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Abutrant

A waximal hellelty principle Is propased to gtudy the stabillty of plasma alructures

in the solar atmoaphere. Thls principle derives from the statistieal treatmont el the magne~-

tohydrodynamical turbulence., Tho steady state of the plosme system results frum‘ subjeacting

the system ko the Invarisnce of total epergy, the magnelie helicity and toroidal and pololdal

magnetie fluxes.

formulated.

1. Introduction

High resolution optical, UY, EUV and
X-ray observations have established the
spatial complexity of the solar  corona.
Active regions appear in the form of loops
or arches. The spatial structure of these
loops outlines the wmwagnetic field geometry.
From the observations of lines of Ca II,
HI, CII, "CIIX, CIV, Ne VII, Mg VIII, Mg
IX and Mg -X, it is concluded thal the loops
consist of a cool core surrounded by a hat
‘sheath which merges with the hot
Yalana and Rosner (1978).

2. Maximal Helicity Principle for
Stability

We assume plasma to Dbe in the form
of a cylinder of radius R and length L with
rigid ‘perfectly conducting walls at r = R.
The MHD equations for an incompressible medium
are:
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~ Using

corona,

The stalistical distributions of the veloeity and magnetic flelds ara

%‘f Ed -v> X (VXB), %l-\y = 6-5 = 0 ‘ (2)

+

where, the'symbolé have their ysual meaning.
The boundary conditions on-B and V are:

v, (r=R) = 0 = B, (r=R) o (3)

The geometry is indicated in Fig.1.

the 1incompressibility condition 1in
the divergence of equation {1), one gets
a relation between p, V and B asi '

220 el

Sunspots _Sunspots
Fig.1.  The geomﬁtry of 8 aolar durqnb‘ loop,
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2p 1/74% V.[(7xB) XBY - v.[p(V. )V] + 9.{p9) %)

which determines the density and temperature
profile of the plasma.
of the plasma system are:

The three invariants

. o . z 2

Total energy E = Id3 X (Vv +8) {5)
Magnetic helicity Hy, = fa° x A8 (6)
“Cross heltcity H, = £d% x V.3 TS

The poloidal flux = ILdz JT oA,

= constant abr=R (8)
where A is the vector potentfal.

 The ve1opity.and magnetic fields are expanded

in terms. of Chadrasekhar-Kendall functions
given as: '
y, L 1m -
' mk ,
* ee[1§: FALN m——Y] ¥(n,m,a) (9)
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. _ime + 1Kz
p(n,m,q) = J"‘.(Yf.‘m‘l r} e "n
? 24172
' A{n,m,q)‘_ ) i“[Ynmq‘ * kn]-( .
K = g%ﬂ I A R I
n . o
,m=0, :t].,. tE,.‘....--.;..._
Yoma corresponds . to that - 'solution which
makes & satisfy the boundary condition
a, = 0°at r =R This gives for m2 + n2 > 0.

r

_Rkn ..Tnmq J‘m (Ynnﬂl R)+ “K(“’m'q) Jm( "mq R)<0
(10}

The e1gen va]ues for m=n =0 are determihed

- Froif - the ‘ratio of toroida] to po1o1da1 f1ux-
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. pliers. - For

T (0,0,a9] Jely__ R) (11).

Now, all the fields and the
be expressed in terms of a by using

invariants can

-+
E": Camg }\(n)m:q) g(n,m,q) ‘a(n,m,q)
nym;q
(12)
-+ -
V=g . Com Aln,m,q) nin,m,q) aln,m,q)
H L (13)
The statistical mechanics of the V and B
fields is then formulated in a phase space

whase coordinates are the real and imaginary
parts of E'S and n'S. The most probable
state of the system is then constructed subjecf
to the constraints of
This Teads to a

has an exponential
multip ler

conservation
canonical

1aws .
ensemble which
term having a Tagrange

for every conserved quantity.

Lagrange multipliers are determined by requi- -

ring a given value of the expectation value

of the conserved quantity, Montgomery. - et
al. (1978}, One chooses the canonigcal distri-
bution subject to -the invariance of E, H

M!
He) ¢t and ¢p as;

D= Constant exp [-0E - B - T, - s (14)

B, y'and & are the Lagrange multi-
initially qu1escent conditions--
He o = 0 and, therefore y'=0. One can factor
out the probability distribution - for gach
expansion coefficient. The prbbabiiity distri-

where. a,

“bition for n{n,m,q) is:

PA(n,m,q) = Kn,m,q exp [ -onZ(n,m,q)

fn(n,ma)} 2 9 (15)

From this we find.

S tma)? > = ot A Rmg) o (18)
Similarly, one can carry out the procedure:
for other coordinates &{n,m,q). One notices

from - equation (16) . that even for 4nitially

‘guiescent conditions there 1s a finite. méan_
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square velocity for every mode in fhe system. .
, < HM> y €0 ¢

Four scalar quantities,
and <y > are
the Jevel
the system,

<E>
sufficient to
of excitation

determine
of every mode in

3. Application to Coronal Loops
3.1. Radial Temperature Variation

We propose that the steady state of
the loop can be described in terms of a single
Chandrasekhar-Kendal]
ized by m =n =0

function character-
Equation (4) for this choice
can be solved to find the radial var1at1on
of the plasma temperature as:

T{r) =

k " (0;0:1)ln2(050!1)|
B
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where T =T atr =0; x =Ar, Mis determined from
- equation (11}, One can substitute for T(r}
from eq. {17) in the line flux calculations
" and determine the spatial widths of the 1ines
ciI, CIII, 0IV, OVI, Ne VIIT and Mg X which
have mean temperatures of formation 5x104K,
ox10%K, 2x10%, 3x10%, 6x10% and 1.4x10% res-
 pectively. Now A*n* (0,0,1)
the turbulent v¢1oc1ty in the fluid andcan

be estimated from the observed Doppler widths :
and
109cm, B ~1.5 Gauss,

 of these lines. For Az' 1014(cm/'sec)2

T, = 6x10%, A = 2/R, R )
we find the spatial widths . to be O. OZA

0.0k, o2l o,10180 7,
> 0. BA” 1

Mg % respect1ve1y.

;-of loops .

Y+ 9F (x) 1.~ 3,(x)} do(x)] + To and
€2(0,0,1) X

(17f

s a measure of

0.3 L and.
for CII, CIII, OIV; OVI, Ne VII and
This behaViouf"cehtainiy L
conforms to the cool core and hot sheath type _

3.2, Statistical Mgchanics of ¥ and B Fields.

‘,stgtjétjcal
values of the

In order to formulate . the
mechanics, we include two
parameter q which 1abels the varfpus roots
of equation (11) as A 1, etc, One can
express the average values of £, HM and wt
in terms of X'S and the Lagrange multipliers.
The Lagrange multipliers can be solved for
by assigning some given values to <E>
<Hy 2y <¥p> .and <y > As a numerical
example, say L = leogcm, wt/$p = 1
then (11) gives A = 2,2/R

equation o
and. A, = -2.6/R.

The values of @« , B and

§ are determined ffom the following relation-
ships:
@ = [2EAh) (B )17t

[-1- qE + -% (g + Ap) TR

29 URY - Y n-2
B (A0‘+_11) H" - 8§1A0 h
A RWIIRLLE (18)
) Mo Ao
R VY 2E - 1/a - Agiy)
{19)
and '
o8 (E - Ve - aH)
§ = wt [ Al = Ap)
' 0*"0 I
61 (E - 1/0‘ - AOH )
0
* -Al( - Ao) '(?.)
~ where aq = ZuRC(o,o,i) Y001 Jl(yob1R) 
e 2 Rc(o,-o;g)- Yoor lea'{,,n)f
E, HM and “’t “are the observab1es. - Since
for: the case of corona] 1oops, there 'are
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no direct measurements of these quantities,
~we shatlhave t fix their vales from other conside-
rations, For  example £ can be obtained
from “energy balance argumenfs which give
£ 51028 args  (Levine and Withbroe 1977).
We . ch'oosa"-HM ~ 0,06¢10% ergs cm, The two

values of o are ~ 2,04x107%8 (ergs)'l.and
0.98x10°%% (ergs)h. W find o~ 2.04x10%°
(ergs)"_1 to be .appropriate for the approxima-
“tions involved in arriving at (18). £q.
{_19) gives g = 0.2x10"7 {ergs cm)'l, and
§ = 1073 @t (Gauss em“) ™ . A representative
choice of ‘J’t ~1017 Maxwe 11 gives § = 10"19

Thus the distribution function for ‘this

particular indicative ewamp1e is »

- Const e2-O4E/E 0Ottt

We observe that total enargy has a rather
narrow distribution compared to the distribu..
tions of the . magnetic helicity and toroidal
flux,  More details about the application
to coronal loops are presented in the paper‘
by KMshan (1983a,bh). :
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