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THE NEED FOR AN ENERGY-DEPENDENT
TORSION-COUPLING CONSTANT IN THE EARLY UNIVERSE

(Letter to the Editor)

VENZO DE SABBATA'! and C. SIVARAM?
World Laboratory, Genéve, Switzerland

(Received 6 March, 1989)

Abstract. We present arguments to show that torsion-coupling constant (which depends on energy as E ~2)
can pass through the values of the coupling constants of the other interactions during the evolution of the
Universe. An energy-dependent torsion-coupling constant helps in a natural way to understand the ratios
of the coupling strengths of the different fundamental interactions.

It has been emphasized by many authors (Hehl and Datta, 1971; Sivaram and Sinha,
1975; Kaempffer, 1979; de Sabbata and Gasperini, 1979, 1980) that the general struc-
ture of metric-torsion theories allows parity violating interactions, i.e., the torsion of
space-time might be responsible for parity violation in weak interactions. It has been
recognized that the torsionic contact interaction between two Dirac particles has a
formal analogy with weak interaction Lagrangian with the usual Einstein—~Cartan static
term for the field and can be written as

& = VBV~ ADTH) =

= (=3/16)x[J.(WJ“(¥') + (NI *#(Y')] (1
Je=Apry, T =yyyry, V=05,
A, = (1/4)(—:W,‘,_¢,YQ"“3y (Q.p, being the torsion tensor),
V,=i(3/16)yJ,, A,=3/16)xJ; . )

This may be written in the standard (V — A4) form if at least one of the two fermions
is massless (i.c., described by a two-component spinor y* Y’ =0 and
(1 - 95 =2¢y'), we have

& = =GBy v (1 = Y)Y (JE + T#) =
= —(332)x¥ 1.1 = P I Yy (1 - )Y 3)
Thus we have a torsionic interaction Lagrangian which is formally identical to the weak

interaction four-fermion (¥ — A) Lagrangian except for the value of the coupling
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constant. This raises the possibility that torsion may provide a geometrical model for
weak interactions just like curvature does for gravitational forces. However, the
coupling constant in the above Lagrangian (3) is

3%/32 = 320K h*/4c? ~ 10~ 3! erg cm?, 4)

whereas the Fermi weak coupling constant for the four-fermion or (¥ — A4) theory is

GF/f ~ 10" %ergcm?. Q)

Therefore, in order to have a complete identification of torsionic and weak interactions
we must postulate a spin-torsion coupling constant which is different from the mass-
curvature coupling in Einstein’s equations by a factor (Sivaram and Sinha, 1974, 1975;
Kaempffer, 1976; de Sabbata and Gasperini, 1978) of

111 = /819 (Gre?/nK h%) ~ 103" . (6)

One has the possibility of giving arbitrary value to the torsionic coupling constant. There
is no compelling a priori reason why it should have the same value as the gravitational
constant.

In fact one can give some arguments to justify identifying the torsion coupling G, to
the Fermi Gg. For instance, the similarity to the four-fermionic interaction (i.e., of the
torsion interaction of two Dirac particles): i.e., with the action

j d*x(G /2 ¥ ¥, (7)

implying that G, has the dimensionality of mass to a negative power. More precisely:
the action is to be dimensionless; Y being a spinor has dimensions (mass)*? so that (y)*
has dimensions (mass)®, d*x has dimensions of (mass)~*, so that G, must have
dimension of (mass) ™ 2.

On the contrary, in the Hilbert Lagrangian for gravity

J d*x(1/16nG) ./ -gR, (8)

the coupling (1/16G) has the dimension of (mass)?; since \/Tg d*x has dimensions
(mass) ™%, R the curvature scalar has dimensions (mass)?, then for the action to be
dimensionless (1/167G) must have dimensions of (mass)®>. This means that the
dominant contributions to 1/167G would arise from the higher mass states, the highest
masses (i.e., mediating or vitual particles of highest mass) contributing the most. Thus
for the Newtonian gravity coupling, the Planck mass states would chiefly determine the
value 1/16nGy.

G on the other hand in Equation (7) having dimension of (mass) ™2, would receive
dominant contributions from the lower mass states, i.e., from the intermediate weak
bosons (W, etc.). This would fix its value at the Fermi constant G, for intermediate
boson masses &~ 100 GeV. The whole hierarchy of heavier mass bosons up to Planck
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mass would not significantly contribute to G, as their effect in determining its value
would drop as (mass)~ 2.

Therefore, if torsionic coupling constant receives its contributions from the inter-
mediate weak bosons it could have the value ~ G. Another justification for identifying
G with G, may arise in accounting for the rather intriguing coincidence (Sivaram,
1982)

e*/2m,c® = (Gg/hc)'?* =~ 6 x 10~ cm . )

This suggests some link between the electromagnetic interaction (electric charge ¢) and
the weak interaction through the proton mass m,. We can arrive at this kind of relation
by considering a model for the proton wherein it may be held together by the spin-torsion
force between its constituents acting against the electromagnetic forces. At the proton
electromagnetic radius (e?/2m,c?), the spin-torsion interaction energy (from the
Einstein—Cartan theory) is (see de Sabbata and Gasperini, 1982; de Sabbata and
Sivaram, 1989) given by

(4nGg/3c?) (h- #/2)/(47/3) (€*/2m,c?)’ = E, . (10)

This is to be balanced by the electromagnetic self-energy m,c?/2a (o is the fine structure
constant: i.e., from the uncertainty principle at the distance e?/2m,c? = (1/2a) (h/m,c),
we have the energy (m,c?/2a). Equation E , in Equation (10) to m,c/2a, we then obtain
the relation given by Equation (9). However, earlier (de Sabbata and Gasperini, 1981;
de Sabbata and Sivaram, 1989; Sivaram and Sinha, 1979) we have considered torsion
in connection with strong gravity, with a coupling constant G, = 10°® G —i.e., of the
strength of the strong interactions. Many properties of the strong interactions could be
explained by invoking strong gravity with torsion (Sivaram and Sinha, 1979). How do
we then understand the torsion coupling constant being used in the description of both
weak and strong interactions?

The answer lies again in the fact that, as suggested by Equation (7), the torsion
coupling constant gets its contributions from the lowest mass states. We know that the
spin-2 f-mesons mediate strong gravity. Their mass is m,~ 1 GeV, i.e., about a hundred
times smaller than the intermediate weak bosons. Thus as the coupling G, scales as
(mass) ~ 2, we have the corresponding coupling constant for strong torsionic gravity as
~10* times Gy ~ strong interaction coupling constant.

This suggests that the torsionic coupling constant should be energy dependent and
would scale with the corresponding mass M of the mediating bosons as

Gy~ 1/M2. (11)

Thus G, = G, the Fermi constant, if M ~ M, the intermediate boson mass. For
M~ My, . = 10" GeV, i.e., if the energy increases to such high values that particles

of mass ~ Mp,,,, mediate the interaction, then

Gr=Gnege. = GF(MW/MPlanck)Z > (12)

thus explaining the large difference in weak and gravitational couplings. For
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M, ~ 1 GeV, the f-meson mass, the coupling becomes large, i.e., G = G, which is the
strong gravity constant. Thus

(Gf/GF) =~ (Mw/Mf)2 or (Gf/GNewt) = (MPlanck/Mf)2 ~ 10°%. (13)

Equations (12) and (13) enable us to understand the ratios of the coupling strengths of
strong, weak, and gravitational interactions.

Now, Grand Unified Theories (GUT) predict nucleon decay to occur through effec-
tive four-fermion interactions ~ G r(¥)*, mediated by exchanges of super-heavy
gauge bosons, mass M ~ 10'> GeV. Therefore, the corresponding coupling constant
Gyt by analogy with the expression for Fermi weak interaction (g,,/8m2 ~ GF/ﬁ)
can be written as:

Gour/\/2 = 82/8M . (14)
The nucleus decay rate by this four-fermion interaction is

[~ 1)ty ~ G&yrmy ~ my/M2, (15)
where m,, 1s the nucleon mass. For

Gour ® Ge(M,, /MY ~2 x 10~ ergem? ; (16)
this gives

ty & 10°2 yr .

At GUT energies (~ M, ), quantum gravity effects would not much alter proton decay
rates, as contributions of bosons of M > M_ to Ggyr, scale as 1/M? So that
M =~ Mp,,, ., mass bosons would change G5r coupling constant by one part in 10®
only! This suggests that the same torsionic coupling constant at M, ~ 10'° GeV, i.e.,
G = Ggyr can be responsible for nucleon decay.

It has been suggested that all forces are due to a spin-curvature coupling (Harris,
1980). That is, in curved space with torsion there is a coupling of the spin-tensor S,
and the curvature tensor R,,,,s to give a force (1/2)R*”,,S,,%”. It has been shown
(Harris, 1980) that all the forces that are derivable from gauge theories are of this form:
i.e., they are due to a coupling of spin and curvature of the above form when the concepts
of spin and curvature are suitable generalized. The question then as to whether the
coupling constant of the spin-curvature interaction can describe the strengths of the
basic interactions has been answered if one considers an energy-dependent torsion
coupling constant. We have seen that Equations (12)-(16) above do suggest that the
coupling strengths of all the fundamental interactions can be accomodated in the
energy-dependent torsion coupling constant G,. Now it was suggested earlier
(de Sabbata and Gasperini, 1982; Sivaram and Sinha, 1979; de Sabbata and Rizzati,
1979) that in the early universe, during the hadron era (in connection with the Dirac
two-metric theory) the gravity constant was appropriately the strong gravity one
(i-e., G;). So the above relations would suggest the evolution of the torsionic coupling
constant as follows: during the Planck epoch it was identical with the Newtonian
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constant Gy During the GUT’s epoch it had the value of the GUT’s coupling (G
which was the same for strong, weak, and electromagnetic), during the electroweak era,
it was' Gy (Fermi constant) and during the hadron era it was G. It then reduced by
expansion of the Universe in accordance with Dirac relation G ~ ¢~ ! to its present value
of Gnew: (see Figure 1). If one does not like to believe in variation of G, then after the
hadron era, there was a phase transition from G, to Newtonian value Gy, (see
Figure 2).

018 13 7 b

Fig. 1. Variation of torsionic coupling constant with time in the case that after hadronic era the gravitational
constant follows Dirac hypothesis (G ~ ¢t~ 1).

‘ol’

Fig. 2. Variation of torsionic coupling constant with time in the case that after hadronic era a phase
transition from G, to G, has occurred.
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The energy-dependent behaviour of the torsion coupling during the evolution of the
Universe can be diagramatically represented as follows with respect to time ¢: before
hadron era G, ~ T~2 ~ ¢t in R-W universe temperature T and time are (cf. Sivaram
and Sinha, 1975) related by T ~ ¢~ '. The maximum value of G,- would be reached for
the lowest mass of the mediating meson, i.e., for m_ the pion mass. Once the Universe
expands cooling further, energy is too low for producing any other particles and G,
drops off as ¢~ ! to its present value of Gr.,.
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