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Correlations of quantum-entangled multiparticle 
systems have been widely discussed in the context of 
the Einstein–Podolsky–Rosen (EPR) paradox. Bell’s 
theorem prohibits a local realistic description of 
these correlations. The standard quantum mechani-
cal derivation as well as the interpretation of the ex-
periments suggest that a mysterious nonlocality is a 
basic feature of these correlations. We show that the 
correlations of space-like separated entangled parti-
cles can be reproduced starting from local probabil-
ity amplitudes. The use of complex number 
amplitudes circumvents the widely discussed Bell’s 
theorem. The result implies no-collapse-at-a-distance 
and resolves the EPR puzzle. 
 
THE Einstein–Podolsky–Rosen (EPR) nonlocality puz-
zle is one of the most discussed fundamental problems 
in physics1–4. EPR considered a two-particle quantum  
 
e-mail: unni@tifr.res.in 

system entangled and correlated in position and momen-
tum and argued that under the assumption of locality 
and a reasonable definition of physical reality, the quan-
tum mechanical description is incomplete. The conclu-
sion of incompleteness was based on their reasoning 
that suggested the need for simultaneous existence of 
definite values for noncommuting observables for the 
individual particles before a measurement was per-
formed. The EPR analysis was motivated by the desire 
to assign an objective reality to measurable properties in 
the microscopic world independent of the observer or 
apparatus. The Copenhagen interpretation of quantum 
mechanics rejected any such objective reality. EPR pro-
posed that if the value of an observable could be pre-
dicted with certainty without the disturbance of a 
measurement, then there was an element of physical 
reality associated with that observable for the system. 
There is no way to probe experimentally such a physical 
reality for the single quantum, for example the reality of 
the spin component in a specific direction for a single 
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photon or an electron. But if multi-particle correlated 
systems are considered, like two spin- 2

1  particles 
propagating out from an initially spin-zero state, then it 
is possible to explore the consequences of assuming 
objective reality to observables. 

Bell’s theorem 

David Bohm transcribed the EPR argument to the spin 
variables by considering the singlet entangled state of 
two spin- 2

1  particles5. This state is described by the 
wave function 
 

},1,1|1,1{|
2

1
S 〉−〉−−=ψ  (1) 

 
where the state |1, –1〉 is a short form for |1〉1 |–1〉2, and 
represents an eigenvalue of +1 for the first particle and 
–1 for the second particle if measured in any particular 
direction. y S is inherently nonlocal, describing both 
particles together, even when they are far apart in 
space-like separated regions. It is a superposition of 
two-particle product states and there is no specific state 
assigned to any of the particles individually. A meas-
urement on one particle changes the whole wave func-
tion, collapsing the states of both particles to definite 
values. 

If the spin component is measured in any direction on 
one of the particles, the same component can be pre-
dicted with certainty for the other companion particle 
using the conservation law that the total spin is zero. 
The EPR definition of reality then assigns objective 
reality before measurement to this spin component. 
Since the decision as to which component is to be 
measured is arbitrary and could be delayed till the parti-
cles are far apart, the assumption of locality – that one 
measurement should not influence the result of the 
other – implies that there should be physical reality for 
all the three components of the spin for the two particles 
individually. This is not allowed by quantum mechanics 
since the three spin components are mutually noncom-
muting. According to the EPR argument, this conclu-
sion suggested the plausibility of a better theory, 
possibly with additional hidden variables that would 
assign specific values to the observables in each run of 
an experiment such that the statistical predictions of 
quantum mechanics are reproduced when averaged over 
the distribution of the hidden variables. Such a theory is 
a local (realistic) hidden variable theory. 

John Bell analysed the EPR problem in the early six-
ties and established the Bell’s inequalities obeyed by 
any local hidden variable theory of correlations of en-
tangled particles3,4,6. He considered the measurement of 
the spin components on the two particles in two differ-

ent directions, in contrast to the EPR analysis that in-
volved measurements in the same direction (see Figure 
1). The result of such a measurement is two-valued in 
any direction. If A and B denote the outcomes +1 or –1 
(written as + or –) and a and b denote the settings of the 
analyser or the measurement apparatus for the first par-
ticle and the second particle, respectively, then the 
statement of locality is that 

 
A(a) = ± 1,      B(b) = ± 1. (2) 
 

The outcome for the first particle is decided by the local 
setting a for the analyser with which the first particle 
interacts, and for the second particle the outcome is de-
cided by the local setting b. The statement of existence 
of reality is that some hidden variable decides the out-
comes even before the measurement, or equivalently the 
outcome has an objective existence even if the meas-
urement is not actually carried out. This is encoded as 
 

A(a,h1) = ± 1,       B(b, h2) = ±1, (3) 
 
where h1 and h2 are hidden variables associated with the 
outcomes. In an experiment involving the kind of meas-
urement described, the experimenter can calculate a 
correlation function of the outcomes defined by 
 

).(
1

),( ∑= ii BA
N

P ba  (4) 

 
This is a classical correlation function obtained by aver-
aging the products of the form (++ = +), (– – = +), (+– 
= –) and (– + = –). Since the joint events (++) and (– –) 
are coincidences and the events (+ –) and (– +) are anti-
coincidences (‘coincidence’ denotes both particles 
showing the same value for the measurement and ‘anti-
coincidence’ denotes those with opposite values), 
P(a, b) denotes the average of the quantity (number of 
detections in coincidence – number of detections in 
 
 

 
Figure 1.  Schematic diagram of spin correlation measurements on 
entangled particles. The outputs of the two analysers are +1 or –1 
and these are correlated in a coincidence unit. a and b are the two 
analyser directions. Dotted arrow on the right analyser shows the 
direction a for reference. 
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anticoincidence). The task of the theory is to calculate 
this function starting from suitable basic ingredients. 
Bell chose to calculate this correlation by multiplying 
A(a, h1) and B(b, h2) and integrating over the distribu-
tion of the hidden variable h, since the assumption of 
realism demanded that the outcomes were ‘there’ even 
before the measurement was made. The Bell correlation 
is then ∫dhr(h)A(a, h1)B(b, h2), where ∫dhr(h) = 1. The 
essence of Bell’s theorem is that the function P(a, b) 
has distinctly different dependences on the relative an-
gle between the polarizers for a local hidden variable 
description and for quantum mechanics. 

The correlation predicted by a local realistic theory is 
bounded by the Bell’s inequalities. The magnitude of a 
particular sum of correlations P(a, b) for different com-
binations of a and b is bounded by the value 2, and the 
same combination calculated in quantum mechanics 
using the entangled wave function and spin operators 
exceeds this bound, violating the inequality3,6. Also, 
experimentally measured correlations agree with the 
quantum mechanical predictions and violate the 
inequality4,7. The concept of local realism is not tenable 
in the Bell framework. These results have been inter-
preted as evidence for nonlocal influences across space-
like separated events. The measurement of an observ-
able on one of the particles causes the other particle to 
acquire a definite state consistent with the relevant con-
servation law. The standard quantum mechanical deri-
vation of these correlations employs the nonlocal 
multiparticle wave function, and measurement on one 
particle is said to collapse the state of the companion 
particle to a definite eigenvalue. Though this nonlocal 
feature cannot be used for superluminal signal commu-
nication8, there is a conflict with the spirit of relativity9. 
Also, such superluminal influences in the microscopic 
physical world are bizarre and at present beyond any 
understanding in terms of any physical mechanism. 

The nonlocality puzzle can be resolved however, if 
the correct physical input is used for the calculation of 
the quantum correlations. The correct correlations can 
be reproduced if we start with the description of the 
relevant physical phenomenon, like the passage of the 
quantum particle through a polarizer, using local prob-
ability amplitudes10. In the local hidden variable theo-
ries of the form Bell considered, the correlations are 
calculated from eigenvalues and this procedure does not 
preserve the phase information and wave-like character-
istics of the quantum system. The situation has some 
analogy to the description of interference in quantum 
mechanics. Any attempt to reproduce the interference 
pattern using  locality and the information on ‘which-
path’ will fail since the phase information is lost or 
modified in such an attempt. We calculate the correla-
tion from the local amplitudes instead of from the ei-
genvalues. The wave nature of quantum systems is then 
explicitly used in the calculation of the correlations and 

the final probabilities are calculated by squaring a suit-
able inner product of the local amplitudes. (It is the use 
of complex functions with a phase that is interpreted as 
the ‘wave nature’ in this paper.)  The realism in this 
theory is at a deeper level, concealed as a phase and not 
as actual outcomes before a measurement is made. This 
possibility was not considered in earlier local realistic 
theories, and turns out to be the crucial concept required 
to resolve the EPR puzzle. 

A new calculus for correlations 

Consider the breaking up of a maximally entangled 
state – photons entangled in orthogonal polarization 
states or spin- 2

1  particles entangled in (up, down) 
state – as in the standard Bohm version of the EPR 
problem4,5. The two particles go off in opposite direc-
tions and are in space-like separated regions. Two ob-
servers make measurements on these particles 
individually with time stamps such that these results can 
be correlated later (Figure 1). We assume that strict lo-
cality is valid. Measurement on one particle does not 
change either the magnitude or phase of the complex 
amplitude associated with the companion particle. In 
particular, measurement on one particle does not cause 
the companion particle to acquire a definite state. 

At each location the result of a measurement is two-
valued, denoted by (+) and (–) for each particle (two 
mutually exclusive outcomes), for any angle of orienta-
tion of the analyser. We prescribe the local rules or am-
plitudes for the transmission through an analyser for 
these particles (we use the terms polarizer and analyser 
in a generic way. They could be Stern–Gerlach-like 
analysers for spin- 2

1  particles or polarizers for pho-
tons). The local amplitudes for events + and – for the 
two particles individually are denoted by the complex 
functions C1+, C1–, C2+ and C2–. Amplitudes C1+ and C1– 
are mutually orthogonal and similarly C2+ and C2– are 
mutually orthogonal. The statement of locality is at the 
level of these amplitudes, and can be written as 

 
C1± = C1± (a, f1),   C2± = C2± (b, f2), (5) 

 
where f1 and f2 are the ‘hidden variables’. These are 
internal variables associated with the individual parti-
cles and appear in the amplitudes as a phase. These can 
be thought of as the initial undetermined phase, associ-
ated with the spin of the individual quantum particles. A 
definite value for these variables does not imply a defi-
nite state for the particles before the measurement. 

The locality assumption also implies that 

A(a, f1) = ±1,    B(b, f2) = ±1. (6) 

But, this has a meaning different from the one in the 
standard local realistic theories. Here, it means that the 
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outcomes, when measured, depend only on the local 
setting and the local internal variable. 

In this framework the correlation function is not 
P(a,b) = (1/N)∑ (AiBi) or ∫dhr(h)A(a, h1)B(b, h2). We 
calculate the correlations from the local amplitudes. 
These correlations are of the form U(a, b) = 
Real(NCiCj*), where N is a normalization factor. It is 
the square of this correlation function that would give a 
joint probability. This new calculus of local amplitudes 
ensures that all the probabilities are positive definite. 
(There are local theories which reproduce the correct 
correlations using probability distribution of the hidden 
variables that are not positive definite. These theories 
are neither rooted in quantum concepts nor in classical 
concepts, and are really ‘out of this world’.) The corre-
lation function is analogous to the two-point amplitude 
correlations of two independent classical electromag-
netic fields. The expression can be generalized to situa-
tions where there are more than two particles. 

Now that we have outlined the general scheme and 
assumptions as well as the point of departure in calcu-
lating the correlation, let us consider the maximally 
entangled singlet system described by eq. (1), the 
most widely discussed example in the context of non- 
locality. We prescribe the local amplitudes as 
C1+ = 

2
1 exp{is(q1 – f1)} for the first particle at the 

first polarizer and C2+ = 
2

1 exp{is(q2 – f2)} for the 

second particle at the second polarizer. There are corre-
sponding amplitudes, C1– and C2– for the events denoted 
by –, and they differ only in the phase for the maxi-
mally entangled state. 

In these amplitudes, q1 and q2 are the directions of the 
two polarizers, and s is the spin of the particle (1 for 
photons and 2

1  for the spin- 2
1  particles). The explicit 

dependence of the amplitude on the spin of the particle 
is motivated by the fact that we are dealing with sys-
tems with phases and the phase associated with the spin 
rotations (a geometric phase) is a necessary input in this 
description11. The correlation at source is encoded in 
the relative value or the difference f0 of the internal 
variables. f0 is a constant for all the entangled pairs. 
The locality assumption is strictly enforced since the 
two amplitudes depend only on local variables and on 
an internal variable generated at the source and then 
individually carried by the particles without any subse-
quent interaction of any sort. The individual measure-
ments at each end will now separately give the correct 
result for transmission for any angle of orientation. 
These probabilities are  

 

C1C1* = C2C2* = .
2
1

 (7) 

 
Events of both types (++) and (– –) contribute to a ‘co-
incidence’. The correlation function for an outcome of 

either (++) or (– –) of two maximally entangled parti-
cles is 
 

U(q1, q2, f0) = 2Re(C1C2*) = cos{s(q1 – q2) + sf0}. (8) 
 
It is normalized such that its square will give the condi-
tional joint probabilities of the type ‘outcome + for the 
second particle, given that the outcome for the first par-
ticle is +’, etc. All references to the individual values of 
the internal variable f have dropped out. 

We now derive the relation between this correlation 
function and the experimenter’s correlation function 
P(a, b) = (1/N)å(AiBi). Since U2

++ = U2
–– for the maxi-

mally entangled state, U2(q1, q2, f0) is the probability 
for a coincidence detection (++ or ––), and (1 – U2(q1, 
q2, f0)) is the probability for an anticoincidence (events 
of the type +– and –+). Since the average of the quantity 
(number of coincidences – number of anticoincidences) 
is 

 
U2(q1, q2, f0) – (1 – U2(q1, q2, f0))  

 = 2U2(q1, q2, f0) – 1, (9) 
 

the correspondence between P(a, b) and U(q1, q2, f0) is 
given by the expression, 

 
P(a, b) = 2U2(q1, q2, f0) – 1 

 = 2cos2{s(q1 – q2) + sf0} – 1. (10) 
 

Examples and applications 

Singlet spin- 2
1  particles and photons 

Consider the singlet state breaking up into two spin- 2
1  

particles propagating in opposite directions to spatially 
separated regions. Since the total spin is zero in any 
basis we set q0 = p. Then the correlation function and 
P(a, b) calculated from this function are 
 

U(q1, q2, f0)  = cos{s(q1 – q2) + sf0} 

=






 +− 2/)(

2
1

cos 21 πθθ  

= ),(
2
1

sin 21 θθ −−  (11) 

 

1)(
2
1

sin2),( 21
2 −





 −= θθbaP  

= – cos(q1 – q2) = –a×b. (12) 
 

This is identical to the quantum mechanical prediction 
obtained from the singlet entangled state and the Pauli 
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spin operators4. We have reproduced the correct correla-
tion function using local amplitudes. 

For the case of photons entangled in orthogonal po-
larization states we get, by setting s = 1 and f0 = p/2 to 
represent orthogonal polarization, 

 
U(q1, q2, f0) = cos{(q1 – q2) + p/2} 

  = – sin(q1 – q2), (13) 
 
P(a, b) = 2sin2(q1 – q2) – 1 = – cos(2(q1 – q2)), (14) 

 
which is the correct quantum mechanical correlation. 

Two-particle interferometry 

The cases of particles entangled in other sets of vari-
ables like momentum and position, and energy and time 
can be mapped onto the spin problem with two-valued 
outcomes and the local amplitudes reproduce the correct 
correlations. 

Consider a pair of EPR-entangled particles which are 
propagating in opposite directions. Each particle en-
counters a double slit arrangement (Figure 2) on their 
way12. It is easy to see that there will not be any single 
particle interference pattern in this case on either 
screen. Near-perfect momentum correlation implies an 
extended source since a small source leads to uncontrol-
lable uncertainties in momentum. Then the spatial co-
herence is not sufficient to produce the single particle 
interference pattern. But there is a two-particle interfer-
ence pattern observable in the coincidence in two detec-
tors, which could be in space-like separated regions. 
Usually the results in multiparticle interferometry are 
interpreted as evidence of bizarre nonlocality12 since the 
pattern depends on the difference of the coordinates of 
both the detectors, just as the spin correlations depend 
on the difference in settings of the two analysers. 

In the experiment, particles pass the slit planes and 
are detected with two counting detectors, one on each 
side. As in the case of spins, we assume the existence of 
an internal variable, denoted by x0, and we assume that  
the two correlated particles have the same value for the 
internal variable. For the spin- 2

1  case, the relative rota- 
 
 

 
Figure 2.  Two-particle dual double slit experiment. S(A) and S(B) 
are the double slits and D(A) and D(B) are the movable detectors. 
The outputs of the detectors are correlated as in Figure 1. 

tion required to go from a maximum of transmission 
through the analyser to a minimum is p. In the case of 
double-slit interference, the situation is similar. The 
relative rotation in phase from the center of the bright 
fringe to the centre of the dark fringe is p, for the angu-
lar variable defined by q = akx, where k = 2p/l, and x is 
the coordinate of the detector along the fringe pattern. a 
is a scale factor representing the distance of the slits 
from the source and the detectors. So, the double-slit 
interference problem can be mapped to the spin- 2

1  
singlet problem. 

The corresponding local amplitudes are 
 

),2/)(exp(
2

1
011 xxkiC −= α  

and 

),2/)(exp(
2

1
022 xxkiC −= α  (15) 

 
where x1 and x2 are the detector positions. The single 
particle detections on either side separately do not show 
any interference. The correlation function is 
 

U(x1, x2) = cos(ak(x1 – x2)/2). (16) 
 
Probability for coincidence detection is 
 

P(x1, x2) = cos2(ak(x1, x2)/2) 

 = ( ).)(cos1
2
1

21 xxk −+ α  (17) 

 
This is the two-photon interference pattern (it is more 
appropriate to call it a two-photon correlation pattern) 
with 100% visibility. The photon which is being de-
tected at one detector has no nonlocal influence on the 
photon detected at the other detector. 

Three-particle GHZ state correlations 

So far we have been discussing examples in which the 
statistical predictions of quantum mechanics were com-
pared with the prediction from a local theory. There 
have been examples where a single measurement of a 
perfect correlation, assuming perfect detectors, etc. is 
enough to demonstrate the conflict between quantum 
mechanics and a local realistic theory13,14. Experiments 
are yet to be done for these cases. We now show that 
the theory with local amplitudes and the spin internal 
variable deals with the correlations in such cases in a 
remarkably simple and transparent way. 

Consider the three-particle GHZ state13 defined as 

),1,1,1|1,1,1(|
2

1
| GHZ 〉−−〉−=〉ψ  (18) 
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where the eigenvalues in the kets are with respect to the 
z-axis basis. The conflict between a local realistic the-
ory and quantum mechanics is the following statement: 
The prediction from quantum mechanics for the meas-
urement of the x-component of spin on all the three par-
ticles represented by the operator 321

xxx σσσ ⊗⊗  is 
given by 
 

.|| GHZGHZ
321 〉−=〉⊗⊗ ψψσσσ xxx  (19) 

 
Local realistic theories predict13 that the product of the 
outcomes in the x direction for the three particles should 
be +1. This contradicts eq. (19). 

We now show that the correct correlations can be re-
produced using local amplitudes. The general idea is 
that the three-particle correlation, analogous to our 
scheme for two-particle states, is the real part of a com-
plex number Z obtained as a suitable product of three 
complex amplitudes. We choose the different phases 
such that the correlation represented by N(Z–,–,–) is ±1, 
to satisfy the condition that the joint probability for the 
outcome (–, –, –) is unity according to eq. (19). N is a 
normalization factor. For this we choose (Z–, –, –) to be 
pure real. The rest of the correlations follow without 
any additional input since flipping the sign once (for 
example (Z+, –, –)) amounts to rotating Z through the 
phase p/2, and the corresponding probability P(+,–,–) = 
Real(Z+,–,–))2 = 0. This is because the amplitudes for + 
and – are orthogonal. Clearly the joint probabilities are 
unity for the outcomes containing an odd number of (–), 
and zero for all other outcomes. This result is independ-
ent of the definition (once a definition is chosen the 
phases can be chosen to get the desired outcomes) of 
the complex correlation Z, though for convenience the 
correlation can be defined as NReal(C1C2*C3*). 

Other applications 

Hardy’s puzzle 
 
Another important case is the one discussed by Hardy15 
involving two non-maximally entangled particles and 
four observables, in which four separate correlations 
predicted by quantum mechanics cannot be reproduced 
in the local realistic hidden variable theory. The non- 
locality demonstration uses three zero joint probabilities 
and one nonzero joint probability constructed from 
three of the measurement possibilities. The local ampli-
tudes which give the correct joint probabilities for the 
Hardy problem have also been constructed. 

K meson beams 

The analysis based on local physics presented in the 
earlier sections can be applied to the K0 – 0K  beam for 

which an EPR effect has been discussed16. The analysis 
using local amplitudes shows that the probability for 
both the particles in the correlated beam decaying into 
the same mode, say p0p0, at equal proper time is zero 
without the nonlocal ‘EPR effect’. 

Entanglement through measurement 

The general framework presented here is suited also for 
analysing entanglement correlations between particles 
which have not interacted in the past, but get apparently 
entangled due to joint measurements on their compan-
ion particles17. If one considers two ensembles of en-
tangled particle pairs (1, 2) and (3, 4) such that (1, 2) 
are entangled and (3, 4) are entangled, but (2, 3) or 
(1, 4) are not entangled, it is possible to make 
entanglement correlations between (1, 4) for example, 
by making Bell-type joint measurements on the pair 
(2, 3). In a Bell-state measurement, particles 2 and 3 
are made to interfere on a beam-splitter and then it 
is possible to pick out joint states of the type 

).1,1|1,1(||
2

1
3,2 〉−±〉−=〉±ψ  Though there is no prior 

fixed relation between the internal variables of (1, 4), 
the Bell measurement on (2, 3) chooses a sub-ensemble 
in which there is an observed correlation between parti-
cles 2 and 3 and hence between particles 1 and 4, due to 
fixed prior relationship in internal variables of particle 
pairs (1, 2) and (3, 4). There is no nonlocality. The pair 
(1, 4) picked out using the observation of |y 2,3ñ– state, 
for example, as a filter will also show the same behav-
iour as the pair (2, 3) in the state |y 2,3ñ–. Only correla-
tions at source and subsequent filtering into sub-
ensembles through Bell-type measurements or other 
similar operations are needed. The various schemes are 
yet to be studied in detail. 

Discussion 

Obtaining the correct correlations assuming locality 
implies that the measurement on one particle does not 
collapse the other particle to a definite state. There is a 
distinction between a real measurement and ‘predict-
ability with certainty’ of an outcome. Quantum correla-
tion at source and a measurement on one of the particles 
is enough to make this prediction using the conservation 
laws. But till an actual measurement is made the com-
panion particle does not acquire a definite state. There 
is direct proof for this from the fact that while an actual 
measurement of position on one of the particles dis-
perses its momentum according to the uncertainty prin-
ciple, this measurement and the resulting 100% 
predictability of the companion particle’s position do 
not cause corresponding dispersion in the momentum of 
the companion particle. This is the lesson from Popper’s 
experiment18–20. 
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Apart from resolving the nonlocality problem, we 
have also found an answer to the original EPR paradox 
of simultaneous reality of noncommuting observables. 
The paradox arises only from the necessity to assume 
reality for the outcomes before a measurement is made, 
to reproduce the correct perfect correlation. Since we 
found a way of getting these correlations without such 
an assumption, and without nonlocality, there is no EPR 
paradox. There are physical systems that are beyond the 
scope of the EPR definition of reality. 

The approach we have taken has locality as a basic 
feature and the objective reality (reality of a physical 
quantity independent of observer or apparatus) is at the 
level of the internal variables or initial phases. There is 
no objective reality to the outcomes before the meas-
urement is made. One may explore the relation between 
the reality of the phase variable and the actual out-
comes, and that would be a major step towards under-
standing quantum measurements. Such an 
understanding amounts to conceptual determinism in 
quantum mechanics, even though the initial phase is 
unmeasurable. It may turn out that observers in the clas-
sical world will not be able to grasp the mapping be-
tween such phases and actual outcomes. These issues 
are being contemplated on. 

In summary, we have reproduced the correct correla-
tions of entangled particles under the assumption of 
strict locality of amplitudes. The correlations agreeing 
with experiments and quantum mechanical predictions 
emerge without one measurement causing a collapse of 
the state of the companion particle. This resolves the 
EPR nonlocality puzzle. The results have significant 
implications to the interpretation of all experiments in-
volving entangled particles, including quantum telepor-
tation and entanglement swapping. This approach 
introduces a new point of view in the physical and phi-
losophical understanding of the nature of reality in the 
microscopic world. 
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