INMILATION WITH MASSIVE SPIN-2Z FIELD IN CURVED

SPACE-TIME

C. Sivaram and Venzo de Sabbata

World Laboratory, Lausanne - Switzerland
Institute of Astrophysics, Bangalore - India
Dipartimento di Fisica, Universita di Ferrara-Italy

1. Introduction

The hot big bang model of Cosmology 1s generally
accepted as providing a correct description of the evolution
of the universe. It naturally accounts £for the isotropic
cosmic microwave black-body background 3°K radiation.
Moreover it gives a good quantitative estimate of the
amounts of light elements such as helium and deuterium
synthesized several seconds after the expansion started.
These estimates involve very little input of physics with no
additional assumptions and agree quantitatively with the
actually observed abundances of these 1light elements in
stars and in Interstellar matter. However when one
extrapolate the model to early epochs one encounters rather
puzzling aspects regarding the 1initial conditions. For
instance we have to do with the expansion proceeding at a
c:it = 8nGp/3) to a wvery high degree of
precision at the early epochs implying that the universe was
close to critical density (p;) to wvery high degree of

critical rate (H

precision (i.e. to within one part in 10’6 at epoch of
nucleosynthesis and to one part in 10°® at the Planck epoch

of t 10 *®s! To make this more precise, we note that the
observations indicate that the present value of Q@ = FVFQ

(which measures ratio of energy density of universe to the
critical energy density) though not known with great
precision lies in the range 0.01 =< Q =< few units The
luminous matter in the universe would indicate 2 2 0.1 + 0.3
Again from the uncertainties in the deceleration parameter

defined as g, = -(R/R)H® = /2, one could restrict Q to at
most a few times unity. From the Robertson-Walker equation:

K/R’H® = p/(32°/87G) - 1 (1)
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one can write 7 in a time dependent form:

Q = 1/(1 - y(t) ) (2)

where y(t) = (K/R®)/(8rGp/3).

1 is not constant but varies with time since y(t) R(t)"
{n = 1 for matter dominated universe and n = 2 for radiation
domination). Equation (2) implies that at epoch of

nucleosynthesis, value of y (=yN) was y. < 107" which means
Q. = 1+ 0(5107"°) and at Planck epoch y, < 107 so

that consequently QPl =1 + 0(10_60). If this ratio was not

infinitesimally small at early epochs, the wuniverse would
have recollapsed long ago (for K > 0) or began a coasting
phase (K < 0) with R «x t. This extreme smallness of the
ratio y if required as an initial condition is very strange,

as in other words it would mean that the kinetic term (ﬁ/R)z
and the potential term (8nGp/3) in the R-W equation balanced
each other to arbitrarily high degree of precision (one part

in 10°° at Planck epoch!) at early epochs. It is as if from
very early epochs on, the ratio of curvature term to density
term was extremely small (see eq.(2) ), that is the universe
began as extremely flat (with  arbitrarily close to one)
which is a very special initial condition.

Another problem is the horizon problem. As 1is evident
from the microwave background the universe on the 1largest
scales is extremely hgmogeneous and 1isotropic (to Dbetter
than one part in 10). However, as is known, standard
cosmology has particle horizons. When E?tter and radiation
last interacted vigourously (at t =2 105, and Temperature
>~ 1/3 ev), what was to become the presently observable
universe was comprised of 2~ 10  causally distinct regions.
The particlg horizon at decoupling only subtends an angle of
about (1/2) on the sky today; then how is that the
microwave background temperature is so uniform on angular
scales >> (1/2)° ? At early epochs the number of causally
distinct regions keeps increasing. For instance one second
after the big bang the size of the universe currently

observable was = 101°cm. So there were about (10“/3-1010)3

~ 10% causally distinct regions not communicating with each

other. As the universe expanded at earliest epochs as e

whereas the horizon expands with light velocity as c¢t, the

N - . ~ 1/2
number of incommunicable regions t7%/ct =+ ® as t = 0.
With so many causally distinct regions in the early universe
why is the present universe so homogeneous and isotropic all
over?

Then we have the magnetic monopole problem. There
should have been a glut of monopoles produced with densities
several orders larger than the critical denslty at the Guts
spontaneous symmetry breaking (GSSB) phase transition. Then
why don't we see any monopoles?

The so called inflationary universe paradigm [1],[2]
was invented to take care of the above problems confronting
big bang cosmology at its earliest epochs. This invokes a
vacuum dominated exponential expansion rate for the universe
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X 2 (1,2 2
at an early phase with Hnﬁlx (8nV(0)/3MPL) = MG/MPL, V(o)

assumed as = M; , where MG is the mass scale of scalar
field which drives the expansion. While HI is constant, R

grows as exp(Ht). So a typical homogeneous region can

expand physically by a factor of e:uo’ to encompass the

whole of the observed universe, therefore taking care of the
homogeneous or horizon problem, i.e. a single causally
connected reglon can expand exponentially to give rise to
the observed universe. Such an expansion also accounts for
the curvature term becoming vanishingly small after
inflation, i.e. the y term as defined in eg.(2) tends to
zero after inflation and the inflationary scenario predicts

a 0 =% 1.0 F 0(10°™Y). So that @ x1 to a very high
degree of precision. Again the inflationary expansion would
have exponentially diluted away any 1large relic monopole
density thus removing the monopole problem. The additional
bonus is that quantum fluctuations of the scalar field (2]
would give rise to scale-invariant perturbations which seem
to be required to account for the formation of 1large scale
hierarchy of structure 1in the universe. However the

amplitude (6p/p)l of the fluctuations seems too large = 10?

in most scenarios.

0f course one could have alternatives to the
conventional inflaticnary scenarios requiring massive scalar
fields with wvery 'flat' potential wells. One such
alternative could be modiflcation of general relativity at
the Planck scale. The monopole and flatness problems can be
solved by producing large amounts of entropy. Again if

during an early epoch (t = 10-‘35), R, the scale factor,
increased as rapidly as or more rapidly than t (for egq.
t* % or more) then d“ (horizon distance) = w, eliminating
horizon problem. One such possibility of mocdification is to
consider the Weyl type lagrangian for high energy gravity at

the Planck scale [3]. This would be of type LH ~ ac® BRZ,

i.e. quadratic in the curvatures C and R with dimensionless
constants « and /? (appropriate for a renormalizable theory
of gravity in contrast to the dimensional Newtonian constant
for the Einstein non-renormalizable gravity). The field

eguations would be of fourth order i.e. of form a 7 =

kmé&?(r) with a solution for the potential rising with r as
% = const r = ar. The corresponding solution for the scale

factor would be of type R = at® rather than the usual R =

const t*? type of solution. As R now lncreases faster than

t, the horizon problem is eliminated. Again the £flatness
problem is also solved in this theory as guadratic curvature
lagrangians of above type are known to have «classical
solutions with zero total energy, whlch means a XK = 0
cosmological model, i.e. complete equality of kinetic and
potential energy terms in the R-W expansion [3]. Similar
situation holds for 1lagrangians with quadratic torsion
terms, so it is possible to solve the flatness and horizon
problems in the framework of such models [4]. Moreover if we
consider lagrangians of the type
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~ -2 py 2
L = yok R + a vaR # R ,
their solutions are of type [5]

-m r -m r

kM kZM e M2 kKZ2M e ™Mo

8nyr | 6ny T T A2my T

1,2 2.-1s2 1/2 2\ 2
with m = 7"7“(ak®)77% m_ =¥ [2 (32 - a)k ] ,

i.e. their particle spectrum also contains massive tensor
particles with mass m, and massive scalar particles with
mass m_. Massive scalar particles are contained in theories

with lagrangians of type L = k°R - 3 R%. These are
precisely of the type used by Starcobinsky (61 for
inflationary models. In general these models are equivalent
to those using massive scalar £fields, there being a general
transformation due to Whit [7] 1linking the two types of
theories. Also the massive spin-2 field 1in the above
relation for V, enters with an opposite sign (for energy) to
that for the massive scalar field. This raises the
possibility of having a =zero energy momentum tensor for
appropriate choice of constants with such a tensor naturally
giving rise to a de Sitter solution. This will be elaborated
in the next section. Again a 1lagrangian with non-minimal
@
e

coupling R%Z can be transformed to Einstein's theory with
two scalar fields. We can also consider a general lagrangian
L(R) with an arbitrary £function of R [8]. Then scale
invariant solutions gLj give rise to a one-parameter family

{ezag , oo = const) of homothetically equivalent solutions.

v}
For lagrangian of type L = rR" , m # 0 , the expanding

solution R(t) = t? is an attractor solution for L = R*™? in

the set of spatially flat Friedmann models. For arbitrary m
we analogously have an attractor R(t) ~ tn,
with n = -(m-1)(2m-1)/(m-2); when n =» wand m = 2, this
gives the usual attractor property of de Sitter space-time.

2. Massless and massive spin-2 fields in curxved space-time

The massless spin-2 field can be described by a rank-4

tensor & which being a Weyl tensor [91, s=satisfies
Hvoo
a8 g"YP° = ¢ (1)
u
and
ak§pvp0 + ayivxpo avﬁxppa = 0 (2)
If the potential wyv = va is defined as
= @ -8 (3)
Py u¥op v¥up
we have
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a - 8 - a =
ov,, t 8w upwﬁ upwﬁ 0 (4)
(w = wz).

The gauge transformations

W > Y - a8 - a9

[T pw [Tag vop
leaves & unchanged. The Lorentz gauge od = 0,
prpe M
reduces to
- . v - 1 L =
aw,, °0; o ¥ (1/2)8%% =0 (5)

The gauge conditions eliminate the spin-one and spin-zero
components.

The appropriate lagrangianfor a massive spin-2 field in
flat space-time is (mass m,):

Leg,,) = /2, [P 4 el M) e

of3

where 1.:7"*“)0“',3 is the massless spin-2 inverse propagator (101
pHYel (gyvgaﬁ . gp(agﬁ)v)n - g““a(“oﬁ’
gaﬁa(yau) + ga(#av)dﬁ ' gﬁ(yav)aa . (1)

L

The field equation for fp is

TTE 1
PuLaﬁ . m: (”yu”aﬁ ) n#(unﬁ)v) Jfaﬁ - 0 (8)
The trace gives
[ 2006 - 0% ¢+ 3 m? 7% ]fuﬁ - 0
The divergence lis
mj(ﬁwfi—n“wfﬂ)gﬁ = 0 (9)

An alternative form is (massive spin-2 field) [9]:

nf -o0af -88f +a0f+qg (8dfFP - of)
v Hoye vy uow HY Ty e
z
- m, (f”v - gpvf) = 0 (10)
the divergence condition is: s = @& f
ru H }
and the trace conditions on £: f = 0 ; arffﬂ =0
then (10) becomes
of - m f = 0 (12)

These constraints can be generalized to curved space time as:
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f = 0 £ 0 13
rey ’ (13)
which reduce to 67fry = 0 and £ = 0 in flat
space-time.
The most general covariant field equation for fyv in

curved space-time can be written:

uf - R FY - R £+ 2R P+ n P = 0 (14)
p py v vy Hrve prre

We can try to write in the form

of  +J P = g (15)
778 HYp

(as an appropriate generalization of eg.(12) ), Where we
define (analogous to Weyl tensor for massless case above):

= - 2 + + R t
Jyvrp Hpvrp (17 )(guerp g#per o e gvaur)

2R (16)
HYY P

Tensors J and H have the same symmetries. In fact:

v e + v = R £ + R £ - 2R £ (17)
yoH v vy v Hy v vy uyve

imposed with corresponding constraints (in curved space):

7'f = 0 or £ = 0 (18)
¥ Yy
The divergence equation now read (in curved space,
analogue to eqg.(9) ):
oWE -R V°E + (YR _-9R_ -9VR +9% yETP
Yo ¥H e Hre v pu P rH oy o
+H 7 £7F (19)
pvy e

Again we have the following postulated relations:

(VR -9Y R -9R + 94 £7° = G f (20)
U ore ¥ P e rH oy o u
H vOEYP = k. 8%fF + 41 v §Y° (21)
HLryp pe ue y
where G, K and I = are functions of the background
7] Rre i
metric and derivatives of the metric. The symmetry of H

KUy
(i.e. y =e» o and also y «» v) enables us to write (with
(21) }:

= 2(1I + I +
Huvrp ( urgvp ngV?) KHUg?P (22)
a
I = 4 1 ith I = 3
uy (1/ )g“y wit I, (23)

The trace should vaanish with respect to »,e of bracketed
expressions. Combinations of the above relations leads to:
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VR -V -9 R + vH - (1/4 Bega -

Hre Rou e ru ouye ~ (14199 Boppe = ©

and (24)
VR ~9YR -VR + (1/2 a + a -(1/2 a =
Hre ¥ PH ofyn t (M/2)M9,, 0, 9,0,~(1/2)9, 9 )1 =0

Taking trace with respect to p and u:

a = a
yR (9/74) yI (25)

where 2 2
I (4/9) R - A” , A" = constant (26)

and solving for V“Rrp , from eq. (24), wusing egs.(25),(26)
we finally get:

¥ R = H a a 2]
WPy (1/9)[( /2)(g“p N + g“y P) + ZgYp p]R (27)

The equation (14) for fpv is now 1in any arbitrary curved

space:
af,, - prfi - Rurfz 3 2R“v’pf79 + [(4/9)R - A?]f“v= 0 (28)
with the trace equation

af + [(4/9)R - Af]f = 0 (29)

For a space of constant curvature (i.e. a de Sitter
background) with:

= A -
R yup /309,99, 5 7 9,09, (30)
equation (28) becomes:
—_ 3 z = _
Dfpu - (2/3)Af“U =0 with A" = 2A/9 {(31)
with trace egquation (o - 2M)E = 0O (32)

The above 1s a generalization of the procedure in ref.[9]
which was specialized for space of constant curvature,
particularly for case of de Sitter space. 1In fact the
equations for massive spin-2 field (with coupling Ki) when

linearized on de Sitter background become the de Sitter
covariant theory of massive spin-2 and spin-0 particles with

(o - 2A/3)fpu - —2KI(THV - nva/4) and (o - 2Af) ~ 2KfT.

The opposite signs of the source terms in case of massive
spin-2 and spin-0 {51,091, enables the posslbility of having
a het T“D of zero, i.e. a vacuum dominated phase.

3. Inflationary solutions of above eguations

We can generalize tha above Klein-Gordon equations with
source terms by considering a perturbation fLu of fyv and

writing the equation of motion for va as [10],[111:
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uvoy3 =
G £! = 0 33
af3 ( }
Following ref.[10]1,[11] we can write:

Gpvaﬁ - phkves | yuvos (34)
pHvof3

where is the massless spin-2 propagator (eqg.7) and

M”vaﬁ is an effective mass tensor defined as [10]:

¥ it EAR zxf[ (gF?t™  + g®PoHVy s - gHOPY L gueglPH
+ T;t g"“agﬁw/Z - Ti g,uvgaﬁ/4

)
- (1/2){6T /égaﬁ+éTaﬁ/égpv]]

so that the Jacobl equation for £' ., can be written:

ap

Ja*x¥ -q va(p“”“ﬁ + n“”“ﬁ)f&ﬁ = 0 (35)

with the usual conditions [11l]:

pHYaf3
f G ' =
95 faﬁ 0
} (361
vayvaﬁf. = 0
and
qu“vaﬁf' = 0

where u, is an arbitrary four vector;
with the harmonic coordinate condition [(9],0[111:

vpf-“” = (1/2)v7gH (37)
the constraints becoming
af3_, - T - . o, _
£ faﬁ a, o3 0 ; u't o3 0 (38)
we have
[FIA TE SR - _ Mo v - 2AVE!
P faﬁ g g (o 2A)E o3 (39}
uvaf3 N ¥ - e
M tw ~ g g Kip + plfl, (40)
giving the effective Klein-Gordon equation for f&ﬁ as:
Eu - 2A + K (p + p) + ....]f&ﬁ = 0 (41)
with an effective mass Hf = - Kf(p + p) - 2A.

For a vanishing mass tensor (possible for appropriate

combination of spin-2 and spin-0 massive flelds), the
equation (40) implies a vanishing (p + p) or a negative
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pressure corresponding to a de Sitter type situation with

exponential expansion.

An expliclt exponentially expanding solution of the
massive spin-2 field equations in a R-W background can also
be obtained, Consider the metric:

as? = - at? + R%(t)(ax® + ay® + az% (42)

For this metric we have:

° .
= S
R 3 RR o3 (43)
a -2 o a
= &5 & - & &
Rﬁyé R™ ( vy °ps P 67) (44)
R = -3 R/R (45)
oo
- .2
= + & 6
Raﬁ (R R 2 R7) o3 (46)
R = 6[(1’2/R)2 + ﬁ/n]
Substituting above relations in eq.(27) we have:
d ., )
—ac [Z(R/R) - R/R] = 0 (47)
using D = 1nR a
— " — \2Z - I
at (D D7) 0 (48)
D - b = -nm a (49)
D = *m ; m >0 (positive mass)
or .
R = R expla mt) (50)
a = const. and am has dimension of inverse time.

f

The duration of the inflation corresponds to the decay
of the massive spin-2 particles, or the oscillation time to
massless spin-2 particle, 1.e., as was pointed out 1in
ref.[12], every spin-2 particle produced in interaction Iis
to be regarded as a comblnatlon of massive and massless
states corresponding to the eigenvalues of the mass matrix.
The mass-mixing term in curved space can be wriltten [13]:

L = - a*%(m?/ak?) (£HV- gM) (£2- gaﬁ)(g“agvﬁ— g, 8 ) (51

m

where as before £HV= e k’f'“p (k, being the

coupling constant for massive field) and g =kh .
MY 2 uv

Up to quadratlc terms, Lm becomes:

_ 2 2 MY MY o3 af3,
L, = (n5/4k1)(kif' kzh )(k‘f' kzh )

-(nyanvﬁ - nyvnaﬁ) {(52)

Introducing 2-component vectors [12]):
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£! T
= HY = '
V’“v ’ w[..ﬂ) [fpp 7 hpp ] ’
l‘]’_“J

the mixing term may be written as:

L _ T pHyY T _
mo= oy, Hy v Hy , ¢ = v);j
m, Ky RE,
- [
H = H* is H = — . 53
4k - -k k k
1 12 2z

which iz not diagonal with respect to f'u andh“u i.e.

eigenvalue of H are m/4 (1 + k:/ki) and 0 with
eigenstates f' , h related to f' , h by a rotation
L Ly e 5y

angle @ {mixing angle)

£ = cos 68 £ - 5in & h

Iy M e

h' = sin @ £ + cos @ h

Hy [y [y

cos 8 = kl/f£:+k: ’ sin 8 = kz/fﬁfsz

Thus the time evolution of massive spin-2 particles 1in the
early unliverse is described by:

| £ yu(t)> = cos @ exp\-lElt)exp[-(F/c)t](cu56|fLu> sin9|hyv>

1 siné exp(-iEzt)(sinslfLu> + cosB]hHU> (54)
2 L. 1.2
E, = (|plj * mz) ’ E, = IpzI

p, . P, are momenta of the massive and massless spin-2

particles xeépectively. The exponential damping of the state

|f'“v> in time is due to decay of massive tensor field with
mean life r = I ', Massless gravitons have infinite

lifetime and its amplitude does not decay. If at t = 0 we
have purely massive spin-2 particles at any later time the
number of nassless spin-2 particles would be:

kK2
2 1 2

! = —— xp(~-Tt) - 2exp(-Tt SAEL 5

[<h £, (805 (kz+kz)ztl+ exp(-TCt) - 2exp(-T't/2)cosAEL (55
1 2

AE = El - Ez . For t > 1, we have only massless spin-2
particles with a total intensity reduced by factor
k:kz/(kfiki)z with respect to initial intensity of massive

spln-2 particles.-
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We did not consider the possibility of decay to a
maszive scalar, i.e. we assumed the spin-2 massive field to
have only five degrees of freedom. For the above type of
mass lagrangian we can introduce Steuckelberg [14] fields to
constrain the spin-2 field to have only £five degrees of
freedom. If we make the substitution:

£ EN - 8 A - JA = K
v v MY L Ly
the mass teri is replaced by
£ - —(1/2)020(E - @ A - 3 A ) (Y dHa¥ 1 o¥aH)
uts 2z Hi2 [EE WL
- (n* - 20 2%
u v
This is now gauge invariant under £ =» £ + 8t + 87
P i e 2
provicded Ap transforms as : AH = Au - Cy giving the field
equacions x ax” = o . which gives four of the
v AT
requlrec condicions on fuu when going to the gauge AH = 0.
By requiring a new invariance under which only AH

transforms as AH = AP- OHC , the variation of the mass

term above is then &L = 2m-(8"a"f ) EU)C F surface
m 2 (¥ 8 He
terms. Terms that are guadratic in Ay (in Lm) take the

form - (mj/z)F““F , F is the wusual spin-1 field

e v )
strength. The right side of 6Ln eqguals Zm: Rdf, where
N7 '
R

is the linearlized Riccl scalar. The wvariation éL' may

n
tlherefore be cancellcd by adding the term ml¢ Rdn dyhere
¢ transforms as &¢ = - 2(. Iield eguation for ¢ is R '= 0

and this togelher with trace of the f#u eguation gives the

requireé@ cunsiraint £Y = 0 which eliminates the massive
o

scalar.

4. Conclusions

What is Lhe 1initial source of the massive spin-2
particles in the early universe? To answer this, it is to be
noted that in most models of space compactification in
higher dimensional unified theorles such as Klein-Kaluza
theories, one obtains consistent lower-dimensional +theories
with infinite towers of massive spin-2 particles interacting
with gravity. For instance the five-dimensiocnal nmetric

gAB(x.y) may be expanded in Fourier modes [15]:
- = . iy
gAB(x'y) - 'rL.g(mAB()') e ’
x denotes the co-ordinates of four-dimensional space-time
and y is a cu-ordinate on the circle with period 2a. The

five dimensional generail co--ordinate transformation

A - - s
parameters [ (x,y) may similarly be expanded in Fourier
series giving rise to an infinite number of four

. : < A - A B,
dimensional gauge symmetries {x,y)=2 (‘)(x) ™
n LA}

The n = 0 term in above sum, describes gravity and a

513



massless spin-one fleld. Each term with n # 0, describes a
massive spin-2 field with mass ~ n/Rc ’ Rc = compactification

radius. The vector and scalar parts of g (x), when n = 0

{nYAB
will be absorbed by Higgs mechanism, as all but the n = 0
symmetries are spontaneously broken. These are the A and

¢ fields discussed before. Agaln in superstrings theories
one also obtains infinite towers of massive spin-2 fields
and also higher spins and masses that increase lndeflinitely.
So in the early universe when all the fundamental foxces
were unifled one had a description In terms of superstring
or Klein-Kaluza type of framework. As the universe expanded,
the internal space became compactlfied generating the
infinite towers of massive- spin-2 particles. So if one had
inflation induced by the massive spin-2 fields in the curved
R-W space as described above, one gets a natural way of
diluting away all the indefinitely large spectrum of higher
spins and masses to very low values, so that they do not
contribute much to the present background density. Without
such a mechanism, all these indefinitely large remnants (of

masses and spins) of compactification would have created
very serious problems for cosmological observations! Many of
the massive spin-2 particles could have larger masses than
HPI. so that they would have formed miniblackholes of spin 2.
The evaporation time of a 10 Mrt miniblackhole would Dbe

~ 10° tpl so that thelr decay over this time scale would

give an expansion factor of ~ e'°%° {(cf.eq.50), which 1is

more than sufficlent inflation.

Again the evaporatlon of the several miniblackholes,
would generate sufficient amount of entropy during the
inflationary phase. As shown in the other paper of these

proceedings [16] the evaporation of ~ 10°° blackholes of
masses ~ HPL would generate an entropy comparable to that

seen in the microwave background. The generation of such a

large amount of entropy in a time scale of a few times trl

would naturally resolve the flatness and horizon problems.
Moreover the evaporation of these blackholes would be
most likely to violate Ccp invariance and also baryon
number, as we know in any case that baryon number 1is not
conserved in black hole decay or collapse. A small violation

of CP of ~ 10°° in such decays is sufficient to produce
the observed baryon asymmetry. In other words the
evaporation of these miniblackholes in the early universe is
capable not only of producing the observed entropy but also
the observed net baryon number.

The present zero value of the cosmological constant can
also be understood in the above pilcture. The effective
cosmological constant driving the inflation was 1n this
model related to the mass of the massive spln-2 particles

generated in the early universe, i.e. A = m:cz/'h2 (see

eqgs.31,32,41 and 50). So when the massive partlcles decay to
massless spin-2 particles (eqs.51-55), A tends to drop to
zero (mz = 0) and the inflation stops. So the end of the

inflationaxry phase and the vanishing of the effective
cosmological constant are both smoothly connected 1in this
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picture. In the more conventional models these are
difficult questions to resolve. In short the inflationary
phase that can be induced by the coupling of massive spin-2
particles to curved space-time may resolve several
difficulties associated with early universe cosmology and
particle physics.
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