be averaged
out in space. Such an integrated amplitude of the fluctuations would show maxima
and minima in the frequency response. This behaviour can be used to estimate the
sizes of thin magnetic structures by looking for the fluctuations in their field
intensities and locating the frequencies of maximum response.
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