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Abstract. An energy-dependent string tension could be connected to the fundamental physical and coupling
constants. The role of Weyl gravity for sub-Planckian as well as macroscopic domains is explored and the
existence of a hierarchy of scales is considered.

In several recent papers (Sivaram, 1986a, b, ¢, 1987a, b) a unification of the parameters
underlying elementary particles and cosmology was outlined. Again in a recent paper
(de Sabbata and Sivaram, 1989) it was shown that the torsion-coupling constant G
depending on energy as E~ 2 can pass through the values of the coupling constants of
the fundamental interactions during the evolution of the Universe, enabling the under-
standing of the ratios of the different coupling strengths. Thus we had the relations

GNewt = C;F(]‘JW/J‘IPIanck)2 ’ (1)

where Gy.,. and G are the Newtonian gravitational and Fermi weak interaction
constants, respectively, M, and Mp,,, ., being the intermediate weak boson and Planck
masses. The large difference in weak and gravitational couplings are explained by the
ratio (M, /Mpanc)?, G being inversely proportional to 1/M 2. Again as pointed out in
de Sabbata and Sivaram (1989), for M~ 1 GeV, the f-meson mass, the coupling
becomes large, i.e., G~ G, which is the strong gravity constant characterising the
strength of strong interactions.
Thus

2
(G//Gr) ~ My M or ( & >= (MA;“) ~ 10%. @
Newt f

Equations (1) and (2) enable us to understand the ratios of the coupling strengths of
strong, weak, and gravitational interactions. Again at the grand unification scale, where
the interactions are mediated by exchanges of super-heavy gauge bosons of mass M,
the corresponding coupling constant is

Gour =~ Ge(My, /M, > ~2 x 10~ 7% ergcm? ;

whereas at the Planck scale G = G-
Now in string theories, the coupling is characterized by the so-called string tension
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T, which is the energy or mass per unit length. At the Planck scale, T is given by
Topanck = ¢%/G=1.6x10%gcm™"!. 3)

Thus T has units of G~ ! (¢ = 1),is T ~ G~ . For any other energy scale, M, T is given
as

T= TPlanck(M/MPlanck)2 . (4)

(Equations (1) and (2) showed that G ~ 1/M?, so that T ~ G~ ! ~ M?, T scaling as the
mass squared). So the maximum value of 7 would be at Mp, ., i€,
Tpianck = ¢*/G = T,,... The string length at this scale is the Planck length
Lppane = (hG/c?)2, so that the string mass is Tpiaperlprance Which is Mpj, ook

If the string is now stretched beyond Lp, ., i.€., t0 L > Ly, then to conserve
energy, T would be expected to fall as L~ ', otherwise M would increase as L increases.
However, the quantum uncertainty principle would imply an M inversely proportional
to L (as mass M cannot be localized to below A/Mc). If T falls as L', M would be
constant but if M is to scale as L ~ ! as required by the uncertainty principle, T should
scale as 1/L? or be proportional to M2. As T ~ G~ !, this would imply that G scales
as 1/M? or as L?, consistent with Equations (2) and (1)!

So GM? is an invariant and equals to #c, i.e., GM?=hc. So we have
GnewtMbianck = fic, GeMG, = ke, G M7? = he, GoyrMéur = hie, etc., or in units of
h=c=1, GM?~ 1. So a combination of energy conservation and the uncertainty
principle implies that if the string is stretched to R » Lp,,.. then for all length scales
larger than Ly, (or all energy scales smaller than Mp,,, . OF Epoc) W have the
scaling relations:

G~ 1/M?~R?, (5a)
GM ~ R, (5b)
M~ R~! (uncertainty principle), (5¢)
T~M2>~G '~ 1/R?, (5d)
GM? = const. = Ac = universal ‘charge’ squared . (5e)

Equation (5¢) implies that the ‘underlying charge’ squared irrespective of changes of
length or energy scales is a universal constant which is just #c. So although, at lengths
as given by (5a)—(5d), the product G,M? scale, where G, is the value of G at any scale
M. 1s still Ac.

Thus

Griewt M3, = GFMV2V = Gfo2 = GGUTMéUT = hc. (6)

lanck —

As the smallest mass scale (i.e., longest range) involved in strong interactions is the pion
mass, M, G,M? = hc, and G has its largest value, i.e., the pion-nucleon coupling
strength is = 10.

So, between Lp,., and #/M, c~ 1.4 x 10~ '3 cm, Equations (5a)—(5¢) hold and
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moreover Gm ~ R. Thus, in all the above relations (as summarized in Equation (6)) we
have the coupling constants of various interactions represented by an ‘equivalent
gravitational constant’. In the case of strong interactions this was referred to as the
strong gravity constant (de Sabbata and Sivaram, 1989). Here we have the whole
hierarchy of interactions below Mp,, .. (above Lp,...) represented by the corre-
sponding ‘gravitational constant’ G scaling with energy as E ~2 or with scale length as
R?, however, GM? is a universal constant which is just #c!

What about scale lengths below Ly, ., ? It is often thought that L, ., is the smallest
length one can construct from the fundamental constants. This is not true. There re a
whole hierarchy of length scales smaller than the Planck length L, ., which one could
construct. For instance we have

JGelc* = /o Lppnac ~ 107 cm (@ x 155), G = Grewe (72)

(the corresponding mass is e/\/a = \/&Mplamk).
Again if one has a ‘weak charge’ g,, (related to G as g,, = Ggm]) we have

VG, /2 =3x10"3 Ly ~5%x 1073 cm, (7b)

(the corresponding mass is gw/\/a ~3 % 1073 My na0)-
Again we can have

8we = GF m, = 10—3gw’ (7C)
so that one has another length
JG g/ ~=5%x10"*cm . (7d)

One can go all the way down to the length corresponding to the gravitational charge
Grew:M;? which would give

JGJ/Gmyjc? = Gmy[c>~2 x 10" cm. (7e)

(the corresponding mass is the proton mass m,!). This is just the gravitational radius
of the proton which is 10~ Ly, !
Again for the electron one has

Gm,[c*~2x 1073 cm~ 10722 Ly, ok - (71)

Equations (7a)—(7f) would imply that for all length scales R less than Lp,, ., M scales
as R, i.e., M ~ R. For instance, the ratio of Gm,/c? to Lp,,, is the same as the ratio
of m, to Mp,,,.., etc. This is consistent in the string picture with the string tension T
remaining constant at lengths below Lp,, .. so that the mass at all length scales
R < L, 18 Just proportional to the length. Thus, analogous to Equations (5), we have
for all lengths R < Lpj ok (also for R <€ Ly, ) the scaling relations

G = const. = Grewt » (8a)

T = ¢?/G = const. = Tpppex » (8b)
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M~R, (8¢c)
GM~R, (8d)
GM? ~ R? . (8e)

A comparison of the scaling relation equations (5) for all R > Ly, and Equations (8)
for R < Lp,.oc Would indicate that in both cases GM ~ R (in fact GM = Rc? for the
whole range).

GM ~ R holds both above and below the Planck scale. Equations (8a) and (8e) imply
asymptotic freedom for all lengths below Lp,,, ... Equation (8¢) implies that the charge
squared (GM ? which was universally #c¢ for all R > Lp,, ., as implied by Equation (5¢))
now scales as R? reaching a maximum of #c for R = Lpy,,, and falling of as 1/R? for
all L < Lpy,,q- Thus, at the gravitational radius of the proton, R, ~ 107" Ly, o,
GM? = GM} =103 hc, ie, GMZlhc~ (R, /Lppuna)- It is GM7? for
R, ~ 107?? Ly, (Equation (7f),i.e., GM2/hc ~ (R, /Lpjna ) =~ 10~ %, etc. Above
Lo for all lengths between Lpp,,.. and #/M_ ¢~ 107" cm, as noted above,
GM 2 = hc =const., G~ R?*~ 1/M?, GM ~ R, etc. Also we saw that M ~ R~!
above Lp,..cx Was consistent with the uncertainty principle (in turn implying 7 ~ M?).

What happens to the uncertainty principle at lengths below Lp,, .. ? In fact this is a
problem even for string models as we have a contradiction for all length scales below
Lpianek- That is, for all length scales below Lp,,, ., the gravitational radius is much
greater than the Compton length or localisation length implied by the uncertainty
principle.

The equality between GM/c? and #/Mc (as required by consistency requirements on
both GR and quantum mechanics) can be preserved at all lengths below Lp,,, ., only
if %, i.e., the quantum of action, itself varies as M 2. Thus at Mp,, . it has its usual value
# 50 that GuewMBianck = hc and GM? = fic at all distance scales above Lp,, .., as noted
in Equation (5¢). But for all distances R below Lp,, ..., 7 reduces, i.e., goes as R?. Thus
h~M?~R? so that GM?~ 10~ % #c at the proton gravitational radius which is
~ 107" Ly, SO that the effective # scaling as R? is 10~ 3%4! So we have another
scaling relation: for lengths above Lp,,.., # = const.; lengths below Ly, ..., # scales
as R? (also GM? ~ R? and GM?/hc = const.).

Asymptotic freedom is implied for length scales below Lpy, .. as GM?*— 0 (the
effective charge vanishing) as R — 0, 2 — 0 as R — 0. This would remove a contradiction
wherein a zero-distance scale would correspond to infinite energy fluctuations.

Above Lp,,.c, contradiction with the uncertainty principle was avoided by having
G scaling as M2, with Ac as constant. Energy conservation was also guaranteed. The
scaling M ~ R, below Lp,,, .. would again satisfy energy conservation, besides implying
asymptotic invariance M — 0 as R — 0. The string tension T is constant below Lp,, ..
and is (c?/G). The scaling law M ~ R, below Ly, ., would, moreover, be consistent
with the expectation that gravity at length scales below Lp,,, . Would be described by
a Weyl-type theory (Sivaram, 1985, 19864, b,-c) rather than by the Einstein—Hilbert one.
The Weyl theory has a quadratic curvature action I,, ~ aC®¢C_,_, + bR? with a

abe
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dimensionless coupling constant. For the scale-invariant Weyl gravity, the mass or
energy grows linearly with distance, i.e., M ~ R. So, if the Weyl gravity dominates at
R < Lp,nec> We would expect M ~ R and GM ~ R and GM? ~ R?. As pointed out in
earlier works (Sivaram, 1985, 1986a, 1987a), breaking of scale invariance at Lp,, x>
induces a Hilbert term with a dimensional gravity constant G varying with scale as M ~2
so that GM? = const. and GM ~ R which is consitent with Equations (5) describing the
behaviour at L > Lpj,.. So Weil gravity with M ~ R holds for L < Lp;,,, and
Einstein—Hilbert gravity for L > Lp,, ... But for both cases GM ~ R and GM/c? equals
h/Mc, so no contradiction between quantum and classical criteria for localizability.

Now several macroscopic structures on astronomical scales such as galaxy clusters
and superclusters show evidence for considerable dark matter their rotation curves and
velocity dispersions implying M rising linearly with R, i.e., M ~ R. One wonders whether
Weyl gravity is also implied over such large scales which would naturally imply M ~ R.
One can note some amusing macroscopic analogues to the length scales (7a)—(7e). If
one considers that the Hubble radius ~ 10?® cm is 10%! times the Planck length Lp,, .,
then if all the length scales in Equations (7) are multiplied by the same scaling factor
(i.e., 10°'), then (7a) with the quark charge, would imply structures on the scale of
~ 100 Mpc (the Great Wall of Galaxies?). Equation (7b) would imply structures with
lengths of ~ 10 Mpc (Large Super Clusters). Equation (7d) implies ~ 10 kpc (galaxies)
and so on giving a whole range of macroscopic ‘scaled-up’ analogues of sub-Planck
length scales! They would be self-similar in the sense of M ~ R, p ~ 1/R?. This also
implies a # ~ M?, so that for galactic structures with M, ~ 10°° My, ., we have a
‘galactic’ Planck’s constant of #,, ~ 10'°°4 quantum (~ 1073 ergs) and has been
independently postulated (for, e.g., by Cocke and Tifft, 1989) to explain several velocity
and red-shift features! Note also that M ~ R also implies an angular-momentum mass
relation of the type J ~ M? consistent with that observed for a whole hierarchy of
structures. The string picture also seems to imply this (Sivaram, 1987b).

And the largest structure predicted would be ~ 300 Mpc. Finally, from the geometri-
cal picture of the string wherein the tension 7 is related to the deficit angle (i.e., geometry
is locally that of planes joined by a fraction (¢/27) of a cylinder, the string being
described by a Wedge in space-time), y = —2¢ by T = ¢/8nG, we can have an under-
standing as to why the equivalent G becomes large at scales > Lp,,..x», OF equivalently
why T becomes smaller at R > Lp,,..,- The deviation from Minkowski space is locally
given by the deficit angle ¢. For distances R > Lp ..k, the deviation becomes smaller
and smaller (i.e., the curvature is small) so that ¢ becomes small. So the string tension
T proportional to ¢ becomes small and G being inversely proportional to 7, becomes
correspondingly larger, as G~ ¢~ '. ¢ ~ R~2 (being related to curvature) and so
G ~ R?, accounting for the scaling relation equations (5). ¢ is very small at large
R > L.k, SO deviation from 27 is small, i.e., deficit angle small and, therefore, T — 0
as effective G becomes large. At R < Ly, ., ¢ is constant and T = C?/G and we have
asymptotic freedom with the effective charge or coupling g2 (or GM?) ~ R?.
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