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Radiative capture of polarized neutrons by polarized protons
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A model-independent irreducible tensor approach to ~p(~n, γ)d is presented and an explicit form for
the spin-structure of the matrix M for the reaction is obtained in terms of the Pauli spin-matrices
σ(n) and σ(p). Expressing the multipole amplitudes in terms of the triplet → triplet and singlet →
triplet transitions, we point out how the initial singlet and triplet contributions to the differential
cross section can be determined empirically.
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The study of radiative capture of neutrons by protons
is of interest not only to nuclear physics as a testing
ground for theories of NN interaction, but also to astro-
physics, where the fusion reaction is part of the proton-
proton chain responsible for the generation of solar en-
ergy and production of elements in the early universe
[1]. The cross section for the process was directly mea-
sured [2] for the first time at neutron energy of 550 keV,
although measurements [3] with thermal neutrons have
been carried out earlier. The 10% discrepancy noted be-
tween such measurements and theory was accounted for
with surprising accuracy by the inclusion [4] of meson ex-
change currents (MEC). Measurements [5] at higher ener-
gies were used to test effects of ρ and ω exchanges and rel-
ativistic corrections to the impulse approximation [6]. Al-
though a thorough review of the inverse reaction d(γ, n)p
over a wide range of energies is found in [7], the energy re-
gion just above threshold does not seem to have received
much attention. Photodisintegration experiments at low
energies focused attention [8] on the relative M1 and E1
contributions. Experiments employing polarized photons
have been reported between 5 to 10 MeV [9] and more
recently [10] at 3.58 MeV. The angular distribution as
well as polarization of the neutron in d(γ, p)n were mea-
sured [11]. Though the measured angular distribution of
the neutron was found [12] to be in good agreement with
theory at 2.75 MeV, the angular distribution and neutron
polarization in [11] differ from theory which includes the
MEC contributions. Employing polarized neutrons at 6
MeV and 13.4 MeV, the analyzing powers [12] in p(~n, γ)d
was measured which differed from theory. Recent cross
section calculations [13, 14], which agree with each other
within 5% deviation, are found to differ from the 1967
estimates of Fowler et al [1]. The cross section was ob-
tained in [13] by fitting the existing data with a poly-
nomial expansion, while the calculation in [14] includes
MEC’s, isobar currents and pair currents. The theory is
in good agreement with cross section data for neutrons
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TABLE I: Transitions from initial states of np system, from
threshold onwards, to the final 2H state with spin-parity 1+

and isospin I = 0, together with the corresponding ∆I, ∆s
and multipole characteristics of the radiation emitted in the
fusion reaction.

Initial state ∆I ∆s Allowed multipolarities

of emitted radiation

1S0 I = 1 1 1 M1
3S1 I = 0 0 0 M1 E2
1P1 I = 0 0 1 E1 M2
3P0 I = 1 1 0 E1
3P1 I = 1 1 0 E1 M2
3P2 I = 1 1 0 E1 M2 E3

... and so on.

with energy above 14 MeV, but deviates by about 15%
from older d(γ, p)n measurements between 2.5 MeV and
2.75 MeV [15], which correspond respectively to neutron
energies 550 keV and 1080 keV in p(n, γ)d. Apart from
the fact that uncertainties in p(n, γ)d cross sections at
energies below about 600 keV lead to dominant uncer-
tainties in the determination of the relative abundances
of elements in the early universe, it is interesting to study
the fusion reaction for its own sake, especially since a be-
ginning has also been made [2] to study p(n, γ)d precisely
in the region of energies of interest to astrophysics. This
recent study [2] has shown experimentally that the M1
transition from S-wave capture, which dominates at lower
energies and the E1 transition from P-wave capture at
higher energies are comparable at 550 keV.

It is interesting to observe that the neutron capture
in p(n, γ)d from the 3S1 state is from the isospin I = 0
state, which is the same for the deuteron, while that from
the 1S0, I = 1 state is characterized by a ∆I = 1 transi-
tion. Likewise, capture from 1P1, I = 0 state leads to a
∆I = 0 transition, whereas those from 3Pj=0,1,2, I = 1
states are characterized by ∆I = 1 transitions (see TA-
BLE I). The cross section at very low energies is dom-
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inated by the ∆I = 1 amplitude for the M1 transition
from the 1S0 state, since the NN scattering length in
the 1S0 channel is large and the M1 amplitude is propor-
tional to the isovector magnetic moment of the nucleon,
which is more than five times larger than the isoscalar
magnetic moment. It was, however, noted quite early
[16] that the spin-dependent effects in the fusion reac-
tion are sensitive to the small ∆I = 0 amplitudes M1
and E2. Hence a “polarized-target-beam test” was pro-
posed for the 3S1 →3 S1 radiative transitions in ther-
mal np capture. The isoscalar M1 and E2 amplitudes
have also been studied theoretically recently [17], using
effective field theory, since the circular polarization [18]
of photons emitted in the capture of polarized neutrons
by unpolarized protons and the angular distribution [19]
in the capture of polarized neutrons by polarized pro-
tons are sensitive to the presence of these amplitudes.
Parameter-free predictions, employing the Weinberg [20]
scheme of power counting, have also been made [21] for
the spin-dependent observables in ~p(~n, γ)d at threshold
energies. However, the recently [19] measured value of
η = (1.0± 2.5)×10−4 for γ-anisotropy at 50.5% polariza-
tion of neutrons and protons in ~p(~n, γ)d cannot test the
effective field theory predictions at 10−7. Although this
measurement provides the first experimental value for a
spin-dependent observable in ~p(~n, γ)d, spin-observables

in elastic ~N ~N scattering have been measured for more
than two decades [22]. More recently, attention was fo-

cused on such observables in ~N ~N scattering, with a veiw
to determine the exact strength of the tensor interaction
and the case of π◦ production in ~p~p collisions [24] for
which the threshold itself is high. Even at higher en-
ergies, it is clear that the singlet and triplet radiative
captures from any arbitrary initial partial wave, ℓ lead
to p(n, γ)d characterized respectively by ∆I = 0 and
∆I = 1 or ∆I = 1 and ∆I = 0 depending on whether the
initial parity (−1)ℓ is odd or even. Since the NN inter-
action, as elicited from elastic scattering data, conserves
channel spin, s (apart from total angular momentum j)
as well as isospin I, it would be of interest to study ex-
perimentally the relative strengths of the initial singlet
and triplet contributions to the p(n, γ)d reaction at any
given energy, since the fusion reaction leads to transitions
in the two-nucleon system, which change spin s as well
as isospin I. It is also worth noting that np fusion near
threshold bears some resemblance to the case of pd fu-
sion, where the validity of the so-called “no-quartet the-
orem” [25] was questioned and led to several incisive the-
oretical studies [26] in later years. More recently, it was
pointed out [27] that a non-zero tensor analyzing power

in
−→
p (

−→
d , γ) 3He by itself provides a clear signature to

the contributions from the quartet amplitudes. More-
over, it was shown [28] that it is possible to determine
empirically the individual doublet and quartet differen-
tial cross sections at any given energy through appropri-

ate measurements of the relevant spin-observables in ~N ~d

fusion. In contrast to the difficult ~N ~d fusion experiments

suggested in [28], it should be technically more feasible
to carry out the ~p(~n, γ) 2H experiments [19].

The purpose of this Rapid Communication is to present
a model-independent theoretical approach to the np fu-
sion process based on the irreducible tensor formalism
and identify observables in ~p(~n, d)γ experiments that fa-
cilitate determination of the singlet and triplet cross sec-
tions empirically for the fusion reaction at any energy.

Let p(p, 0, 0) and k(k, θ, 0) denote respectively the neu-
tron and photon momenta in a right-handed c.m. frame
[29] and let 〈md; kµ|T |p; mn, mp〉 denote the elements
of the on-energy-shell T -matrix for the fusion reaction
p(n, γ)d where mn, mp, md denote respectively the spin-
projections of the neutron, proton and deuteron and
µ = ±1 denote the left- and right-circular states of pho-
ton polarization, as defined by Rose [30]. The unpolar-
ized differential cross section for the reaction is then given
by

dσ0

dΩ
=

(
k

2πE

)2
EnEpEd

p

1

4

1

2∑

mn,mp=− 1

2

1∑

md=−1

×
∑

µ=−1,1

|〈md; kµ|T |p; mn, mp〉|2,
(1)

where Ep, En and Ed denote the c.m. energies of the
proton, neutron and 2H respectively, when the reaction
takes place at c.m. energy E. Expressing the initial np
system in terms of isosinglet and isotriplet states and
making use of the standard multipole expansion [30] for
the photon in the final state and the usual partial wave
expansion for relative motion in the initial state with
channel-spin s = 0, 1, the T -matrix may be expressed as

T =
∑

s=0,1

(1+s)∑

λ=|1−s|

∑

µ=−1,1

(
Sλ(1, s) · T λ(µ, s)

)
, (2)

where Sλ
ν (1, s) denote [31] irreducible tensor operators

of rank λ in hadron spin-space. The irreducible tensor
amplitudes T λ

ν (µ, s) in Eq. (2) are given explicitly by

T λ
ν (µ, s) =

√
2

3
(2π)(−1)1−s

∞∑

ℓ=0

∞∑

L=1

(ℓ+s)∑

j=|ℓ−s|
(i)ℓ−L

× (−1)λ−L [ℓ] [L] [j]2 dL
νµ(θ)C(ℓLλ; 0νν) (3)

× W (ℓsL1; jλ)
[
T

j (mag)
L;ℓs (E) − iµ T

j (elec)
L;ℓs (E)

]
,

where the energy dependence is carried entirely by the
partial wave magnetic and electric 2L-multipole ampli-

tudes T
j (mag)
L;ℓs (E) and T

j (elec)
L;ℓs (E) respectively, while the

angular dependence is contained entirely in dL
νµ(θ). We

use the shorthand [j] =
√

(2j + 1) and the rest of the no-
tations follow [30]. The multipole amplitudes are given
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in terms of the reduced matrix elements by

T
j (mag)
L;ℓs (E) =

1

2

{
(−1)L+1 + (−1)ℓ

}
〈 ||T || 〉

T
j (elec)
L;ℓs (E) =

1

2

{
(−1)L + (−1)ℓ

}
〈 ||T || 〉 ,

(4)

where 〈 ||T || 〉 denotes

〈 ||T || 〉 =
∑

I=0,1

(−1)I [I]−
1

2

[
1 − (−1)ℓ+s+I

]

× C(1
2

1
2I;− 1

2
1
20)

〈
(1L)j; Id = 0

∣∣∣∣T
∣∣∣∣(ℓs)j; I

〉
.

(5)

Expressing the irreducible tensor operators Sλ
ν (1, s) of

rank λ in terms of the Pauli spin-matrices σ(n) and σ(p)
and unit 2× 2 matrices σ0

0(n), σ0
0(p) for neutron, proton

respectively following [31], we may rewrite Eq. (1) in the
elegant form

dσ0

dΩ
=

1

4
Tr

(
MM †

)
, (6)

where Tr(≡
∑

md

∑
µ) denotes the Trace or Spur and the

matrix M for p(n, γ)d has the form

M =

1∑

λ1,λ2=0

(λ1+λ2)∑

λ=|λ1−λ2|

((
σλ1 (n) ⊗ σλ2(p)

)λ · Mλ(λ1, λ2; µ)
)

, (7)

in terms of irreducible tensor amplitudes Mλ
ν (λ1, λ2; µ)

of rank λ given by

Mλ
ν (λ1, λ2; µ) =

(
k

2πE

) (
EnEpEd

p

) 1

2 3

2
[λ1][λ2]

×
1∑

s=0

[s]






1
2

1
2 1

1
2

1
2 s

λ1 λ2 λ





T λ

ν (µ, s),

(8)

where { } denote Wigner-9j symbols [32]. We may ex-
plicit Eq. (7) as

M =A + B (σ(n) · σ(p)) + (σ(n) + σ(p)) · C
+ (σ(n) − σ(p)) · D + (σ(n) × σ(p)) · E

+
(
(σ(n) ⊗ σ(p))

2 · F 2
)

,

(9)

where the coefficients are related to (8) through

A = M0
0 (0, 0; µ) ; B = − 1√

3
M0

0 (1, 1; µ) ;

C1
ν =

1

2

[
M1

ν (1, 0; µ) + M1
ν (0, 1; µ)

]
;

D1
ν =

1

2

[
M1

ν (1, 0; µ) − M1
ν (0, 1; µ)

]
;

E1
ν =

i√
2
M1

ν (1, 1; µ) ; F 2
ν = M2

ν (1, 1; µ)

(10)

and C1
ν , D1

ν , E1
ν denote respectively the spherical compo-

nents of C, D, E. Comparing Eq. (9) with M for elastic
NN scattering [33] shows clearly that the fourth and fifth
terms containing (σ(n) − σ(p)) and (σ(n) × σ(p)) are

the ones which induce transitions from the initial spin-
singlet state to the final spin-triplet state of the deuteron.
To estimate the singlet and triplet cross sections empir-
ically we observe that the differential cross section for
~p(~n, γ)d is given by

dσ

dΩ
= Tr

(
MρM †

)
, (11)

where the density matrix

ρ =
1

4

[
1 +

(
σ(n) · P (n)

)] [
1 +

(
σ(p) · P (p)

)]
(12)

describes the initial spin state if P (n) and P (p) de-
note respectively the neutron and proton polarizations.
Rewriting Eq. (11) as

dσ

dΩ
=

1

4

∑

α,β=0,x,y,z

Pα(n)Pβ(p)Bαβ , (13)

where P0(n) = 1, P0(p) = 1 and

Bαβ = Tr
(
Mσα(n)σβ(p)M †

)
, (14)

we readily see that the unpolarized differential cross sec-
tion (6) is given by (1/4)B00. Noting [34] further that

π(1, 1) =
1

4
[1 + σz(n) + σz(p) + σz(n)σz(p)] (15)

π(1, 0) =
1

4
[1 + σx(n)σx(p) + σy(n)σy(p) − σz(n)σz(p)]

(16)

π(1,−1) =
1

4
[1 − σz(n) − σz(p) + σz(n)σz(p)] (17)

π(0, 0) =
1

4
[1 − σx(n)σx(p) − σy(n)σy(p) − σz(n)σz(p)]

(18)
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are the projection operators |sm〉〈sm|, s = 0, 1; m =
+s, . . . ,−s, we readily identify

dσ1,1

dΩ
=

1

16
[B00 + Bz0 + B0z + Bzz] (19)

dσ1,0

dΩ
=

1

16
[B00 + Bxx + Byy − Bzz ] (20)

dσ1,−1

dΩ
=

1

16
[B00 − Bz0 − B0z + Bzz] (21)

dσ0,0

dΩ
=

1

16
[B00 − Bxx − Byy − Bzz ] (22)

as the triplet and singlet contributions (dσs,m)/(dΩ)
which add up to (dσ0)/(dΩ) given by Eq. (1). Eq. (11)
can also be expressed in the form

dσ

dΩ
=

∑

kn,kp,k

((
P kn(n) ⊗ P kp(p)

)k · Bk(kn, kp)
)

(23)

=
dσ0

dΩ

[
1 + P (n) · A(n) + P (p) · A(p)

+

2∑

k=0

((
P (n) ⊗ P (p)

)k · Ak
)]

, (24)

where the irreducible bilinear amplitudes in Eq. (23)

Bk
q (kn, kp) =

3

2

(
k

2πE

)2
EnEpEd

p
(−1)kn+kp−k [kn] [kp]

×
∑

s,s′,λ,λ′,µ

(−1)λ [s] [s′] [λ] [λ′] W (s′k1λ; sλ′)

×






1
2

1
2 s

1
2

1
2 s′

kn kp k






(
T λ(µ, s) ⊗ T †λ′

(µ, s′)
)k

q
(25)

are related to the spherical components of the analyzing
powers in Eq. (24) through

dσ0

dΩ
A1

q(n) = B1
q (1, 0) (26)

dσ0

dΩ
A1

q(p) = B1
q (0, 1) (27)

dσ0

dΩ
Ak

q = Bk
q (1, 1), (28)

with B0
0(0, 0) = (dσ0)/(dΩ), the unpolarized differential

cross section. From Eq. (3), we observe that the T λ
ν (µ, s)

satisfy the symmetry property

T λ
ν (µ, s) = (−1)λ−ν T λ

−ν(−µ, s). (29)

This in turn implies through Eq. (25) that the bilinear
amplitudes satisfy the property

Bk
q (kn, kp) = (−1)k−q Bk

−q(kn, kp) (30)

so that

B1
0(kn, kp) = 0 (31)

and from Eqs. (26) and (27),

Az(n) = Az(p) = 0. (32)

Using these results, we can now write the channel-spin
differential cross sections (dσs,m)/(dΩ) in terms of the
analyzing powers as

dσ1,1

dΩ
=

dσ1,−1

dΩ
=

1

4

dσ0

dΩ

[
1 − 1√

3
A0

0 +
√

2
3A2

0

]
(33)

dσ1,0

dΩ
=

1

4

dσ0

dΩ

[
1 − 1√

3
A0

0 − 2
√

2
3A2

0

]
(34)

dσ0,0

dΩ
=

1

4

dσ0

dΩ

[
1 +

√
3A0

0

]
. (35)

The analyzing powers, moreover, are measurable readily
in an experimental setup such as in [19], where P (n) =

P (p) = P P̂ with P = 50.5% and P̂ could be longitu-

dinal as well as transverse. With P̂ chosen parallel and
antiparallel to the beam, it is clear that

dσ+z

dΩ
+

dσ−z

dΩ
= 2

dσ0

dΩ

[
1 +

P 2

√
3

(√
2 A2

0 − A0
0

)]
(36)

which yields
(√

2A2
0 − A0

0

)
.

Likewise, if P̂ is chosen parallel and antiparallel to a
direction (say x̂ of ŷ) perpendicular to the beam, we have

dσ+x

dΩ
+

dσ−x

dΩ
= 2

dσ0

dΩ

[
1 − P 2

√
3

(
A0

0 + 1√
2
A2

0

)
+ A2

2

]

(37)

dσ+y

dΩ
+

dσ−y

dΩ
= 2

dσ0

dΩ

[
1 − P 2

√
3

(
A0

0 + 1√
2
A2

0

)
− A2

2

]
,

(38)

where we have made use of the fact that A2
2 = A2

−2 from
Eqs. (28) and (30). By adding Eqs. (37) and (38), one

readily obtains
(
A0

0 + 1√
2
A2

0

)
. Since

(√
2 A2

0 − A0
0

)
is al-

ready known from Eq. (36), one can determine A0
0 as well

as A2
0. Hence all the (dσs,m)/(dΩ) for m = −s, . . . , s and

s = 0, 1 are determinable from experiment empirically at
any given energy. We may perhaps add that these mea-
surements need not have to be carried out at accuracies of
10−7 to determine (dσs,m)/(dΩ). Moreover, the discus-
sion presented here aims to extend the program of Breit
and Rustgi [16] to actual individual determinations of the
three triplet and one singlet cross sections for the impor-
tant [1] fusion process at the differential level itself rather
that estimate the relative importance of the triplet am-
plitude vis-a-vis the singlet amplitude. It would, there-
fore, be desirable to extend the recent experiment [19] on
~p(~n, γ)d to measure the observables (36) to (38) in order
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to determine the differential cross sections (dσs,m)/(dΩ)
individually and hence study the fusion reaction more
incisively at any given energy.

It is perhaps not out of place to mention here that the
highly successful NN potential models like Nijmegen1
and Nijmegen2 potentials [35], the Argonne potential [36]
and the Bonn potential [37] which reproduce the elas-
tic NN scattering data with a remarkable χ2/datum ≈
1, have been subjected to an interesting study of the
deuteron properties by Polls et al. [38], who say, It is well
known that the off-shell behavior of NN potentials can-
not be pinned down by on-shell data...Moreover, within a
given model, pinning down the on-shell point limits the
range of variation for the off-shell behavior. The four
modern high-precision models considered in this study pin
down the on-shell T -matrix as much as by all means pos-
sible since they fit the NN scattering data with the per-
fect χ2/ datum ≈ 1. Furthermore, it may be reasonable
to believe that the four models cover about the range of
diversity that there is to realistic physical models for the
NN interaction. Based upon these premises, one may
then conclude that the off-shell uncertainties revealed in

this study are what we have to deal with, at the current
status of theoretical nuclear physics. At this time, we do
not know of any other objectively verifiable aspects that
could further reduce the off-shell uncertainties. Tighter
constraints for the off-shell behavior of NN may emerge
in the future... In this context, it is perhaps pertinent to
point out that np → dγ involves necessarily off-shell NN
interactions. Therefore it would also be of interest to ex-
amine the fusion reaction with a view to throw light on
the off-shell uncertainties. Further work is in progress.
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