223

EIGENFREQUENCIES OF RADIAL PULSATIONS OF
STRANGE QUARK STARS

B. Dattal!, P. K. Sahu?, J. D. Anand® and A. Goyal®

! Indian Institute of Astrophysics
Bangalore 560034, India

2 Institute of Physics
Bhubaneswar 751005, India

3 Department of Physics
University of Delhi
Delhi 110007, India

ABSTRACT

We calculate the range of eigenfrequencies of radial pulsations of stable
strange quark stars, using the general relativistic pulsation equation and
adopting realistic equation of state for degenerate (u,d,s) quark matter.

The equation governing infinitesimal radial pulsations of a nonrotating star in general
relativity was given by Chandrasekhar [1], and it has the following form :

d?¢ d§ _ 2
21_7._2+G£+H£_U£’ (1)

where £(r) is the Lagrangian fluid displacement and co is the characteristic eigenfrequency.
The quantities F', G, H depend on the equilibrium profiles of the pressure(p) and density(p)
and the radial distribution of the mass of the star, the details of which are given ref.[1]
and so are not reproduced here.

The boundary conditions to solve the pulsation equation (1) are

E(r=0)=0 @)
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where I is the adiabitic index, defined in the general relativistic case as

I‘=(1+pc2/p)d(?:2) (4)
Eq. (1) is of the Sturm - Liouville type and has real eigenvalues
cl<ol<...<ol<...... ,
with the corresponding eigenfunctions {,(r), £1(r), . -. &n(r), ..., where £,(r) has n nodes.

At high baryonic densities, bulk strange matter is in an overall colour singlet state, and
can be treated as a relativistic fermi gas interacting perturbatively, the quark confinement
property being simulated by the phenomenological bag model constant (B). Chemical
equilibrium between the three quark flavours and electrical charge neutrality allow us to
calculate the EOS from the thermodynamic potential of the system as a function of the
quark masses, the bag pressure term (B) and the renormalization point u,. To second
order in a., and assuming u and d quarks to be massless, the thermodynamic potential is
given by [2] :

Q=Qu+ﬂd+93+9int.+ﬂe, (5)

where ©; (1 = u, d, s, e) represents the contributions of u, d, s quarks and electrons and
Qine is the contribution due to interference between u and d quarks and is of order o2:

ot a2 (2) ns(2)] o

Q4 = Qu(pu © pa) (7)
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Here p; is the chemical potential of the ith particle species and A = m,/pus. We neglect
the strange-quark contribution to order «? and higher in the thermodynamic potential §2,.
The screened charge a. is obtained by solving the Gell-Mann—Low equation [2] :

dac(p) [ 58 d , 460 ,
T ={ 3, o 25 () fold = 55 adw), (11)

which includes the effects of the strange-quark mass in the lowest order. The higher
order contribution to the Gell-Mann—Low equation due to strange quarks may be ignored
because these are important only at low densities where the coupling is strong but the pair
production of massive strange quarks is unimportant (see ref. [2] for further discussions).

The vacuum polarization tensor m,(u) for the strange quarks is given by
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In Eq. (15), ac(po) is the value of a. at the renormalization point yu,, where it is taken to
be equal to 1.

The total energy density and the external pressure of the system are given by
E=Q+B+Z#ini (13)

p=-Q2—-B (14)

where n; is the number density of the ith particle species. For specific choices of the
parameters of the theory (namely, m,, B and p,), the EOS is now obtained by calculating
e and p for a given value of u :

B= pd = fs = fiy + e (15)

by solving for p. from the condition that the total electric charge of the system is zero.

There is an unphysical dependence of the EOS on the renormalization point y,, which,
in principle, should not affect the calculations of physical observables if the calculations
are performed to all orders in a. [3,4]. In practice, the calculations are done perturbatively
and, therefore, in order to minimize the dependence on p, the renormalization point should
be chosen to be close to the natural energy scale, which could be either u, ~ B/4 or the
average kinetic energy of quarks in the bag, in which case, p, ~ 313 MeV. In the present
study, our choise of y, is dictated by the requirement that stable strange matter obtains
at zero temperature and pressure with a positive baryon electric charge [5]. This leads to
the following representative choice of the parameter values : EOS model 1 : B = 56 MeV
fm™3; m, = 150 MeV; u, = 150 MeV. EOS model 2 : B = 67 MeV fm ™%’ m, = 150 MeV;
a. = 0. Model 2 corresponds to no quark interactions, but a non-zero mass for the strange
quark.

Equilibrium configurations of strange quark stars, calculated for the above EQOS, are
presented in Table 1, which lists the gravitational mass (M), radius (R), obtained by
integrating the relativistic stellar structure equations the surface redshift (z) given by

z=(1-2GM/*R)™/? -1 : (16)
and the period (P,) corresponding to the fundamental frequency §2, defined as [6] :

Q, = (3GM/4R?)'"” (17)
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as functions of the central density (p.) of the star.

We solved Eq. (1) for the eigenvalue o by writing the differential equation ns a set
of difference equations. The equations were cast in tridiagonal form and the ecigenvalue
found by using the EISPACK routine. This routine finds the eigenvalues of a symmetric
tridiagonal matrix by the implicit QL method.

Results for the oscillations of quark stars corresponding to EOS models 1 and 2 are
illustrated in Fig. 1. For purpose of comparison, we have included in Fig.1 the results
for quark stars corresponding to (a) the simple MIT bag EOS (non-interacting, massless
quarks and B = 56 MeV fm ) and also (b) neutron stars corresponding to a recently given
neutron matter EOS [7]. The plots in Fig.1 are for the oscillation time period (= 27 /co)
versus the gravitational mass (M). The fundamental mode and the first four harmonics
are considered. The period is an increasing function of M, the rate of increase being
progressively less for higher oscillation modes. The fundamental mode oscillation periods
for quark stars are found to have the following range of values :

MIT bag model : (0.14 - 0.32) milliseconds
EOS model 1 : (0.10-0.27) ”
EOS model 2 : (0.06-0.30) ”

For neutron stars, we find that the range of periods for the 1 = 0 mode is ~ 0.3 milliseconds.
For the higher modes, the periods are < 0.2 milliseconds, similar to the case of quark stars.

Inclusion of strange quark mass and the quark interactions make the EOS a little
‘softer’ as compared to the simple MIT bag EOS. This is reflected in the value of the
maximum mass of the strange quark star (see Table 1). For the pulsation of quark stars
this gives, for 1=0 mode eigenfrequencies, values as low as 0.06 milliseconds. The main
conclusion that emerges from our study, therefore, is that use of realistic EOS can be
important in deciding the range of eigenfrequencies, at least for the fundamental mode of
radial pulsation. The results presented here thus form an improved first step of calculations
on radial oscillations of neutron stars with a quark matter core presented by Haensel et
al. (8], whose numerical conclusions are expected to get altered.
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Table 1

EQUILIBRIUM STRANGE QUARK STAR MODELS
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Equation Pe M/Mg R Surface P,
of State redshift
(10 'g cm™3) (km) (2) (milliseconds)
Model 1 24.0 1.958 10.55 0.487 0.488
20.0 1.967 10.78 0.472 0.503
16.0 1.951 11.02 0.448 0.522
12.0 1.864 11.22 0.401 0.548
8.0 1.521 11.02 0.299 0.591
6.0 0.997 9.93 0.192 0.624
5.0 0.485 7.99 0.104 0.646
Model 2 24.0 1.863 10.09 0.483 0.468
20.0 1.862 10.29 0.465 0.482
16.0 1.829 10.49 0.435 0.500
12.0 1.710 10.62 0.381 0.527
8.0 1.281 10.14 0.263 0.568
6.0 0.645 8.37 0.138 0.600
5.0 0.092 4.48 0.032 0.622
MIT Bag 24.0 2.021 10.81 0.493 0.500
model 20.0 2.033 11.04 0.480 0.514
(B=56 16.0 2.023 11.29 0.450 0.533
MeV fm~?) 12.0 1.947 11.52 0.410 0.558
8.0 1.635 11.41 0.310 0.604
6.0 1.150 10.52 0.210 0.636
5.0 0.666 8.98 0.130 0.659
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Figure i. Periods of radial pulsations as funciions of the gravitaiional mass. The top wo and
botiom left boxes correspond to sirange quark stars. The bottom right box is for stable
b 5 q S
Aeutron stars corresponding to beta-stable neutron matter, modei UV14 + UVII, ret.
[7]. The labels 1, 2, 3, 4, 5 correspond respeciively to the fundamental and the firsi
four harmonics



