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Abstract. It is shown that non-radial light rays emitted from the surface of a white hole can emerge
from inside the Schwarzschild barrier. The upper limit on their impact parameter is calculated
under the requirement that such rays are blueshifted. The apparent angular size of the white hole
determined by blueshifted rays is shown to grow so rapidly in the early stages of its expansion that
it produces the appearance of superluminal expansion.

1. Imtroduction

This is a sequel to the paper by Narlikar and Apparao (1975), hereafter referred to as
(I). In that paper the astrophysical consequences of radially emitted photons from
spherically symmetric white holes in empty space-time were discussed. It was shown
that photons emitted in the early stages of the expansion not only get out of the
Schwarzschild barrier but do so with high blueshifts. Such a blueshifted radiation
could manifest itself as a gamma-ray burst or as a transient X-ray emission.

In the present paper we consider non-radial emission of photons by white holes.
The purpose of this investigation is to examine how the angular appearance of a
white hole changes as it expands, especially in the early stages when it is inside the
Schwarzschild barrier. The so-called impact parameter (which was zero in the radial
case) plays an important role in determining the angular size of the white hole. To
facilitate analytical calculations we will use the canonical white hole of (I). The specifi-
cations of the canonical model, which will be required for the present calculations, are
given briefly below.

The space-time inside the white hole, taken as a spherical homogeneous ball of
dust, is given by the Robertson—-Walker line element

2 |
ds? = ¢® ds® — S2(z)[%’ar—2 + r?(d6? + sin? d¢2)], (1)

where r, 8, ¢ are the co-moving coordinates of a typical dust particle and ¢ is its proper
time. The parameter « is given by
87Go
o = T209 (2)
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where G is the constant of gravitation; ¢ the speed of light; and g, is the density of
matter when the scale factor S(z) = 1. The scale factor in fact satisfies the relation

() -5

so that § = dS/df = 0 when S = 1. The white hole explodes from a singularity
(S = 0) and then comes to rest (S = 1). The extent of the white hole is described by
< ry.
The external solution is given by the familiar Schwarzschild metric
/ 2GM dRr?
2 __ p2 2 _ —
ds® = AT\ = 7= | ~ T= oM RS

— R2(d6? + sin? 0 dé?).

“
The matching of the two metrics (1) and (4) across the boundary of the white hole
requires that on r = r,

R = 1,S(t), (1 — —2GA24)-3—T= V1 = arg, (%)
Re ot
and that M is given by
_ oci‘gc2 .
M = 50 (6)

It should be emphasized that the canonical white hole described here is an idealiza-
tion in many respects. The real explosions are not spherically symmetric. Anisotropics
in the form of shear and rotation could be present. The initial state may not be singular,
but highly dense. The explosion may not be in empty space-time. Eardley (1974) has
argued that accretion may quickly smother an exploding white hole and convert it
into a black hole. Lake and Roeder (1976) have emphasized, however, that a white
hole of the above type arising out of a big bang universe as a lagging core need not
encounter this fate.

For the purpose of the present calculation we will ignore these subtleties. Since
exploding objects in the universe of the type discussed in (I) are usually found in a
medium of tenuous density, the above model may be considered a crude approximation
to reality at least in the not very anisotropic explosions.

2. Non-radial Null Trajectories

Consider a null geodesic emanating from the surface (r = r,) of the white hole in a
non-radial direction. The dynamics of test particles in Schwarzschild’s geometry gives
the following first integrals. First, without loss of generality, choose § = =/2 for the
‘plane’ of the trajectory. We then have, for an affine parameter A,

o d¢ _
RE =h, (7)

2GM\ dT _ h
(1 __—_—RCZ)—d_/—\_q_C, (8)
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where 4 and g are constants: 4 is the angular momentum parameter and g is the impact

parameter.
Substitution of (7) and (8) into (4) gives, after some manipulation,

7= (1 - %{)CF(M ©

dR _R®

d _ X i

5~ o PR, (10)
where

F(Rq) = { -4 (1 - 2?}‘3)}1’2. (11)

Initially we will set ¢ = ¢, R = R, = r,S(¢t,), T = T(t;) = T, so that ¢, is the
proper time of the surface dust particle at the time of emission. Finally, the light ray
arrives at a remote receiving point with R = R, » 2GM/c?, 0 = w[2,¢ =0, T = T,
(say). Then from (9) and (10) we get

T, — T, = %f: [F(R, q)(l _ %)]"1 dR, (12)
o=, wD » 42

Figure 1 shows the schematic track of a light ray as it winds round the white hole
mass before finally coming out at R = R,. At this point the ray makes an angle ¢
with the radial direction ¢ = 0. This angle is given by examining (10) in the neighbor-
hood of R = R,. Transforming to a locally cartesian set of coordinates near R = R,
we see that

~ 4.
€= (14)

Fig. 1. The track of a non-radial null ray from the surface of a white hole to a remote observer.
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Thus the impact parameter essentially determines the angle along which the ray
approaches the receiver at R = R,. Note that (14) is derived on the assumption that
e <« 1, so that ¢ < R,. It is not valid for a receiver located very near the white hole.
For an Earth-bound observer looking at a galactic or an extragalactic white hole, (14)
is a good approximation.

3. The Spectral Shift

We will now compute the spectral shift of the non-radial null trajectory described
above. The calculation can be performed either from first principles, by considering
two null trajectories leaving r = r, at t = ¢, and ¢, + At; and arriving at R = R, at
T = T,and T, + AT, respectively, or by using the following general formula given by
Schrédinger (1950)

Vo _ (ll,V )2

T2 (15)

141 (“zv )1

where v, is the frequency of emission, v, the frequency of reception, v} the source
velocity, vh the receiver velocity, uj the photon direction at source and u}, the photon
direction at the receiver. It is easy to see that the following values obtain for these
quantities in the R, T coordinates:

Vil = rbS(tl), 0, 0, V 1 - (Xrg(l —fﬁg)] b
L 1

vh ~ [0,0,0,1], since 2GM [R,c? < 1,

d¢ 4T
Uy = _a) 05 TA’ 'E\i' >

The derivatives dR/dA, dé/dA, dT'/dA are given by (7), (8) and (9). A simple calcula-
tion gives

(R=Ry, A =1,2).

1 2GM

v B 2R1
Y2 _ <0 : (16)
" VTt - W g, g)

The approach from first principles [which was used in (I)] gives the same answer.

It is interesting to note that v,/v, is well behaved at all R, > 0, even at R, =
2GM /c?. When R, = 2GM /c?, the denominator as well as the numerator vanish, but
the ratio vy/v, is finite. We in fact have from (3), (6) and (1 l)

r%S2F2(R13 q) rbS2

cZ

1 — arf — =1—arf —

F?(Rqq)}

=1

_2GM r%Sz.f_ _2GM)_
Ri

R, + c? R,
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Hence, Equation (16) reduces to the expression

V 1 —_ arf + riS'F(Rl,q)
- : - a7
V1 1+ qzrl%Sz(tl)
¢*R,
At R, = 2GM /c?, this becomes

[V_Z] V1 - a18)

- 2

V1lg, =26M/c? 1+ q_2_(1 _ ocrg)
R

Examination of these formulae shows the expected result that the ratio v,fv; for
non-radial geodesics is smaller than for radial geodesics (¢ = 0). We now look for the
possible upper limit on ¢ so that the corresponding null geodesic shows a blueshift
(va > vy).

Setting v, = v, and solving for g we get the following upper limit on g for a blueshift

arg

21 —wrz2 — 2 + =2

‘Sl
( 1 )
53

where S; = S(¢,). For small S; («ar?Z < 1), we have

q* < , (19)

q®> < r3St = R}. (20)
For S; > ar? there is another requirement on ¢; namely, that F should be real, i.e.

1 2G6M\ 1

7o (- Re)m @

The right-hand side has a maximum for R, = 3GM/c2. Thus, for g < 3V3 GM|/c?, F
is always real. [Note that (20) is automatically satisfied for R, < 2GM/c?, i.e. for
S, < ari.] We shall, however, be concerned mainly with (20) which applies in the very
early stages of the white hole expansion.

4. The Rate of Growth of Angular Size

How does the white hole appear to a remote observer as it expands from S = 0? In
(I) we considered the brightness, spectrum, flex density, etc., by using the radially
outgoing null trajectories. In the present section we will look at the apparent rate of
growth of the angle subtended by the white hole. In §2 we saw that this angle is propor-
tional to g, the impact parameter of a non-radial ray leaving the white hole surface.
What is the maximum value of g at any given time 75, and how does it change with ¢, ?
To answer this question we will assume that only the blueshifted rays are easily
detectable by a remote observer. The redshifted rays will be too faint to observe. This
1s only a crude approximation to reality where the actually measured angular size will
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depend on a number of parameters related to the measuring instrument, such as its
sensitivity, its response to specific wavelengths, the signal to noise ratio, etc. All that is
implied in the following calculation is that quanta that are blueshifted are relatively
easier to detect than quanta that are redshifted.

Consider a typical blueshifted ray which has an impact parameter ¢ and which
leaves the surface of the white hole at # = ¢, in such a way as to arrive at R = R, at
T = T,. The answer to our question is then obtained by calculating the largest value of
q for a given T, subject to (20), - i.e.,

q < rS(ty) = R,. (22)
Applying (12) to this null ray we have
1" 2GM\] -1
T2 = T(tq) + Equ [F(R,q)(l - W):l dR.

As we change ¢, 7, changes. The variation of the above relation for a fixed T, gives

[ tF@ e ar

A, = L (1 _ 2fM)- ___Aq. (23)
¢ c*R, VI = ar? — roS (1)
* cF(R,q)
It can be verified that in the early stages (R, <« 2GM /c*) and for
R
< ——> 24
7 V1 — ar2 24)

t, decreases as ¢ increases. That is, geodesics with larger impact parameters have to
start earlier than those with smaller ¢, in order to arrive simultaneously at R = R.,.
Thus, the radial null geodesic (g = 0) starts last. As g increases from g = 0, geodesics
have to start at earlier epochs with smaller S. Clearly, g can increase only up to the
limit set by (22) [which is consistent with (24)]. Therefore, the largest angular size is
obtained by setting ¢ = R, in the specification of the null geodesic. This gives

1 [* 2GM\-1[, ¢ 2GM\ |-
Tz—T(zq)+EL (1~ ) [—R—z(l—w)] dR. (25

Rc?

This implicit relation determines g as a function of T5. In the appendix it is shown
that for ¢ « 2GM/c?, (25) gives a rate of the type

g]_ = —1/4
dT2 - KT2 » (26)

where K = constant. The corresponding angular radius of the white hole appears to
increase at a rate

de

B —-177—1/4
a7, = KRS T, 27)

For small T,, (26) will predict an apparent superluminal expansion speed.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978Ap%26SS..53..155N

N&SS.. 53, _ 55N

rT978A

THE ANGULAR APPEARANCE OF WHITE HOLES 161

It is of interest to note that apparent superluminal expansion speeds have been
observed in the radio components of many quasistellar sources (Kellermann, 1976).
In a typical example, two components appear to separate from each other at a velocity
v > c. If these speeds are ‘real’ they contradict either the special theory of relativity
or the cosmological hypothesis of the distance of a QSO from us. Although the above
example refers to a spherical white hole, it points out a likely explanation of the above
phenomena. To obtain quantitative estimates for comparison with observations it is,
however, necessary to consider linearly expanding white holes. Using the result
derived in the appendix we see that when the value of ¢ = R; = o x Schwarzschild
radius of the white hole, the observed expansion speed is given by

dg c
T dn, T @)™
Hence, for v > ¢ we need the white hole to be considerably smaller in extent than
implied by the Schwarzschild radius.

In (13) we have the integral determining the bending of a light ray emitted by a white
hole. The integral for ¢, gives a finite value except when F?(R, q) = 0 has a double
root in R. This happens when ¢ = 3v/3 GM/c2. As q tends to this value, $, diverges,
i.e. the light ray keeps going round and round the object at R = 3GM/c2. For g-
values close to this critical value, rings and multiple-imaging occur for light emerging
from collapsing or highly collapsed objects [see Ames and Thorne (1968), Das (1975)].
These phenomena are not expected to occur in the case of white holes for two reasons.
First, as we saw earlier, the interesting values of ¢ for white holes are considerably
smaller than the critical value. For these ¢, is not very large. Secondly, the expanding
white hole cannot permit even the rays with ¢ ~ 3v/3 GM/c? to circulate forever
because it soon occupies the region R = 3G M /c? where this could occur.

v (28)

5. Conclusion

We have shown that, for the canonical white hole, the nonradial rays can emerge from
inside the Schwarzschild barrier and reach a remote observer. The ratio of received to
emitted frequencies for non-radial rays is smaller than that for radial rays. It is still
possible to have such rays blueshifted in the early stages of the expansion, provided
their impact parameter is smaller than the Schwarzschild radial coordinate of the
emitting surface at the time of emission.

Assuming that only blueshifted rays are seen by the remote observer, the apparent
angular size of the white hole grows very fast in the early stages giving the impression
of a superluminal expansion.
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Appendix

Differentiate (25) with respect to g and use the relation (5) to get

a7, _ L g1 — 26M) " dty Ly 2GMA=t 2GM
dg ¢ gc® dg ¢ qc gc*

1 (B2 q° 2GM\ ) -32
g (120

Since g = r,S(t,), we have dg = r,S(z,) d,. Hence the above relation simplifies to

dT; _1(,  2GM\~ (VT — o} 2GM
dg _C(

B gc? rRS(t) N g

1 Ry 2 2GM -3/2
YR T S

For g « 2GM/c? S? =~ «c?/S. Hence, we get

T (1 = VI =) (ZGM)M +

dg
1 (" 2GM\ ) -2
APl g (2
For small g use the following approximations, with x = R™1, y = 2GMc~2b?)"3x:
| [*e 2 2G M\ -2
Lo (20 g

a=? M -3/2
~ gf (1 —q** + 2G—2q2x3) dx
¢ty c

1 2\18 % c? \2/3 -3/2
el [ () e
‘o
(6%2)" [Tasanry.

A 1/3
~ (GMc) ’

where A4 is a constant of the order of unity. For small ¢ the behavior of ¢ with respect
to T, is therefore determined by the equation

a7: | (9}
dg GMc

Q
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which gives

34
T, ~ 4—(G'Mc)”3 g

Hence, we get

% ~1/4
iz KT

with K = (3/4)/24%/%(GMc) =52,
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