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TRANSIENT RESPONSE OF THE SOLAR WIND TO CHANGES
IN FLOW GEOMETRY

Flows in Coronal Holes
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Indian Institute of Astrophysics, Bangalore-560034, India

(Received 10 August; in revised form 11 December, 1981)

Abstract. The transient response of the solar wind to changes in geometry is examined. An initial stationary
flow in a configuration that diverges as 2 is assumed. This state corresponds to the usual solar wind solution.
The effect on the flow through a tube whose area A(r, t) diverges faster than r2, with the degree of divergence
increasing in time, is considered. The asymptotic form of A(r,t) is chosen to mimic the form inferred in
coronal holes. A detailed parameter study relating the form of A(r, #) to the pattern of flow in the tube is
presented. It is observed that in the limit of large time (large compared to 7, the time constant for change
in geometry of a flow tube) the solutions obtained from a time-dependent analysis can depend upon . For
sufficiently large 7, the asymptotic solution is the same as the steady state solution obeying the correct
boundary conditions and possessing a smooth sonic transition. However, if the geometry changes rapidly
enough, solutions exhibiting shock-like discontinuities can also exist. This is essentially a new feature that
emerges from the present investigation. Finally, it is suggested that this study may be useful in describing
flows in evolving coronal holes.

1. Introduction

The last two decades or so have witnessed numerous theoretical investigations of the
solar wind (e.g. Parker, 1958, 1960, 1963, 1965). It is now generally recognized that the
solar wind is a consequence of the expansion of coronal material into interplanetary
space (Parker, 1958). A number of detailed theoretical studies exist which have
examined this expansion assuming spherically symmetric flow (see Hundhausen, 1972,
and references therein). Recent observations of coronal holes have focussed interest on
generalizing previous studies to nonspherically symmetric flow (e.g. Kopp and Holzer,
1976, henceforth referred to as KH; Steinolfson and Tandberg-Hanssen, 1977; for
reviews see Holzer, 1976; Suess, 1979).

Coronal holes are regions of open magnetic field lines (Altschuler ez al., 1972) charac-
terized by a reduced density compared to their surroundings (Munro and Withbroe,
1972). Furthermore, coronal holes are believed to be the sources of certain high speed
streams observed in the solar wind (Krieger et al., 1973). It is also believed that the area
of a flow tube in a coronal hole region diverges faster than r?, where r is the heliocentric
distance (Munro and Jackson, 1977). Further details on coronal holes can be found in
Zirker (1977).

For steady isothermal expansion in a radial geometry, the existence of a continuous
transonic solution that extends from the corona to the interplanetary medium was
discussed by Parker (1958) (see also Parker, 1960). It was shown that the transition from
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subsonic to supersonic flow occurred through a critical point of the fluid equations. A
generalization to the case when the geometry was nonradial revealed the existence of
multiple critical points (Parker, 1963). A detailed examination of solar wind flow in
coronal holes by KH showed that a continuous solution was still posible in the presence
of multiple critical points. For sufficiently rapid nonradial divergence they found that
the sonic transition occurs much closer to the Sun than for the radial case. However,
as noted by these authors, use of the steady equations did not permit them to study the
transient readjustment of the flow from a geometry which supports a slow expansion
to one in which fast expansion occurs. Such a study is of considerable interest especially
when the final steady topology has multiple critical points. When examining the transient
response, it is not clear a priori through which critical point the sonic transition occurs.
In this paper, we address ourselves to such questions using a time-dependent approach.
Furthermore, such an investigation is useful for describing the flow in coronal holes
during their initial development which according to observations, takes place on a time
scale of the order of hours (Solodyna et al., 1977).

Let us briefly summarize the plan of study that we undertake in this paper. Starting
from an initial state with a radial geometry and for which there exists a steady continuous
Parker solution, the temporal response of this flow to changes in flow geometry are
investigated. By choosing a form for A(r, t), the area of a flow tube, which simulates the
form in coronal holes, a detailed parameter study relating the form of A(r, ¢) to the flow
pattern in the tube is presented. The conditions under which a transition from an initial
steady radial configuration to a continuous final steady state with a faster than r?
divergence take place are discussed. Finally, the relevance of this study to flows in
coronal holes is pointed out.

2. Basic Equations

Let us consider a region in the corona where the magnetic field geometry is open and
where plasma flows along the field lines. We assume that the flow is one-dimensional
and radial, but that the cross-sectional area of a flux tube need not vary as r?.

In a heliocentered co-ordinate system, the one fluid equations for one dimensional
radial flow in a tube, assuming a polytropic equation of state and zero viscosity are:

0 0
— (p4) + — (pvd) = 0, (2.1)
ot or
- b)
p<@+v@)=_ﬁ%_£, 2.2)
ot or r? or
0 0
_— + v — o = 0 , 2.3
(at ar>P/P (2.3)

where p, v, and p denote mass density, radial velocity, and pressure of the fluid respec-
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tively, a is the polytropic index, r is the radial distance, G is the gravitational constant,
and M, is the solar mass.

In Equations (2.1)—(2.3), we assume that A(r, ) is known, leaving p, v, and p as the
unknown flow variables which depend only on r and f. Transverse gradients are
effectively incorporated by specifying the tube geometry at each space-time point in the
same spirit as Kopp and Pneuman (1976) and Hasan and Venkatakrishnan (1981).
Noting that Equations (2.1)—(2.3) are hyperbolic, we solve them by the method of
characteristics (Courant and Friedrichs, 1948). The transformed equations are:

dp, du, 2( dln A 6lnA> _ GM,
=+pa —== —pa“\u + Fa along C, ,
dr P dr P or ot P r & T
(2.4a,b)
d
Po_ 42 deo _ 0 along C,, (2.5)
dt dt

where a = \/ap/p is the sound speed and C, and C, denote the characteristic curves,
whose equations are:

C,: (Ei—r) =u+a, (2.6a, b)
- de/ .,

Cy: (d—r) =u. Q.7
dt/,

Equations (2.4a, b) and (2.5) are also referred to as the compatibility equations valid
on the characteristics C, and C,, respectively. Before solving these equations, it is
necessary to specify the tube geometry through the function A(r, ¢).

3. Tube Geometry

We chose a function A(r, f) based on the requirement that initially the tube geometry is
radial and asymptotically (in time) it approaches a stationary form, which has a faster
than r? divergence. In order to keep the analysis sufficiently general we shall consider
the following forms for A(r, ) which satisfy the preceding requirement:

(a) A(r, 1) = 2nr? [1 = 3cos O(r, 1)], 3.1)

where

-R
0(r,t)=0i+é§ (l—e“/f)[l—cos (nr*GL)}, Ry, <r=<R,,
2 R, - Rg

(3.2)
0(r, 1) = 0, + A0(1 —e""), r>R

m
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where 6, 40, R,,,, R, (the solar radius) and 7 are constants. At a certain instant of time,
the nonradial divergence occurs between r = R tor = R,, and the angular extent of the
tube varies from 6, at Ry to 6, + 46(1 — /) beyond R,,. The symbol t is the time
constant for the nonradial expansion of the tube. This form for A(r, ¢) in the limit  — oo
is the same as that considered by Steinolfson and Tandberg-Hanssen (1977).

b ArD_ (RL) £ i), (3.3)

AO O]

where

Jmax() "R+ f)

f(r,p) = e v , (3.4)

Ji = 1= (frnax(®) = 1) eRo - R1/7, (3.5)
and

Jmax(®) = F; + F, (1 - /7). (3.6)

This form is essentially the one given by KH, with the difference that f,,, in our case
is a time-dependent function. The major nonradial divergence at some instant of time
occurs for R, — 6 <r <R, + o, achieving a maximum at r = R,. The function [,
varies from F; at t = 0 to F; + F,, at t = co. Figure 1 depicts the boundary streamlines,
as calculated from Equation (3.3) at different instants of time for R, = 1.5R,,
6=0.1R,, F;=1,and F,, = 11.

i

4. Initial State

Since the problem under consideration is an initial value one, a knowledge of the state
at ¢ = 0 is necessary. Assuming an initial state that is independent of time, the flow
variables can be easily determined by solving Equations (2.1)—(2.3) in the absence of
the 0/0t terms. We consider two distinct cases for which the polytropic index o has the
values 1.0 (isothermal state) and 1.1. In terms of the Mach number M and sound
speed a related by

M? = v%/a® = v?p/ap 4.1)

the solution of the steady equations yields the following transcendental relationship
between M? and r (Parker, 1958):

M?>-InM?-InA?-4/r=M2-In M2 -1In A3 - 4/r,, 4.2)

where the subscript ‘0’ denotes the values at some reference level. For o = 1.1, the
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relationship is (KH)

MY+ L M2le=1/(e+ 1)
a—1
- @ [Mg/(ﬁ N 4 2 Mazl(“‘ 1)/ (e + 1)]:| , 4.3)
go -1
where
s = gyt (g4 o) @)
r
and
GM,
E=1r+- 2 pp-220, (4.5)
o—1 r

Equation (4.5) just expresses the fact that the total energy per gram E is a constant of
the motion. For an initial geometry where A(r) ~ 7%, the solution topology exhibits a

Fig. 1. The boundary streamlines of a coronal hole at different epochs (¢/7) of its temporal evolution are
shown assuming F,=1, F,, =11, R, = 1.5R; and o= 0.1Ry. An angular width of 20° is assumed
at the base.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1982SoPh...80..385H

2SGPh: C 7807 J385H

rt

390 S. S. HASAN AND P. VENKETAKRISHNAM

critical point at which M = 1 when r = r,, where

GM,,

for a=1, (4.6a)
2a*
r, =
Mo 5=3% o ws1. (2.6b)
E 4(x-1)

It is worth mentioning here that for 4 (r) increasing faster than r?, multiple critical points
can arise, which mathematically correspond to turning points of the differential equation
for M (for details on the origin and nature of critical points in the solar wind (see Holzer,
1977).

5. Method of Solution

Once the initial state of the fluid is known, the time-dependent set of Equations (2.4a, b),
(2.5), (2.6a, b), and (2.7) can be used to determine the state of the fluid at a subsequent
instant of time. For solving these equations, a two-dimensional grid consisting of the
C,, C_, and C, characteristics is prepared. When solving time-dependent flow
problems a certain amount of care must be exercised in the choice of boundary con-
ditions in order to avoid spurious effects. At the base of the tube where the flow is
subsonic, only the C_ characteristic reaches points on the boundary from within the
tube. Consequently, only two flow variables can be specified there while the third has
to be determined from the compatibility relation (2.4b). If the flow is supersonic at the
outer boundary, then no boundary conditions should be specified, as all three charac-
teristics originate within the tube and the flow variables can be calculated from the
compatibility relations. For simplicity, we assume that at the base of the tube the
pressure and density are constant. The outer boundary for the isothermal case is taken
at r = 3R, where the flow is supersonic. In the study of the polytropic case, choosing
an outer boundary beyond r = 4.5R,, which is where the normal solar wind becomes
supersonic, is uneconomic in terms of computer time. Hence for practical conside-
rations, we choose the outer boundary at r = 2.6R. In this case we impose one
boundary condition, viz. the boundary velocity is the extrapolated value from two
preceding space points.

Equations (2.4)—(2.7) were solved numerically using a predictor-corrector method.
An inverse matching scheme was used to advance the equations in time (for details see
Hasan and Venkatakrishnan, 1980). To ensure numerical stability, the time step was
chosen small enough to satisfy the Courant Friedrichs Lewy criterion.

The optimum spatial grid size was chosen by keeping the area fixed at its initial value
and studying the flow such that within 100 time steps the velocity at any space point
varied by less than 59%;. For the isothermal case, 40 grid points corresponding to a step
length of 0.050R , were found adequate. However, for the polytropic case where the base
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Fig. 2. Theradial variation of velocity at different instants of time is shown in the isothermal case assuming
7=1000s and T = 3.4 x 10°K for (a) R,, = 1.4R, (b) R,, = 1.69R, and (¢) R,,, = 2.4R,. Vertical arrows

denote critical points.
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velocity is considerably less, 120 grid points corresponding to a step length 0.013R
were needed to prevent the onset of spurious downdrafts at the base.

6. Results and Discussion

The computations were carried out for both isothermal and polytropic cases, the latter
in greater detail as it permits a realistic variation of temperature to be considered. Let
us first examine the results of the isothermal case. We selected a form for A(r, ¢) given
by Equation (3.1) assuming a choice 6, ~ 4°, which corresponds to a base area
~2 x 10° km?, and 46 ~ 3°, which implies an area at R,, about 3 times larger than
would exist if the tube were radial. Figures 2 and 3 depict the spatial variation of velocity
and density at certain instants of time for different values of R,,, assuming a time
constant 7 = 1000 s and an isothermal temperature T = 3.4 x 10° K (this corresponds
to a sound speed ~ 240 km s~ !). In each of these figures, the dotted and dashed curves
denote the initial and final steady states respectively (as calculated from Equations
(2.1)—(2.3) without the d/0t terms). The initial state common to all the figures, depicts
the isothermal solar wind solution with a single critical point located at 1.69R . Certain
features can be discerned in the time-dependent solutions. Firstly, we observe that
starting from a common initial solution, different final steady solutions that depend upon
R,, are possible. The time-dependent solutions appear asymptotically to approach these
steady solutions. Secondly, as R,, increases, the time-scale for the achievement of a
steady state decreases. In Figures 2a and 3a, where R,, = 1.4R, the solution at
t = 15000 s 1s still quite distinct from the steady solution. As R, increases, we see that
the solution approaches the steady state within a shorter time. In Figures 2¢ and 3c for
R,, = 2.4R, the solution at # = 11800 s practically merges with the steady state. This
behaviour is related to the fact that a sudden change occurs in the steady state topology
when R, approaches the critical point at 1.69R . The sonic point moves inwards and
a transition to a state which supports a faster flow takes place. This transition occurs
because a small decrease in R,, close to 1.69R, results in a sudden change in topology
from one with a single critical point to another with three such points. The sonic
transition here is at the innermost critical point. Similar behaviour was also noted by
Steinolfson and Tandberg-Hanssen (1977) for steady flow. When studying time-depen-
dent problems, this feature reveals itself through the fact that the gradients of the flow
variables are more pronounced in the transients than in the final steady state. Thus, we
expect the time-scale for the attainment of a steady state to increase with decreasing R,,,.

Lastly, we find that when more than one critical point exists, the transients still appear
to approach the final physical solution. We can see this in Figure 2a for R,,, = 1.4R,
where the final state has three critical points (indicated by vertical arrows), one of course
at 1.69R, since the flow is radial beyond 1.4R , and two more between 1R and 1.4R,.
The sonic transition in the steady solution occurs at the innermost critical point.

We now consider the results for the polytropic case. Here the second form for the
area given by Equation (3.2) was used. Following KH, we choose R, = 1.5R and
o = 0.1R,. Figures 4 and 5 show the spatial variation of the flow variables at different
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Fig) 3. The radial variation of density at different instants of time is shown in the isothermal case assuming
7=1000s and T = 3.4 x 10°K for (a) R,, = 1.4R, (b) R,, = 1.69R, and (c) R, = 2.4R,.
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Fig. 4a—c. Velocity as a function of radial distance is shown at different instants of time in the polytropic
case assuming t=5000s, E=18x 10 ergg~! and F,=1.0 for (a)F, =0.5, (b)F,, =20, and
(c) F,, = 11.0. Vertical arrows denote critical points.

times for various values of F,,, assuming F; = 1 (i.e. an initial radial variation of tube
geometry), a time constant T = 5000 s and E = 1.8 x 10'® erg g~ (this leads to a base
temperature of 2 x 10° K). Consider first Figures 4a and 5a for which F,, = 0.5 (i.e.
Jfinax(00) = 1.5). The dotted curve depicts the usual polytropic solar wind solution,
which for « = 1.1 has a sonic transition at 4.5R,. The final steady state which has a
single critical point is also shown in Figure 4a. We observe that the transient solutions
overshoot the steady solution, but after around 10000 s gradually begin to ‘relax’
towards it. Figures 4b and 5b show the situation for F,, = 2. The final steady state for
this value of F,, has three critical points, with a sonic transition at the outermost critical
point. The transient solutions in this case show a considerable departure from the steady
state that we have just mentioned. Atz ~ 18000 s a spatial discontinuity, whose position
remains fixed in time can be observed in Figure 4b. We identify this discontinuity as a
standing shock. The flow on either side of the shock approaches different branches of
the steady state topology. We may also note that for such a discontinuous asymptotic
state, the sonic transition occurs three times, once at the inner critical point, the second
time at the shock and lastly at the outer critical point at 4.5R . Figures 4c and 5c show
the flow pattern for F,, = 11. Again a shock-like discontinuity is observed to develop,
in this case around ¢ ~ 8000 s. The solution on the two sides of the shock is again seen
to approach different branches of the corresponding steady state topology. It may be
noted, however, that there is only one sonic transition, which occurs at the innermost
critical point.
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Fig. Sa—c. Density as a function of radial distance is shown at different instants of time in the polytropic
case assuming t=5000s, £ =18 x 10%ergg~! and F,=1.0 for (a)F, =0.5, (b)F, =20, and
(c)F,, = 11.0. ‘

Consider now the situation when the change in geometry occurs on a slower time-
scale. Figures 6a and 6b depict the velocity and density distribution for 7= 15000 s,
assuming F,, = 2. The velocity gradients that appear in the transient solutions are less
pronounced than for 7= 5000s (compare with Figure 4b). Asymptotically, the
transients appear to approach the smooth steady state. We thus see that the final
stationary state can depend upon the rapidity with which the geometry changes. In order
to appreciate this behaviour, it is instructive to note that whereas changes in flow
geometry occur on a time-scale 7, the time-scale for the flow variables to respond to these
changes is different. This response time of the system depends upon the swiftness with
which changes in geometry are communicated to the flow variables by the C . , C,, and
C_ characteristics. If 7 is sufficiently small, then large transient effects can occur,
permitting for certain cases steep enough gradients to develop in the flow variables so
that a discontinuity in the form of a shock appears. Physically, a shock makes it possible
to link two unconnected branches in the steady flow topology.

Lastly, consider Figures 7a and 7b which depict the solutions for a nonradial initial
state (F, = 7.4), an asymptotic state characterized by f,,,(c0) = 8 and t = 15000 s. The
motivation for studying this case arose from the result obtained for steady flow by KH
that as f,,, increases, a dramatic transition occurs in the solution topology at
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Fig. 6. Radial profiles of (a) velocity and (b) density at different times are plotted for a polytropic flow

assuming 7= 15000s, E = 1.8 x 103 ergg™!, F,= 1.0 and F,, = 2.0.
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assuming t= 15000s, E=1.8 X 10" ergg™!, F,= 7.4 and F,, = 0.6.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1982SoPh...80..385H

PhZ ©.-80- Z385H

250

rt

400 S. S. HASAN AND P. VENKETAKRISHNAM

Jmax ~ 71.5. An increase of f,,, beyond 7.5 leads to a shift of the sonic transition from
the outermost critical point to the innermost critical point. From the analysis of KH,
it is not clear how the transient adjustment between the two states proceeds as the value
7.5 for f,,.« 18 crossed. This can, however, be discerned from the results of our time-
dependent study. In Figure 7a, we find that between 18000 s and 35000 s the velocity
profiles change comparatively little. However, note that between 35000 s and 37000 s
there is a dramatic increase in the velocity, especially around 1.4R, suggesting the
occurrence of a sudden change in the character of the solution. There is also a corres-
ponding dip in the density, though the effect is not so pronounced. We identify this
sudden change in the flow profiles as being related to the transition predicted by steady
state analysis at f, ., ~ 7.5. It is worthwhile mentioning that the transitions in the
time-dependent solution does not occur at the value of ¢ for which £, (¢) ~ 7.5 but later
in view of the finite response time of the system. It would have been interesting to follow
the temporal development of the flow beyond ¢ = 37000 s, but this would have been
prohibitive in terms of computer time.

The results obtained in the previous sections highlight several interesting points.
Starting from an initial steady critical solution in a radial geometry, a transition to a
smooth and continuous final steady state in a geometry diverging faster than r? is
possible even in the presence of multiple critical points, provided the change in geometry
does not proceed too swiftly. When multiple critical points arise, the final steady state
can become supersonic at any one of these points. In practice for steady flow, one
usually has to select the relevant solutions from physical considerations. On the basis
of our time-dependent study, we find that when the change in geometry is gradual
enough, the asymptotic state automatically ‘selects’ the steady branch that is single-
valued and extends continuously outwards from the Sun. However, for sufficiently rapid
changes in geometry, in certain cases a standing shock appears and the asymptotic state
is completely different from the one just mentioned. The formation of a shock is related
to the occurrence of a region where the flow becomes locally compressive. In such a
region, the velocity gradient becomes negative and the density gradient positive. For a
shock to form, the gradients should become so steep that the flow variables are no longer
single-valued. The sharpness of the flow profile at any instant of time depends both upon
the spatial as well as temporal gradients of A(r, ¢). In the isothermal case, a study of
the flow for the parameters considered did not lead to shock formation, though the
gradients in the transient solutions became more pronounced when R, (the effective
length for nonradial divergence) was decreased (for fixed 7 and same degrees of diver-
gence). The polytropic study for different f, ., (i.e. for different degrees of nonradial
divergence) showed that shock solutions are possible in certain cases (e.g. F;, = 1 and
F,, = 2, 11) depending upon the choice for 7. Thus, we see that the occurrence of shocks
is related to the detailed form of A (r, #). No straightforward criterion for shock formation
appears to emerge on the basis of the present investigation.
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7. Application to Coronal Holes

Let us now turn to the application of our study to coronal holes. Since coronal holes
exhibit temporal changes, especially during their initial phases (Krieger, 1977), we
adopted a time-dependent approach to model the flow within them. We assume that the
geometry is radial initially and that the development of a coronal hole is characterized
by the geometry becoming nonradial, with the degree of nonradial divergence increasing
with time. After a certain time the geometry becomes almost stationary. In our picture,
this state corresponds to a fully developed coronal hole, which we assume exists for a
sufficient length of time. By considering certain specific forms for A(r, ¢), which were
chosen to mimic the actual geometry of evolving coronal holes, the time-dependent flow
in them was studied. An important result that emerges from our study is that starting
from a normal solar wind solution, several final states characterized by various degrees
of nonradial divergence are possible. For the case, when the geometry evolves sufficiently
gradually, one finds that as the degree of nonradial divergence increases the flow speed
within the holes is enhanced and the density decreases. However, if the evolution is rapid
enough, shock-like solutions are also possible. The number of such solutions (depending
upon how rapidly the geometry changes) may be arbitrarily large corresponding to the
number of ways one can devise to connect unrelated branches in the steady state
topology. Thus, there exists the possibility of having localised enhanced flows even in
geometries with a low amount of nonradial divergence.

In our study of the polytropic time-dependent flow, we chose an initial state which
corresponds to a high speed solar wind at 1 AU. This is implicit in the value of E, the
energy per gram, we adopted when examining the polytropic solutions. Our choice of
E = 1.8 x 10" erg g~ ! leads to a flow velocity of 600 km s~ at infinity. The answer to
the question of how such a high speed stream is produced to begin with has not been
attempted by us. At present the detailed nature of the processes which are responsible
for the high wind speeds observed at 1 AU is not satisfactorily understood (Holzer,
1979). We have implicitly assumed that by some unspecified mechanism, an initial state
corresponding to a high speed wind (at 1 AU) is first established and changes in
geometry that characterize the development of a coronal hole after its birth occur
subsequently. Even if this mechanism were to operate simultaneously with changes in
geometry, the essential nature of our results is unlikely to be altered. This question will,
however, be analysed quantitatively in a forthcoming paper.

Finally, let us discuss some observational implications of our study. We have shown
that the final state obtained as a result of changes in geometry can depend on the rapidity
of this change. The actual values used for T were only for illustrative purposes. In order
to relate these two observations, one should look at the temporal evolution of coronal
holes (CH for short) immediately after their formation. Although observations show that
the areas of CH regions grow and decay at a mean rate of 10° km? day~! (Bohlin, 1977),
which is consistent with the diffusion rate of magnetic fields obtained by Leighton
(1964), there is some doubt about the actual time of formation of CH regions. The sole
observations of Solodyna et al. (1977) about the birth of a CH show a time-scale nearly
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one third of the diffusion timescale, and even this may be only an upper limit, since
observations separated by less than 9 hr were not available.

It is perhaps possible that the actual evolution of a CH region is characterized by two
time-scales. The first is the diffusion time-scale which decides the areal extent over
which reconnection or the MHD process responsible for changes in field topology has
spread. This ties in well with the long term evolution of coronal holes. On the other hand,
once a certain area has been ‘affected’ by the MHD process, changes in geometry might
develop on a much faster time-scale. Our work anticipates such a possibility and
predicts that shock-like discontinuities may occur when the change in geometry is
sufficiently rapid. There are indications that the actual evolution of a CH region is
characterized by discrete large scale changes in the CH boundary occurring within
time-scales less than a supergranule lifetime (Nolte ef al., 1978). It is tempting to
speculate that the association of X-ray coronal transients with the boundaries of
evolving coronal holes (Webb et al., 1978) may in fact be evidence for rapid changes in
coronal hole geometry.

8. Summary

In this paper we have studied the flow of gas in a flux tube whose degree of divergence
increased as a function of time. Starting from an initial solar wind flow, the time-depen-
dent fluid equations were solved to analyse the transient response of the flow to changes
in tube geometry. The asymptotic solutions, were examined in the time limit when the
final stationary geometric configuration had been established. It was observed that the
character of the flow could depend upon 7, the time-constant for change in geometry.
For sufficiently large 7, we found that the asymptotic solutions were practically identical
with the ‘physical’ solutions (i.e. those obeying the correct boundary conditions and
possessing a smooth sonic transition) obtained from the steady state equations. An
additional feature that emerges during the investigation was that even when the final
steady state had multiple critical points, the sonic transition in the asymptotic state
‘automatically’ occurred at the same critical point as in the ‘physical’ solution. However,
in the opposite limit of small 7, we found that the asymptotic solutions could possess
shock-like discontinuities. Although the existence of such solutions has been known for
some time (e.g. Holzer, 1977), they were never seriously considered in past studies of
the solar wind, as there appeared no reason a priori why they should be preferred to
the ‘physical’ solutions. We have demonstrated that such solutions are possible in
certain cases when changes in geometry occur sufficiently fast.

By choosing suitable forms for the area of a flow tube, it was pointed out that our
study provided a framework for studying the flow in evolving CH regions.
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