tional lengthening in the stick takes on the form
Al° = [p/cHlAv/(1 — v* /P (8)

Consequently the total lengthening resulting from the ac-
celeration from v, to v, is

1%0,) — 1%0,) = J.vz(v/cz)l /(1 = v¥/c?*? dv. (9)

Remembering / is a constant in the present case, we obtain
finally
190,) — 1%0,) = I (1 — 03/c) "2 — 1(1 — v} /)",
(10)

which is identical to Eq. (3).

Finally, it should be mentioned that the lengthening in
the proper length of the stick is, of course, due to the force
acting along the stick, which produces the acceleration.

'See, e.g., Panofsky and Phillips, Classical Electricity and Magnetism
(Addison-Wesley, Reading, MA, 2nd ed., 1962), p. 291.

R. d’E. Atkinson, Am. J. Phys. 48, 581 (1980).

*A. A. Evett, Am. J. Phys. 40, 1170 (1972).

“The equation is directly obtained from Lorentz transformation by set-
ting £, = t, in the OXY system.

Cosmological and quantum constraint on particle masses

C. Sivaram

Indian Institute of Astrophysics, Bangalore-560034, India

(Received 13 July 1981; accepted for publication 30 September 1981)

In his well-known book Gravitation and Cosmology, Ste-
ven Weinberg' has drawn attention to a curious relation
involving the Hubble constant H,, the gravitational con-
stant G, Planck’s constant #, the velocity of light ¢, and the
mass of a typical elementary particle m. The relation is’
[Eq. (16.4.2) of Weinberg]

m = (#Hy/Ge)'>=m.,,. (1)

He considers this as a clue pointing to the fact that param-
eters pertinent to particle physics are not determined solely
by considerations of microphysics, but in part by the influ-
ence of the whole universe. He also suggests that in consid-
ering the possible interpretation of Eq. (1), one must note
the remarkable fact that it relates a single cosmological
parameter, H,, to the fundamental constants #, G, C, and
m... He also points out that Eq. (1) is so far unexplained. In
the following discussion we shall attempt to understand the
hitherto unexplained relation (1), as a simple constraint im-
posed on the mass of an elementary particle by combina-
tion of the uncertainty principle with H,. We first ask the
question whether the gravitational self-energy of a single
particle has any meaning in the quantum sense of measur-
ability. Is it a measurable quantity? Consider an elemen-
tary particle of mass m. By quantum mechanics we have to
localize the wave packet representing it over a region of
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dimension (#/mc). The gravitational self-energy of the par-
ticle corresponding to this localization would be
Gm’* Gm’c
= = 2
P #/me #i )
This has to be measurable at least over the Hubble age of
the universe given by (1/H,). The uncertainty principle

would then constrain E, and therefore m through the
relation

(Gm’c/f) (1/H ) =4, 3)
giving
m=(#H,/Gc)'?, 4)

which is the same as Eq. (1). Weinberg’s relation may then
be understood as the operational requirement that the mass
of an elementary particle be such that its gravitational self-
energy be at least measurable over a Hubble period. The
notion of the gravitational self-energy of a single particle
and its measurability is usually ignored in discussions on
quantum gravity.

'S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
*Reference 1, Chap. 16, p. 619.
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