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Optical Colours and Polarization of a Model Reflection Nebula.
II. Silicate and Graphite Grains in a Nebula with the Star in the Rear

G. A. SHAH, Bangalore
Indian Institute of Astrophysics, Koramangala, Bangalore, India

With 5 Figures. (Received 1977 March 21)

The colour difference between the star and the attendant reflection nebula and polarization both caused by silicate and
graphite grains have been given. The properly normalized size distribution function for each type of grains has been con-
‘sidered within homogeneous plane parallel slab-model of the reflection nebula with the star in the rear. Contrary to some
earlier results, it has been possible to show that silicate grains can certainly play a role in the phenomena of reflection
nebulae.

Die durch Silikat- und Graphitteilchen verursachte Farbdifferenz zwischen einem Stern und dem zugehoérigen Reflexions-
nebel sowie die Polarisation werden angegeben. Die geeignet normalisierte Verteilungsfunktion der TeilchengréBen fir
jeden Partikeltyp wird in einem homogenen planparallelen Schichtmodell eines Reflexionsnebels mit dem leuchtanregen-
den Stern im Hintergrund diskutiert. Im Gegensatz zu einigen fritheren Ergebnissen war es moglich nachzuweisen, da@
Silikatteilchen durchaus eine Rolle in den Reflexionsnebeln spielen kénnen.

1. Introduction

In this communication some interesting results on colours and polarization of light from a reflection nebula
with the star in the rear have been considered. The submicron sized scattering grains responsible for reflection nebula
phenomena are taken to be composed of silicate and graphite materials which are often mentioned in connection with
interstellar extinction and polarization and infrared emission and absorption features from certain cosmic objects
(see, for example, DORSCHNER 1976, ZELLNER 1973 and SHAH 1976). Although the geometry of the model resembles
that of GREENBERG and RoARK (1967), we have treated the analytical and numerical parts somewhat independently
as shown earlier by SHAH (1974, hereafter referred to as Paper I). For example, GREENBERG and ROARK (1967) and
GREENBERG and HANNER (1970) do not take into account the finite aperture of the telescope. The new expression
for the exact nebular scattering volume (Paper I) has been used here; this volume element has some application in
the study of X-ray halo around the Crab pulsar, Sco-X1 and other celestial sources. An approximate volume element
is untenable in such study. The size distribution function has alsc been properly normalized so as to render it useful
even for mixtures of grains and polydispersions of grains.

Regarding the silicate grains in reflection nebula, HANNER (1971) has concluded that ‘‘no match to the obser-
ved (U—B) and (B—7V) colours in the Merope Nebula could be found by using the MIE scattering functions for sili-
cates and a simple homogeneous geometric model”’. However, in what follows, it has been shown that it is possible
to match the observed (B—7V) and (U— B) colours to models with size parameter @, = 0.3 wm and polarization with
a, = 0.2 pm both in the case of silicate grains within the reflection nebula with the star in the rear. The difference
in values of 4, for final fits to observations of colours and polarization has been accepted by GREENBERG and HANNER
(1970). However, they have considered only pure ice grains with fixed index of refraction. Note that we normally
refer to the observations of colours and polarization for the Merope reflection nebula (see, for example, ELvius and
HALL 1966, 1967).

2. Theoretical consideration

The model of the reflection nebula consists of a plane-parallel homogeneous slab with the illuminating star
behind the nebula. The nebula is divided into a number of elementary parallel slabs. The new expression (Paper I)
for exact nebular volume element intercepted by the telescope and the elementary slab has been used. The contri-
butions of scattered light towards the observer from all the elementary scattering volumes along the line of sight
(or rather a cone of sight) at a given offset angle have been integrated. This involves double integration because of
the size distribution function for radii of the grains. The emergent intensity is then integrated further over the range
of wavelength corresponding to each filter bandpass. All integrations have been performed using SIMPSON’s rule.
The intensities in various colour bands have been calculated separately for two orthogonal states of polarization in
order to derive the colour excess differences between the star and the nebula as well as the percentage of polarization
as function of offset angle. The extinction within the nebula has been considered on the basis of the observations
(BoGgGEss and BORGMAN 1964); the empirically determined values of extinction, chosen as Ay = 1.86, Ag = 1.66
and 4, = 1.2 mag/pc for U, B and V filter bands, respectively, have been used to evaluate the optical depth for
the light trajectory within the nebula. The models thus computed agree well with the corresponding ones using
the wavelength dependent extinction curve.
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The notation and values of the geometrical parameters are as follows:

= thickness of the nebula = 1.0 pc,

= distance of the illuminating star from the observer = 160 pcs, ;

= perpendicular distanee from the star to the front surface of the nebula = 1.25 pc,
= offset angle,

= semi-vertex angle of the telescope = 0.0015 radian,

= wavelength of light,

= parameter in the size distribution function,

= number of grains per cm3.

The properly normalized size distribution function has the form

1/3 N
dn(a) = 1—5’(—:7 (70" exp [—5(afa)¥] da (1)

Z& PRI

=)

which gives the relative number of grains per cm? in the size range a and a + da.

The detailed description of definitions and notation is given by GREENBERG and ROARK- (1967) and SHAH (1974)
Here we recall the (B—V) and (U— B) colour differences between the star and the nebula as defined in terms of
magnitudes as follows:

’ (B=V)s_y = (B=V)x — (B—V)y,

(U—B)s_y = (U=B)s — (U—B)y .

The exact MiE theory of scattering (MIE 1908, VAN DE HULST 1957, DORSCHNER 1970) has been used throughout
for calculating the scattering phase functions. Single scattering has been assumed to hold. The multiple scattering
is assumed to play no significant role, although it may be important in case of some optically thick reflection nebulae
as, for instance, NGC 7023 (VANYSEK and SOLC 1973). A useful numerical technique for MIE theory of scattering by
smooth spheres has been summarized in the appendix. It has been useful for the calculations of scattering parame-
ters like extinction, scattering and absorption efficiencies, amplitude scattering functions, radiation pressures etc.
for arbitrary size of the sphere and wavelengths of interest in the infrared, optical as well as X-ray astronomies.
The corresponding Fortran computer program has been found to be valuable in practice especially for very odd
values of complex refractive indices.

3. Calculated colours and polarization for graphite and silicate grains

The observations pertaining to colour difference and polarization of the Merope Nebula have been taken from
Ervius and HALL (1967) and ROARK (1966). The dashed curves, representing smooth runs through appropriate
observations, are drawn in some figures for direct comparison with the models. In what follows all the results are
for silicate and graphite grains within the reflection nebula with the star in the rear. The abscissae in all figures re-
present offset (viewing) angle @ in minutes of arc measured from the direction to the star. So far no observations of
U-band polarization as function of @ seem to have been reported. However, the calculated results are included for
future comparison. The complex index of refraction is denoted by m = m’ — im’’. The representative values of m
for silicate are based on work by DORSCHNER (1968, 1971) and HUFFMAN and STAPP (1971). For m of graphite we
refer to TAFT and PHILLIP (1965) and FRIEDEMANN and SCHMIDT (1966).
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Fig. ra. Colour difference in (B—V) between star and nebula  Fig. 1b. Same as in Fig. 1a for graphite with m = 2.46 — 1.45 i.
for dirty silicate grains with refraction index m = 1.66 — o.05i,  The size parameter @y = 0.1 um, 0.2 ym and 0.3 um corresponds
size parameter @, = 0.2 pm, 0.3 um, and 0.4 pm are shown in to the curves 1, 2 and 3, respectively.

the curves 1, 2 and 3, respect vely.
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Fig. 2a. Same as in Fig. 1a, except that the ordinate represents Fig. 2b. Same as in Fig. 1b, except that the ordinate represents
the colour difference in (U— B) between star and nebula. the colour difference in (U — B) between star and nebula.

The results on colour differences between the star and the nebula, viz. (B—V)s_y and (U—B)«_y expressed
in magnitudes, are shown in Figures 1 and 2, respectively. The figures designated ‘“a” arefor silicate (# = 1.66—0.05i)
and those designated ‘b’ are for graphite (m = 2.46—1.45i). In the case of silicate in Figures 1a and 2a, the likely
size parameter giving colours nearest to the observations turns out to be @, = 0.4 um. Therefore, the conclusion
of HANNER (1971) mentioned earlier in the introduction is unwarranted. For graphite also, the (B—V) and (U—B)
colour differences shown in Figures 1b and 2b favour a value of 4, slightly larger than 0.3 pwm. The crossover between
observational and theoretical curves is though disconcerting. In paper I, a model calculation with m = 1.3—0.1i
has been shown to fit observations of colours without such crossover. However, one cannot exclude the silicate and
graphite grains at least as a small admixture because some other unforeseen considerations may apply for certain
reflection nebulae. For instance, looking at the curves 3 for silicate and graphite, one can say that the observations
show steeper slope for small @ compared to the theoretical models. This holds for dielectric grains as well. It may be
due to the presence of a predominantly small sized particle distribution in the vicinity of the star anda larger sized
particle distribution in regions away from the star. Therefore, the inner regions where one may find very effective
scatterers of blue light, will have positive colours increasing faster as one approaches the star. However, in the outer
regions, one will have not only less efficient colour selective scatterers but comparatively larger grains also. The latter
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Fig. 3a. Same as in Fig. 1a, but the ordinate represents the Fig. 3b. Same as in Fig. 1b, but the ordinate represents the
polarization Py. polarization Py.
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Fig. 4a. Same as in Fig. 1a, but the ordinate represents the Fig. 4b. Same as in Fig. 1b, but the ordinate represents the
polarization Ppg. polarization Ppg.
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Fig. 5a. Same as in Fig. 1a, but the ordinate represents the Fig. 5b. Same as in Fig. 1b, but the ordinate represents the
polarization Py. polarization Py.

would act as neutral scatterers. They may also provide thermal emission of radiation mainly in the infrared and far
infrared wavelength range. This will cause the slope to slow down and thus produce slowly varying negative colours.
This implies that the nebula will appear redder compared to the star as the offset angle becomes sufficiently large
assuming, of course, that the grains are present there. The essential point mentioned here is that the particle size
distribution may have radial dependence. As one moves away from the neigh-bourhood of the star, the effective size
of the grains may attain a certain maximum value in the intermediate region and farther out one may again expect
slowly decreasing effective sizes. The latter is important in view of the observational fact that the polarization vec-
tors in the Merope nebula tend to be parallel to the direction of the filaments. It may be noted that the small sized
particles can be aligned with ease. These considerations need to be scrutinized in future calculations including non-
spherical particles with possible alignment. P

The results on polarization by silicate and graphite grains are shown in Figures 3a and b, respectively, for the
visual band, V. Similarly, Figures 4a, b and 5a, b are for B and U colour bands, respectively. GREENBERG and HAN-
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NER (1970) state that ‘“MIE theory predicts large negative polarization for submicron silicate spheres”. Their con-
clusion is not necessarily true in view of the results set out in Figures 3a, 4a and 5a in the case of silicate grains.
In particular, for @, =2 0.2 um, polarization is positive for all offset angles. In the case of silicate grains with 4, =
0.2 pm, the polarization very nearly match with the observations (dashed curves) up to @=r1ominutes of arc. But as
mentioned above the fit to colours is favoured by the size parameter @,=o0.4.p.m. The graphite grains give far too high
a polarization. However, one may wonder if the same grains which produce the colour difference between the star
and associated reflection nebula are responsible for polarization as well. The question is: can one accept different
values of a, for fitting the models to the observations of colours and polarization ? The answer lies partly in under-
standing the role of possible orientation mechanism in the nebula. Another consideration should be the contribution
of nonselective scatterers of large sizes which will effectively dilute the degree of polarization produced by a hitherto
unknown mixture of interstellar grains in the reflection nebula.

4. Conclusion

We propose to consider other geometric configurations with the star within the nebula and the star in the front.
These studies are necessary for drawing reliable conclusions regarding the nature of grains and the geometry involv-
ed in various reflection nebulae. Here we summarize in Table 1 the general trends of the variation of colour diffe-
rence between the star and the nebula as well as polarization as function of the real and imaginary parts of the index
of refraction and the size distribution parameter a,. This table is compiled on the basis of model calculations on di-
electric (Paper I), silicate and graphite grains.

Table 1. General trends of nebular colours and polarization

Calculated Effect of increase Effect of increase Effect of increase
quantity in m’ in m' in a,
(B — V)s—nN ' v 4
(U — Bys—n ¥ ! v
Py v t L
Pp ) i }**
Py } 1 | **

** At cross-over point this trend is reversed.
t+ = Increase, | = Decrease

Appendix. Numerical technique for M1k theory of scattering of electromagnetic waves by a sphere

The usual expression for the MIE coefficients (see, for example, MIE 1908, DEBYE 1909, VAN DE HULST 1957,
DORSCHNER 1970) can be given the followmg representation:

_ A4,z —mB,(x)
A G — L) w
—_ A6 — Balw)
» T A (G ) — Ho) )
where
Spn—1(2) n
A7) = S@ (3)
sn—x
B,(x) = s,,(g) , @
G =x +i 570, s
Cu
Hy0) = B + 170 - )
The following notation has been used:
size-to-wavelength parameter,
_2na
X = 7 7)
index of refraction,
m=m' — im”’ ’ (8)
z=mx, (9)

radius of the sphere a,
wavelength of incident and scattered wave 4.

23%
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The prime denotes the derivative with respect to the argument concerned. But primes on m, viz. m’ and m”,
represent real and imaginary parts of refractive index.

S,.(x) and C,(x) are the RiccAaTI-BESSEL functions of first kind and second kind, respectively. Their definitions
and recursion relations may be found in standard text books (see, for example, WATSON 1964).

The procedure of evaluating higher integral orders of BesseL functions of the first kind and real argument is
discussed by BROUWER and CLEMENCE (1961). It is essentially based on continued fraction applied to downward
recursion. It was extended by SHAH (1967) to derive the higher integral order BESSEL functions with complex argu-
ment in connection with the scattering by infinite cylinder at oblique incidence. We present here a procedure for
simultaneous numerical evaluation of the RiccaTI-BESSEL function of the first kind and its logarithmic derivative
in a single downward recursion.

It may be mentioned that 4,(z) = S,(2)/S,(2) is a logarithmic derivative first introduced by INFELD (1947).
ADEN (1951) used this definition and showed a method of computing it by upward recursion which is not stable for
n > |2|. KATTAWAR and Prass (1967) have employed almost the same numerical scheme of ADEN with the difference
that they apply downward recursion on one log derivative. However, this does not permit one to evaluate the neces-
sary RiccATI-BESSEL function S,(z) simultaneously. Another downward recursion would consume extra computer
time. Also, they have to perform an additional upward recursion on second log derivative [G,(x) in their notation]
which is a composite function of S,(¥) and C,(x) both. However, it has been known that for reliable and accurate
evaluation of the latter functions, one should perform downward recursion on S,(x) and an upward one on C,(x).
Therefore, the computation of the composite function of KATTAWAR and Prass by upward recursion may run into
error propagation trouble as some stage of computation especially for large # and # in the geometrical optics region.
In the present procedure as shown below, the recursions on such composite functions are not required at all.

It is convenient to define the coefficients P, and Q,, such that

Sa(2)
Sn—1(2)

- From standard recursion relation one can obtain

= Pn + IQn . (IO)

Su2)  _2nm—1  S,_.(2)
Soxle) 72 Sead) (xx)
Using equation (10), this reduced to
(Ppz + iQn—i]7t = [(2n — 1)[2] — [P, + i0,] (12)
Let yo=wm', Yp=—xm’, y=y1+yi, 2=y1+ .
Define:
%y = [yl(zn - I)/y] - Pn ’ (13)
ﬂn = [yZ(Zn - I)/y] + Qn . (I4)
Then one can derive the following recursion relations for the complex.argument:
Px = (03 + 63) | (x5)
Onx = Buf(otn + B3) - (16)
Similarly if .
R, = S,(x)Sn—:(x) (17)
the recursion relation for real argument turns out to be
R,_: = x/[(z2n — 1) — xR,] . (18

\ .

Initially # is chosen sufficiently large, say IV, so that Py, Qy and Ry can be set equal to zeroin the first instance. The
equations (13), (14), (5), (16) and (18) are used to carry the downward recursions for the complex argument z and the
real argument x, respectively. This supplies (Py, Qy) and Ry for all orders # = N—1, N—2, ..., 3, 2, I by successive
application of the procedure. The initial guess of IV, however, may be varied and experimented upon to derive rela-
ted BESSEL functions, the absolute value of the argument being maintained at the largest value anticipated in prac-
tice. N is raised successively until the desired accuracy isachieved. This happens when N higher than a certain value
does not affect the accuracy anymore. As a by-product of the coefficients P,, Q,, and R, and initial knowledge of
So(z) and Sy(x), one can evaluate all higher orders of S,(z) and S,(x) by using the equations (10) and (17), respectively.
Furthermore, the logarithmic derivatives 4,(z) and B,(r) in equations (3) and (4), respectively, can be expressed
directly in terms of the coefficients P,, Q, and R, as follows:

An(z) = [Pn + iQn]_l - (n/z) ’ _ (19)
B,(x) = (1/R,) — (n/x) . (20)

Next it remains to compute C,(x) and C,(x) in order to obtain the quantities G,(r) and H,(r) in equati-
ons (5) and (6), respectively. The usual recourse to upward recursion as in the case of NEUMANN functions has been
found appropriate. However, both of these functions can be calculated simultaneously in one upward recursion. The
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necessary recursion relations, after division by C,_, are
ColCrx = [(2n — 1)[x] — CoeafCax
CalCrs = T — (1)) (CofCrs) -

Cw = Cai/Cy,

C;l = [(2” - I)/x] - CW—I 3
CalCp =1 — (n]x) (&) -

Initially the functions C, and C; are calculated from their definitions, viz.

Now by defining

equations (21) and (22) reduce to

Co(x) = cos x,

cos ¥ | .
Ci(x) = p + sinx,

325

to obtain {;. Now {,, {5 ... {y can be calculated successively by equation (24). C,, Cy'... Cy can be obtained from equa-
tion (23). Then Cj, C,, ..., Cy are evaluated from equation (25). Having done this and recalling that S,(x) was ob-
tained as by-product earlier from equation (17), one can easily compute G,(x) and H,(x). This completes the method
of computing the MIE coefficients a, and b, essential for the calculations of all the scattering parameters connected

with the MIE theory.
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