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Summary. Tidal force effects in binary stellar systems are considered. Esti-
mates are made for the rate of increase of the binding energy of a component
and the rate of decrease of the energy of the orbital motion of the binary
under the simplifying assumption that the motion of the stars in the stellar
systems may be neglected in comparison with the orbital motion of the
binary system. The time of disruption of a component and the time of
coalescence of the pair are obtained as functions of the separation and mass
ratio of the binary for distant as well as close overlapping pairs. Applications
are made to globular clusters and binary galaxies.

For a pair of identical galaxies the rate of coalescence of the pair is faster
than that of the disruption of the components. A study of the tidal effects
at the median radius indicates that a pair of contact spherical galaxies moving
in circular relative orbit, will merge and form a single system in a time interval
less than three periods of revolution. The rate of disruption of the com-
ponents is six times slower. As the separation decreases, the rate of disruption
increases faster than the rate of coalescence.

1 Introduction

The relative motion of two galaxies differs from that of two mass points in an important
respect. The stars in the two galaxies are generally accelerated due to tidal effects with the
result that the energy of the orbital motion of the two galaxies is decreased. As a result
of this phenomenon, two galaxies initially moving in hyperbolic orbits may form a binary
system under certain circumstances (Alladin 1965; Alladin, Potdar & Sastry 1975; Yabushita
1977). Computations made by Cox and Toomre (Toomre 1974, 1977; Van Albeda & Van
Gorkom 1977) for slow head-on collisions of two galaxies have emphasized that tidal
friction in a slow close approach of two galaxies is enormous.

Binary stellar systems, however formed, will revolve around each other with a mean
separation that will decrease in time and with disruptive effects on the structures of each
other that will increase in time. Many contact and overlapping pairs of galaxies are known
(Vorontsov-Velyaminov 1977). Zwicky (1959) had suggested that a problem of much
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interest is to determine how long can overlapping stellar systems co-exist before disrupting
each other and losing their identity.

It is the aim of the present paper to make estimates for the rates of disruption and
coalescence of binary stellar systems in a preliminary scheme of approximation. The stellar
systems are assumed to be spherically symmetric configurations. We compute the increase in
the internal energy of a stellar system (that is the energy due to the distribution and motion
of its stars) due to the tidal field of another under the simplifying assumption that the
motion of the stars in the stellar systems may be neglected in comparison with the orbital
motion of the binary. This is the impulsive approximation earlier used by Spitzer (1958),
Bouvier & Janin (1970), Spitzer & Chevalier (1973) and Knobloch (1976), to estimate the
tidal effects of a passing interstellar cloud on a galactic cluster; by Contopoulos & Bozis
(1964); Alladin (1965); Sastry & Alladin (1970); Sastry (1972); Gallagher & Ostriker
(1972); Richstone (1975); Biermann & Silk (1976); Toomre (1977), to estimate the tidal
effects of pairs of galaxies; by Ostriker, Spitzer & Chevalier (1972) to estimate the tidal
effects of the Galaxy on globular clusters. We develop the theory in greater detail than was
done earlier and also discuss a preliminary method of studying the tidal effects of close
interpenetrating pairs. In order that the impulsive approximation may be valid, we require
that the motion of the binary should be fast in comparison with the motion of the stars. In
a number of situations, this condition may not be satisfied. The results of Spitzer (1958)
and Knobloch (1976) show that if the test stellar system is assumed to retain the same shape
throughout the encounter and if the stars are assumed to move in unperturbed orbits, the
increase in the internal energy thus obtained is generally less than that obtained in the
impulsive approximation. On the other hand, Lauberts (1974) has indicated that the tidal
effects re-shape the interacting stellar systems in a way that greatly enhances further inter-
action which is predominantly in the direction of increasing the internal energy. Thus the
two effects work in opposite directions. While detailed computations of the orbits of stars
are needed to make accurate estimates for the changes in internal energies of the two stellar
systems, it appears that the impulsive approximation would provide a useful first approxima-
tion against which the results of detailed numerical work may be compared. Toomre (1977)
compares the minimum velocity necessary for non-merging of two galaxies in a head-on
collision, deduced from impulsive approximation, with that obtained by Van Albeda & Van
Gorkom (1977) from detailed calculations and finds good agreement. This increases our
confidence in the impulsive approximation.

2 Theory

We shall first develop the theory for the tidal effects of pairs of stellar systems separated by
a distance large compared to their dimensions by expanding the tidal potential in a series in
Legendre polynomials. For close pairs which comprise contact and interpenetrating binaries,
this method cannot be used. The tidal acceleration in such cases is obtained by performing
certain numerical integrations. These will be discussed later.

2.1 DISTANT PAIRS

Consider two spherically symmetric stellar systems of masses M and M,, revolving around
each other in a circular orbit of radius » with angular velocity w. We shall consider the tidal
effects of M, on M. We define a fixed coordinate system x, y, z with the origin at the centre
of mass of M and the z axis perpendicular to the orbital plane. Let the coordinates of the
centre of M; be denoted by x, y and z (by definition z =0). Let the coordinates of a
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representative star in M be x', " and z’ and let its distance from the centre of M be r'. Let
r" be the distance between the centre of M 1 and the representative star in M.

The tidal potential of the star due to M, in a rotating frame of reference £, n, ¢ in which ¢
points to the instantaneous position of M, n is perpendicular to £ and in the orbital plane,
and ¢ is parallel to z, is given by

r

GM, = "/ '
¥i=—— 2 P;(cos w)(—) (2.1)
o=

7

where cosy = £/r and Py(cos ) are the Legendre polynomials. We shall consider terms in
(2.1)uptol=4.

We obtain the tidal acceleration in the rotating coordinate system from
f=-v %. (2.2)

We then transform this acceleration to the fixed frame by using the equations

£=xcosf +ysin b (2.3)
n=—xsinf +ycosf
§=z
where 6 = wt. We obtain
dl)x GM] f ’
Iy =;— == [x'(2-3sin?0) +3y"sin 0 cos 9] + higher order terms (2.4)
t 4
de GMI , f . S
fy =7 =— [3x"sin 0 cos § +»'(2—3 cos?0)] + higher order térms (2.5)
t ¥
dUZ GM]Zl .
: =;t— =— 3 + higher order terms. (2.6)

Assuming that the motions of stars in M can be neglected, we integrate the right-hand sides
of these equations over one period P of revolution of the binary system. The terms arising
in the tidal potential for /=3, integrate to zero. We obtain up to terms with /=4, the
following expression for changes in velocity:

GMP , 3GM,P 3 ' i i
(AVp= 23 + . [¥sx" —3x"y'2 — 3nx'z"? (2.7)
GMP |, 3GM\P
(AV))p = y+ (Y™ — ¥sx"2y" — 3% y'2"Y] (2.8)
Y 2r 2rd
GM\P , 3GM,P 3 s )
AV)p=——- z'+ e [2° = 3% y"%2" —3hx'%"]. (2.9)
r r

The increase in the total energy of M in one period (AU)p, is in the impulsive approxima-
tion the same as the change in its kinetic energy, and is obtained from

(AU)p = b M{AV (Ry)Y (2.10)

where Ry, is the median radius of M.
From equations (2.7) to (2.10) we obtain

m2G*M2MR}E 1 (Rp\2

(AU)p = 1+={—1} . (2.11)
M+ M) 7P 3\ r

29
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We have neglected terms of the order of (Ry/r)* in the bracket. Even the second term in the
bracket is generally quite small. If two homogeneous stellar systems of equal radius touch
each other Y3(Rp/r)?=0.0525. We shall represent the density distribution in the two stellar
systems by those of polytropes of integral indices as described by Limber (1961). The
binding energy of M is, by the virial theorem, given by
Q 8,GM? 1 3 GM?

(2.12)

where (2 is the gravitational potential energy, R is the radius, and 3, is a numerical constant
which can be readily determined from (2.12) if Ry, is specified. Ry, = 0.135 R for a polytrope
of index n =4 which represents fairly well the central concentration of spherical stellar
systems. Ry, = 0.794 for a homogeneous sphere. For polytropes of indices 1, 2 and 3, R}, has
the values 0.607 R, 0.439 R and 0.284 R respectively.

The fractional increase of the internal energy of M in one period of revolution is given by

AU) 2m? M3 Run\? 1 (Rp\?
e __2m —’(—1) {1 —(——“) } (2.13)
U ﬁn M(M+M1) ¥ 3\ r
Spitzer & Chevalier (1973) have defined shock disruption time z, as
U1
th = (2.14)
T auydr

and have discussed the utility of this parameter for the overall evolution of the stellar
system. We shall write for the shock disruption time, z4 of M:

%z {(_‘:_g%?}—l. (2.15)

Kurth (1957) has given the following formula for making an order of magnitude estimate of
the time required for the dissolution of an unstable star cluster due to the tidal field of the
Galaxy:

te ={G(20 — p N}'"? (2.16)

where p is the mean density of the cluster and o is the mean density of a sphere about the
galactic centre having the centre of the cluster on its surface, and being uniformly filled with
the total mass of the Galaxy. If p > 20, the cluster is considered stable. In Section 3, the
prediction of equations (2.15) and (2.16) will be compared.

In the foregoing analysis we have assumed the orbit for the relative motion of the two
stellar systems to be circular. If we take the orbit to be any conic and neglect the higher
order term, we would get:

(AD)p 27 (_R_h)3 M?
Ul Bu(1+e)*\ p) M@+M,)

(2.17)

where p is the distance of closest approach of the binary and e the eccentricity of the
orbit.
It follows from (2.15) and (2.17) that

_ﬁn a4.5(1 _ 62)3M(M+M1)1/2

(2.18)
m GY*RiM?

tq

where a is the semimajor axis of the orbit.
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This may be compared with the less exact equation used by Keenan & Innanen (1975)
which, in our notation, is
7 a*S(1+e)(1—e)*M

tg= 1—0 G1/2R%M:;’/2 . (2.19)

In the paper by Keenan & Innanen, the denominator contains M?%’? by mistake. We have
made the correction in writing (2.19). For the value e = 0.5 used by Keenan & Innanen, the
predictions of (2.18) and (2.19) are in close agreement.

It follows from the law of conservation of energy that the sum of the internal energies
of the two stellar systems and the external energy, £, due to the orbital motion of the two
systems should be constant. Hence

(AE) 1 .
TR [(AU)p + (AU )p] (2.20)
where
GMM,
E=— . (2.21)
2a

Thus as the internal energies increase, the binary would become more tightly bound. We
define the time of coalescence as

e

Since from equation (2.21), AE/E = — Aa/a, equation (2.22) implies that if we assume that
the semimajor axis of the relative orbit of the binary decreases at a uniform rate given by its
initial value, the centres of the two systems will merge in time ¢.. Using (2.12), (2.17),
(2.20) and (2.22), we obtain

—a3.5(1 _ 32)3(M +M1)]/2
nGVHM R} + M(Rn)1}

(2.22)

C

(2.23)

C

If we assume that § varies as M 3’2 as suggested by observations (Fish 1964), and hence M
varies as R? we obtain from (2.17),(2.20) and (2.21) the relation:

(AE)p 4n*M R} (2.24)
E  (M+M)d*(1—e?? '
and (2.23) gives:
a3.51__e23M+M 1/2
to= ( ) ( : 1) : (2.25)
¢ 27G2M, R}

In the present preliminary treatment of the problem (AU)p/|U| and (AE)p/E are deter-
mined by assuming that the effects of escaping stars may be neglected and the binary
systems retain the same shape and mass distribution throughout. In (AU)p we have also in-
cluded the energy of the stars that were initially a part of the stellar system but have later
escaped. Thus the fractional change of energy (AU)p/|U | of the stellar system would be less
than that obtained by the present method if allowance is made for the energy of the stellar
system carried away by the escaping stars. The escaping matter from the two galaxies will
also lead to a decrease of the magnitude of the orbital energy of the binary system and thus
make the binary less tightly bound. Thus the values of 74 and ¢, obtained from the present
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treatment will have to be increased if the effects of the escaping stars are considered. On the
other hand, since the tidal effects loosen and flatten the two stellar systems, they become
more vulnerable to further changes in internal energy. This effect would decrease ¢4 and 7.

2.2 CLOSE PAIRS

In the case of close pairs, the increase in the internal energy of M has been determined by
considering the tidal effects due to M; on a number of stars of M situated on a sphere of
radius Ry. If the stellar systems are close but do not interpenetrate, the tidal force per
unit mass on a star in M is obtained from:

GM, (x —x") GM;x
+ + -

fx = "
"y rPor

GM, (¥ —y’) GM, y
+ + -,

= (2.26)
Y A o ror
_ GM, z'
z = 7'"2 ;7;
For interpenetrating stellar systems, the modified form of the above equations, is
fi= GM, [ch, x—x") d (‘P)x]
¥ R? Las" 1" ds\s/r
P [de)1 (y-y) d (E)J_f] 227
Y R? Las" ¥ ds\s/r '
GM] d(Dl Z'
P e
R* ds r

where s =7/R and the functions ®(n,, s) and ¥(n,, n,, s) are derived from polytrope theory
as indicated in Sastry & Alladin (1970). In the study of interpenetrating pairs, we assume
that both M and M, have the same radius R and that M, moves in a circular orbit about M.
The change in the velocity of a star with respect to the centre of M in one orbital period of
the binary is obtained from

GM,P[ (27 d®, (rcosd — x") 2n d (W 1
AV )p=— [f D ——d0 ~f —{—)cos @ dOJ

"

27R? ds” r o ds\s
GM\P[ (27 d®, (rsinf —y") 2 d (W)
(AVy)p=— f — ————do—| — (— sin 9 d6 (2.28)
21R* L)y ds ¥ o ds\s
avyp = +SMF J'zvr d®, 7'
P Ry as"

The second integrals in AV, and AV, give zero on integrating over a period. Denoting the
sum of the squares of the non-zero integrals by / 2 we obtain

G*M3iP*I?

(2.29)
4Am?R*

(avy*=
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If N stars are taken at the median radius, R},, we obtain

1 N G*M?P? (2.30)
= — Y {AVR)Y = o I
(AU(Rp)) N i; {AV;(Ry)} SR
We shall estimate (AU(Ry)) with NV = 14, the stars being chosen on the positive and negative
axes of the Cartesian coordinate system and on the centres of the octants of the sphere. It
follows from (2.10), (2.12) and (2.30) that

(AU)p 5 —n GMIPXI? (2.31)
U\ 1272 MR?
The orbital period of the binary is obtained from

P2=__‘i7_Tir_3__{ 22 (E)}-l
G(M + M,) Pas\s) (232)

Using (2.31) and (2.32) with (2.12), (2.15), (2.20) and (2.22), we obtain (AE)p/E, t4 and
t. for interpenetrating pairs. In this case £, obtained from (2.21), is multiplied by W.

The time of coalescence used in this work takes the extended nature of both the stellar
systems into account while the dynamical friction time used by Tremaine (1976a) and
others, neglects the extended nature of the smaller stellar system in the sense that AU for
the smaller system is ignored. If M < M, and if M is regarded as a mass point so that
AU = 0, t. may be expressed in the form

. 3VRR,
2G*Mmn r{I%

(2.33)

L

where V is the relative speed, n, is the ayerage number of stars per pc® and m, the average
stellar mass in M,. If V is in km/s, n; in number of stars per pc® and m; and M in solar
masses,

v: R
Mmn, r{I?

te=7.4x10" yr. (2.34)

The factor R,/KI?) decreases as the separation decreases. If the mass distribution in M, is
that of a polytrope of index n = 4, we have:

3

te=6x107 yi (r=0.1R,)
Mm;n,
3 (2.35)
te=7x10° ~yr (r=0.5R,).
Mm;n,

Equation (2.34) may be compared with the time required for dynamical friction signifi-
cantly to decelerate a massive object moving with typical velocity ¥ (Larson 1976).
3

Ty ~4x108 yr. (2.36)

Mmn,
It follows from the polytrope theory that the escape velocity is given by

. 2G(M+M)
Vie= ——— Wn,n,7) (237)
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where the function W is given in Alladin (1965). We obtain for identical galaxies moving in
circular relative orbit

@?E 7&1—2 (1%)4(%)4(12)' (2.38)

This may be compared with the corresponding expression obtained by Toomre (1977,
equation 6) for a head-on collision between two identical galaxies. AE/E in our notation is
the same as 2AT/(MU?/4) in Toomre’s notation.

3 Results

Table 1 gives the values of (AU)p/|U| for different ratios M,/M and r/R for distant pairs
for circular orbits of the components. The mass distribution in M is assumed to be that of a
polytrope of index n = 4. For polytropes of indices n = 3, 2, 1 and 0, the given values should
be increased by factors 8.9, 32, 81 and 173 respectively. Results for any eccentricity in a
conic orbit can be obtained from these values by simple scaling using equation (2.17). In
particular, it may be noted that (AU),/|U| in a parabolic orbit is eight times smaller than
that in a circular orbit of radius equal to the distance of closest approach. Table 3 gives the
values of (AU)p/IU| and (AE)p/E for contact and interpenetrating stellar systems for
n=n,=4. The reciprocal of (AU)p/|U| gives the time of disruption in units of the orbital
period of the binary. A bold line is drawn in the tables to indicate the limit to the right of
which (AU)p/|U|> 1. For distant pairs and mass distribution in M specified by n =4, this
corresponds to the situation R; = 0.34 R where R is the tidal radius defined by

M 1/3
Rt=r(3M ) 3.1)
1

(King 1962). In a polytrope n =4, about 95 per cent of the mass is enclosed within 0.34 R.
Hence if the tidal radius of M is equal to the radius of the sphere containing 95 per cent of
its mass, disruption will occur in about one orbital period of the binary. If M is homo-
geneous R, = 1.9R corresponds to (AU)p/|U|=1 for distant pairs. Thus a homogeneous
system gets disrupted in one period of the binary even if its dimension is about half the
tidal radius.

Table 2 gives the corresponding values of (AE)p/E for distant pairs. In Table 2 where a
large range of masses is considered, we have assumed R, = R(M,/M)"?. In Table 3 we give
(AE)p/E for close pairs. We have assumed for these cases that R = R since a large range in
mass ratio has not been considered. With this assumption (AE)p/E is independent of the
mass ratio for a given separation of the components.

The times of disruption and coalescence are shown graphically as functions of separation
and mass ratios in Figs 1 and 2 for distant pairs and close pairs, respectively. The units are
chosen so that M=1, R=1and P'=1, where P'is the period of a star in M revolving in a

Table 3. (AU)p/IU1and (AE)p/E for close pairs.

r/RM‘ - 0.5 1 2 5 10 (AE)D/E

0.1 I 7.0 2.1x10 5.6X%10 1.8X10? 3.8 X107 24

0.2 | 1.5 4.5 1.2x10 3.7x10 8.1X10 6.5
0.5 1.5x10™" 45x107 | 1.2 3.8 8.3 1.4
1.0 2.0X107? 6.0X10°% 1.6 X107 5.0x107! 1.1 0.36
2.0 2.5%1073 74 %107 2.0x1072 6.0x10°? 13x10" | 0.09
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Figure 1. t4 and t¢ as a function of the separation for distant pairs. The continuous line denotes ¢4, the
dashed line denotes ¢; and the dotted line is obtained from Kurth’s formula. The numbers above the
lines denote the mass ratio log, ,(M,/M).
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Figure 2. t4 and . as a function of the separation for close pairs. The continuous line denotes fd, the
dashed line denotes ¢. The numbers above the lines denote the mass ratio M, /M.
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circular orbit of radius R. The time of disruption obtained from Kurth’s formula (2.16)
is shown for comparison for the case M, /M = 10°.

4 Discussion

We apply the theory for distant pairs to evaluate r4 and ¢, for a globular cluster moving in
a circular orbit at various distances from the centre of the Galaxy. We take the mass of the
globular cluster as 10°M, and represent its mass distribution as that of a polytrope of
index n =4, of radius 50 pc so that Ry, is about 7 pc. Taking the mass distribution of the
Galaxy from Schmidt (1965), we obtain the values of (AU)p/| U], t4 and ¢ given in Table 4.
The values for any other mass and radius of the cluster can be got by scaling from equations
(2.18) and (2.25). The coalescence rates for globular clusters are small compared to the
disruption rates which imply that globular clusters would be disrupted much before their
centres merge with the galactic centre. It may be noted that close to the galactic centre
the rate of disruption is extremely high. A globular cluster of mass 10°M; and for which
n =4, can survive one period of revolution in a circular orbit at a distance of 320 pc only if
its median radius does not exceed 2.5 pc. Tremaine, Ostriker & Spitzer (1975) and Tremaine
(1976b) have suggested that nuclei of galaxies can be formed from the tidally-disrupted
globular clusters.

In the case of binary galaxies, the disparity between the disruption and coalescence rates
is less. Using a modified form of Spitzer’s (1958) formula, Keenan & Innanen (1975) have
estimated the times of disruption of three galaxies having anomalous surface brightness
and truncated halos, namely M32, NGC 4486B and NGC 5846B (Faber 1973) due to the tidal
effects of their massive companions, namely M31, M87 (Virgo A) and NGC 5846A, respec-
tively. Assuming e = 0.5, Keenan & Innanen obtained the disruption times as 6.9 x 10°,
2x10% and 8.2 x 108yr respectively. With the values of M, M,, Ry, P and e used by Keenan
& Innanen and with (8, that of a polytype n =4, we obtain the disruption times for the
three galaxies as 6.6 x 10°, 1.8 x 10° and 7.8 x 108yr respectively. These values are in close
agreement with those obtained by Keenan & Innanen. Our values for ¢, for these pairs are
1.4x10%,7.2x10%and 1.3 x 10%yr respectively.

It is of interest to estimate 74 and ¢, for the Large Magellanic Cloud due to tidal inter-
action with the Galaxy. If the warp of the outer plane of the Galaxy is interpreted as due to
tidal distortion caused by the Magellanic Clouds, the closest approach of the Magellanic
Clouds to the Galaxy seems to be within about 20 kpc (Toomre 1972). Assuming p = 20 kpc,
e=0.5, M=2x10""M,, M,=2x10"M,, R=Tkpc, n=2, we obtain (AU)p/|U|=0.44,
tq=3.6x%x10°% t.=3.2x10%yr. This implies that in a couple of orbital periods the LMC
would disrupt, merging with the Galaxy in the process. On the other hand if we take the
perigalactic distance of LMC as 30 kpc as suggested by Fujimato & Sofue (1976) we obtain
(AU)p/IUI=0.13, t4=2.3x10"%yr, t.=13x10"yr. In this case the LMC can survive
about seven orbital periods. Tremaine’s (1976) work which assumes an extended massive

Table 4. tq and £ for a globular cluster in the Galaxy.

r M, (AU)p/IUN td te

(kpc) (10'' M) (yr) (y1)

0.32 0.036 16 54 X10° 5.1x10°
0.67 0.110 5.6 2.7X10° 3.9Xx10°
3.53 0.349 1.2X107" 8.9 X10°® 7.3 %10
6.18 0.824 5.2X107? 3.0X10° 3.4 %10"
7.74 1.112 3.6X1072 54Xx10° 6.4X10"
8.01 1.185 3.4X1072 5.7X10° 7.0X10"
10 1.453 2.2x107? 1.1x10'° 14%x10"
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halo for our Galaxy, indicates that LMC will be disrupted by the Galaxy in (2—4)x 10%yr,
increasing the luminosity of the Galaxy by —0.24 mag.

We also make a rough estimate for the tidal effects of the Large Magellanic Cloud on the
Small Magellanic Cloud by assuming p = 10kpc, e = 0.5, M=2x10°M,, M, =2x10"°M,,
R =3kpc, n=2. We obtain (AU)p/|U|=0.28, t4=6.4x10%yr, t,= 4.8 x10%yr. Thus in
the case of the Galaxy—LMC pair as well as the LMC—SMC pair, the coalescence rate is as
important as the disruption rate.

The ratio ¢4/t for distant pairs is given by

fg 6 a M
te 5—nR M,

It can be seen from this equation that the coalescence process is fastest in comparison with
the disruption process if the stellar systems are of the same mass. The relative importance of
coalescence also increases with the degree of central concentration of the stellar systems.

The results for close pairs emphasize the vital role of tidal forces in the dynamical evolu-
tion of contact and overlapping stellar systems. Contact spherical galaxies of equal mass
(r=R,n=n;=4) will coalesce in less than three orbital periods. The disruption rate is six
times slower at this distance. For a separation of the centres equal to 0.5R (spheres
containing 85 per cent of the mass just touching each other), the time of coalescence is less
than a period and the disruption rate is three times slower. As the separation of the pairs
decreases, the disruption rate increases faster relative to the coalescence rate.

White (1977) has carried out N-body simulations of the interaction between pairs of 250-
particle ‘galaxies’ and his results also show that binary galaxies merge very rapidly if their
mass distributions significantly overlap. He finds that for the nearly isothermal (p ~ 7 2)
galaxies studied, the condition rper < 3 Ry, was sufficient for the binary to merge completely
within one initial orbital time of its first close approach, where rpey is the pericentric
distance of the initial orbit and Ry, is the half-mass radius of the initial galaxies. For poly-
tropes of index n = 4, studied by us, 3 R, = 0.4 R. Our results show that the merging time is
equal to half the orbital period at this distance for circular orbits of galaxies. The results of
Van Albeda & Van Gorkom (1977) and Toomre (1977) emphasize the vehement nature of
the dynamical friction in galaxies approaching each other slowly from a great distance. They
also find that the two galaxies soon merge and form a single system.

We have derived the rates of disruption and coalescence from the properties of the stellar
systems at the median radius. The tidal force effects will be greater in outer parts than in
the interior portions. For contact and overlapping pairs of galaxies, the variation of the dis-
ruptive effects over the spatial extent of the galaxies will have important consequences. The
outer envelopes of individual galaxies will lose their identity much sooner and form a
common outer envelope of the pair while the two nuclei will retain their identity for a con-
siderably longer time. Thus galaxies with double nuclei will be formed in the process of the
dynamical evolution of a close pair. The supergiant cD galaxies in rich clusters have exten-
sive envelopes and often exhibit multiplicity of nuclei (Jenner 1974). Merging of galaxies
due to tidal force effects appear to be a likely mechanism for the formation of these galaxies
as pointed out by several authors (Ostriker & Tremaine 1975; White 1976; Richstone 1976;
Marchant & Shapiro 1977).

(4.1)
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