N&SS. I177 363K

R

rTI8BA

DYNAMICAL FRICTION AND THE ESCAPE OF A COMPACT
SUPERMASSIVE OBJECT SHOT FROM THE CENTER OF A
GALAXY

RAMESH CHANDER KAPOOR

Indian Institute of Astrophysics, Bangalore, India

(Received 16 July, 1985)

Abstract. A numerical study has been made of the motion of a compact object consisting of a supermassive
black hole with a dense cluster of stars around through a galaxy which has recoiled from the center of the
latter as a result of anisotropic emission of gravitational radiation or asymmetrical plasma emission. We
find that the effect of dynamical friction on its motion through the galaxy (mass ~ 10'! M) estimated using
the impulsive approximation technique, is minimal for an object mass =~ 10° M and for recoil taking place
at a velocity larger than that of escape. A velocity ~ 1.1 times the escape velocity is needed for the object
to escape from the galaxy, whereas for velocities of recoil less than this critical velocity, damped oscillatory
motion ensures. The energy exchange of the object with the galaxy is not large enough to cause appreciable
change in the internal energy of the latter.

1. Introduction

Various arguments suggest that supermassive black holes should exist in the nuclei of
galaxies that have undergone a violent active phase in their life (see Rees, 1984, for a
review). The possibility of displacement or ejection of such a black hole from the galaxy’s
centre has been suggested by many workers (see Kapoor, 1985a, for references). Such
a possibility is relevant to models of quasars which are thought to be extreme examples
of active galactic nuclei, and jets, because there are several ways in which a supermassive
black hole could acquire a high velocity (via gravitational wave recoil, one-sided jets,
etc.). One then would like to know whether they then escape from the galaxy, or undergo
damped oscillatory motion even if ejected at velocities large compared to that of escape,
or are placed in a spiralling orbit, to eventually settle down in the center of the galaxy.

In previous papers (Kapoor, 1985a, b) we have dealt with one aspect of the problem,
namely the ejection of a supermassive black hole (~10° M) at velocities comparable
to that of escape at the center of the ejecting galaxy (mass ~ 10'! M) and its tidal
interaction with the latter using the impulsive approximation technique as developed by
Alladin (1965) for the study of interpenetrating collisions of galaxies. In this study, the
system was idealized as a point mass interacting with the galaxy. It is, however, likely
that the black hole would be surrounded by a compact cluster of a large number of stars,
provided a high density cusp in the galactic nucleus has developed before the ejecting
mechanism could become operative to displace the object from the center of the galaxy.
In this paper, we present results of a numerical study of the tidal interaction which
incorporates the structural details of the stellar system around the black hole. These
calculations might have bearing on a number of observations where movement or
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displacement of the central engine is suggested, such as those relating to 3C 84
(Readhead et al., 1983), Mkn 335 (Fricke et al., 1983) and Mkn 205-NGC 4319 (Sulen-
tic, 1983).

2. Tidal Interaction Between the Object and the Galaxy

Most of the hypotheses proposing ejection of the supermassive central component of
the galaxy achieve this by requiring conservation of linear momentum. Given this, the
tidal interaction between the ejecting galaxy and the ejected object can be studied using
the impulsive approximation. Though reasonable, the limitation of the approximation
restricts us to velocities of ejection (¥,) of the order of or more than the velocity of
escape at the centre of the galaxy V. (0). Large velocities of interest here would be
possible only in an extreme situation. '

The galaxy is represented by a Plummer sphere with a density distribution of the form

227502
ny(r) = ngy |:1 + ocz:l ) (1)

where o; = (3M,/4nmn,) is the scale length of the system. The potential function for
the galaxy is

GM r2\ 1?2
¢i(r) = - a 1<1 +;2) ; )
1 1
with an internal energy
3n GM?
. (3)
32«

It is necessary to specify the density distribution in the object, i.e., in the star system
around the black hole. A reasonable representation for the density distribution in the
system is an isothermal distribution of stars, each of mass m, which is loaded with a
Newtonian singularity of mass M, (Huntley and Saslaw, 1975) and which we truncate
at the accretion radius r, of the black hole

p(r) = dexp — [M:l ,

rr.

min (4)
_ 2GM,

o
In Equation (4), A is the central density; a,, the scale length; and r,_ . is a certain inner
radius of the stellar distribution where for r < r, ,, the distribution of stellar velocities

is highly anisotropic and not represented by a scalar pressure. For r > r_, the velocities
become more nearly isotropic and are closer to virial equilibrium. Following Huntley

r... <r<r

min a
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and Saslaw (1975), r.;, is taken as a radius that encloses 1000 stars — i.e.,

1/3
_— (1000 m) - )
(4n/3)A
The parameter f is given by
- ©)
4rpod

such that fo,/r_;, = 3 for loaded isothermal spheres. The mass distribution of the
system is then

r

M) =M, + 4rn J r’o(r)dr. @)

The potential function corresponding to this distribution is given

r r

A AG
o, () = — [GMz + A6 j P efelrdr + — j refelr dr:l 8)
roooar o3
ifr<r, and
GM,

$(r) = - €

if r = r,. The quantity 4 = 4nlo3 e ~#*/min_ The internal energy of the object can be
written as

1 a
—U, = Ugy + U, = Myc? + 5 j ¢,(r) dM, ~ M, c*. (10)

"min

In what follows, rotation of the system is neglected and motion of the object along
only the z axis is assumed. When the object is at a distance z from the center of the
galaxy, their mutual interaction energy is given by

W(z) = j o (r)dM(r"), (1)

where r' = (r"? + z* — 2zr” cos 0”)"* and ¢,(r') represents the potential due to the
galaxy at a star at P, a distance r’ from its center, and dM, is the mass element of the
object at the point (Figure 1). In spherical polar coordinates r”, 8", ¢" referring to the
object, we have

W(z) = - GM My(2), (12)
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Fig. 1. This shows the instantaneous position r = z of the object with respect to the center of the galaxy,
and that of the star P.

where the function y(z) is written as

x(z) = ( 2 : 2)1/2 + 3:1 j r' efelr A(r", z) dr” (13)

and
ANr',2) =" +22+2r"z+ oa2)? -~ (r"? + 22 = 2r'z + a)*?. (14)

When z = 0, we have r' = r” and the form of the function in Equation (12) is

ra
1 4 f 2 ool

x(0)=—+ —
a,  3M, (r"? + af)?

Ymin

dr” . (15)

In Figure 2, we have plotted the interaction energy vs separation which just describes
the behaviour of the function in Equation (13).

If we refer to Figure 1 where we have r"=r" -r, r=z and
r"=(x'?+y'?+ (z' — 2)*)"?, the force per unit mass on P in the galaxy due to the
attraction of the object can be written as

"

f.=V"¢,(r"). (16)
HCDCC, GM.(r"
foonw = = D () (17a)
r r’<r,
. GM, _
- E) (17b)

etc.
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z/0

Fig. 2. This depicts the variation in the interaction energy with separation z.

The force per unit mass f; on the galaxy due to the attraction of the object is

f, = L 9w, (18)
M

1

The tidal force per unit mass of the star is, therefore,
fr=1fg-fg; (19)

so that, in the impulsive approximation, the velocity increment of a galactic star will be

AV() = J £, dr. (20)

If the stars in the galaxy (as well as those in the system around the black hole) have
random motion, the quantity (AV)? can be taken to be a measure of the mean change
in the kinetic energy { AT,(r")) of a specified number of galactic stars located on a shell
of radius r'. In the impulsive approximation, the change in the kinetic energy equals that
in the binding energy U, i.e. AT = AU. Therefore, a summation over the mass of the
galaxy yields

AU, (2) = J‘ (AT (7))

0
R, being the dimension of the galaxy.

dM

Ldr; 21)
dr’ (
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Next we must set up a similar formalism for the object in motion. Here

£ =V () - Ail W), 22)

so that (AV)? can be estimated in this case too. Referring to Equation (7), we have the
change in the binding energy of the star system around the black hole as

A .
AU,(2) = ?J (AT,(r")) r'2 e dr” (23)

%
where (AT,(r")) refers to the mean change in the kinetic energy of a specified number
of stars located on a shell of radius " around the black hole. The first term in
Equation (7) is absent in the last equation here since the black hole is not tidally affected
by the galaxy. The velocity of the object is given as

2 12 MM,
Vi)=V(E) =|- E(Z—Wz):l , St il S 24)
)=V L{ ) - W)} p M.+ M
where E(z), the translational energy is given as
E(z) = E; - (AU\(2) + AU,(2)),  E;=30V5 + W(0). (25)

In the impulsive approximation the space derivative of the translational energy is related
to deceleration due to the dynamical friction f, , in the following manner

1 dE
~fpa=— — 26
Jo. . (26)

We define the escape velocity as
WV () + W) =0. 27)

A convenient way of demonstrating the dynamical frictional effect on the velocity of the
object is through a velocity function

Ve® _(, E@\'?
F(z) = S (1 W(Z)) . (282)

If F(z) < 1for 0 < z < R, the object escapes (successful recoil), otherwise it falls back;
reversal in the motion occurs when F(z) — oo (failed recoil). For comparison, we use
Equation (24) to define the velocity function with dynamical friction neglected - i.e.,
E(z) =E;:

Fly=—22 (28b)

Ve
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3. Results and Discussion

We have carried out computations to estimate the changes in the internal energies of
the galaxy and the star system around the black hole AU, and AU, as a function of their
separation for various velocities of ejection. The main aim is to see the effect of the force
of dynamical friction on the motion of the object ejected from the center of the galaxy
at a velocity close to that of escape. The results show a minor quantitative difference
from the case of a point mass-galaxy interaction for similar parameters (Kapoor,
1985a, b).

The galaxy as well as the star system around the black hole are divided into twenty
shells characterized by radii a4’ and a”, respectively. For the galaxy
a0, <a’ < 20a, = R,. For the object r,,,;, <a” <r,. Each shell is defined by fourteen
stars at specified locations. Taking 280 stars for each system, we believe that the galaxy
and the object are fairly well approximated. The masses taken are M, = 10'' M,
M, =10° My, M, = 1.1 x 10° M. Measuring the velocity in units of 1000 km s ~ !, the
calculations for V(z), AU,(z), and AU,(z) have been performed for A = 10° pc~?3,
a; = 2.5kpe, and ¥, = 0.62, 0.65, 0.70, and 0.80. Note that V___(0) = 0.59.

Starting with z = 0.050,, we set AU, = AU, = 0 and calculate AV, ., AV, and AV,
for all the stars on a shell for a given value of V,,. This gives us (AT,(a’)) in general.
On integration over the mass of the galaxy, Equation (21) then evaluates AU,(z). In a
similar manner, we compute AU,(z). With these values on hand, velocity V(z) of the
object as given by Equation (24) is corrected. An iteration is performed till converged
values of AU, (z) and AU,(z) within a specified tolerance factor (= 10~ 3) are obtained.
The process is repeated by changing z to trace out the trajectory of the object through
the galaxy for various velocities of ejection.

In Figure 3, velocity of the object, corrected for dynamical friction is plotted against
z. For the sake of comparison we have plotted V' (z) also (dotted lines). The effect of
dynamical friction is found to be slightly larger than in the case of a point mass-galaxy
interaction although, in both the cases, it decreases as the ejection velocity is increased.

..+t 1 4+ 1 & 1 1
2 4 6 8 10 12 14 16 18

Z/C(1

Fig. 3. This shows the decrease in velocity of the object with distance for various velocities of ejection.
Solid lines take into account the dynamical friction while dotted lines do not.
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Fig. 4. This shows the behaviour of the velocity function as a function of separation z for various velocities
of ejection. Upward bend in the ¥, = 0.62 curve implies a failed recoil. Solid lines take into account the
dynamical friction but dotted lines do not.

For V,, = 0.80, the dotted and the solid lines overlap. The bar on the ¥V, = 0.62 curves
implies the iterations becoming crude beyond this point. A general inference from the
calculations is that only for ejections with a velocity V, = V_,, ~ 1.1 V_,(0) do we have
a successful recoil. A recoil taking place at V,, = V,,.(0) is arrested. This is due to the
effect of dynamical friction which is more clearly depicted by the behaviour of the
Vo = 0.62 curves in Figure 4 for the velocity function vs z. Here, the upward bending
of the curve above the F(z) = 1 line implies reversal of motion to ensue. Dotted lines
are F'(z) curves. For V,, = 0.80, the curves overlap here also.

75+
mSO“‘
- o
o ]
<1$;
"25,—
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0 2 4 6 8 10 12 14 16 18
z/Qy

Fig. 5. This shows change in the internal energy of the galaxy for various velocities of ejection as a result
of tidal interaction with the ejected object.
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Fig. 6. This shows the change in the internal energy of the object for various velocities of ejection as a result
of tidal interaction.

Starting from zero at the center, the small values of AU, and AU, which increase in
general as V(z) gets smaller and smaller and tend to blow up for ¥V, < V_,, are an

crit

important feature of these calculations. This is shown in Figures 5 and 6. It is to be noted

AU, ,

AU,

Vo=0.80

N SN PO NN (N SN N B
0 2 4 6 8 1012 14 16 18

z/Qq

Fig. 7. This shows the behaviour of ratio of internal energy increments for various velocities of ejection
with the increasing separation.
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that AU, /U, < 1 and AU, /U, < 1 for all the velocities of ejection considered here. The
energy exchange with the galaxy thus is not large enough to disrupt the galaxy. In
contrast, the star system around the black hole confined within ~ r, will always escape
pruning. The general behaviour of AU, /AU, with z is interesting and is depicted in
Figure 7 for different velocities of ejection. The curves tend to exceed unity for
Vo < 0.65. The general inference is that, only for V, <V, it is less massive of the
systems that is tidally effected more. For ¥V, > V_,, the reverse holds.

In Figure 8, we have plotted the force of dynamical friction vs z for various values
of V,. It is zero to start with [AU,(0) = AU,(0) = 0], increasing fast initially and then
it dwindles if ¥V, > V. In fact, the larger the velocity ¥, of ejection, the smaller is —f},.

3.5
300 —
31
K=1.41x10 dynes
2.5
ufD
—K— 2.0 -
Vo=0.62

1.5

0 4 8 12 16
Z/C(1

Fig. 8. The general effect of the force of dynamical friction on the motion of the object is shown as its
distance varies from the center of the galaxy, for various velocities of ejection.
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Only when V, < V., does it blow up substantially. Here we wish to point out that

choosing a smaller value for «, upscales V,,.(0) and W(z). Still the condition V, 2 V,

crit
holds for the recoil to be successful. The quantities AU, /U, and AU, /U, likewise remain
small.
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