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Abstract

This thesis is devoted to improve our knowledge on the theory of polarized line formation in
a magneto-turbulent medium, and in a scattering dominated magnetized medium, where
partial redistribution (PRD) effects become important. Thus the thesis consists of two
parts. In the first part we carry out a detailed investigation on the effect of random
magnetic fields on Zeeman line radiative transfer. In the second part we develop the
theory of polarized line formation in the presence of arbitrary magnetic fields and with
PRD. We present numerical methods of solution of the relevant transfer equation in both
part-I and II.

In Chapter 1 we give a general introduction, that describes the basic physical concepts
required in both parts of the thesis. Chapters 2 - 6 deal with the part-I, namely stochastic
polarized Zeeman line formation. Chapters 7 - 10 deal with part-II, namely the theory
and numerics of polarized line formation in scattering media. Chapter 11 is devoted to the
future outlook on the problems described in part-I and II of the thesis. Appendices are

devoted to additional mathematical details.

Part-I of the Thesis: Stochastic polarized line formation in magneto-turbulent

media

Magneto-convection on the Sun has a size spectrum that spans several orders of magni-
tudes and hence develops turbulent elements or eddies the sizes of which are much smaller
than the spatial resolution of current spectro-polarimeters (about 0.2 arcsec or 150 km at
the photospheric level). We were thus strongly motivated to consider the Zeeman effect
in a medium where the magnetic field is random with characteristic scales of variation

comparable to the radiative transfer characteristic scales.
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In Chapter 2, we consider the micro-turbulent limit and study the mean Zeeman ab-
sorption matrix in detail. The micro-turbulent limit refers to the case when the scales of
fluctuations of the random field are much smaller than the photon mean free paths associ-
ated to the line formation. The ‘mean’ absorption and anomalous dispersion coefficients are
calculated for random fields with a non-zero mean value - isotropic or anisotropic Gaussian
distributions that are azimuthally invariant about the direction of the mean field. The aver-
aging method is described in detail, and fairly explicit expressions for the mean coefficients
are established. A detailed numerical investigation of the mean coefficients illustrates two
simple effects of the magnetic field fluctuations: (i) broadening of the o-components by
fluctuations of the field strength, leaving the m-components unchanged, and (ii) averaging
over the angular dependence of the 7 and o components. Angular averaging can modify
the frequency profiles of the mean coefficients quite drastically, namely, the appearance of
an unpolarized central component in the diagonal absorption coefficient, even when the

mean field is in the direction of the line-of-sight.

For isotropic fluctuations, the mean coefficients can be expressed in terms of generalized
Voigt and Faraday-Voigt functions, which are related to the derivatives of the Voigt and
Faraday-Voigt functions. In Chapter 3, we study these functions in detail. Simple recur-
rence relations are established and used for the calculation of the functions themselves and

of their partial derivatives. Asymptotic expansions are also derived.

In Chapter 4, we consider the Zeeman effect from a random magnetic field which
has a finite correlation length (meso-turbulence) that can be varied from zero to infinity
and thus made comparable to the photon mean free-path. The random vector magnetic
field B is modeled by a Kubo-Anderson process - a piecewise constant Markov process
characterized by a correlation length and a probability distribution function (PDF) for the
random values of the magnetic field. The micro- and macro-turbulent limits are recovered
when the correlation length goes to zero or infinity respectively. Mean values and rms
fluctuations around the mean values are calculated numerically for a random magnetic
field with isotropic Gaussian fluctuations. The effects of a finite correlation length are
discussed in detail. The rms fluctuations of the Stokes parameters are shown to be very
sensitive to the correlation length of the magnetic field. It is suggested to use them as a

diagnostic tools to determine the scale of unresolved features in the solar atmosphere.

In Chapter 5, using a statistical approach, we analyze the effects of random magnetic
fields on Stokes line profiles. We consider the micro and macro-turbulent regimes, which

provide bounds for more general random fields with finite scales of variations. The mean



Stokes parameters are obtained in the micro-turbulent regime, by first averaging the Zee-
man absorption matrix ® over the PDF P(B) of the magnetic field and then solving the
concerned radiative transfer equation. In the macro-turbulent regime, the mean solution
is obtained by averaging the emergent solution over P(B). In this chapter, we consider

the same Gaussian PDFs that are used to construct (®) in Chapter 2.

Numerical simulations of magneto-convection and analysis of solar magnetograms pro-
vide the empirical PDF for the magnetic field line-of-sight component on the solar atmo-
sphere. In Chapter 6, we explore the effects of different kinds of PDFs on Zeeman line
formation. We again consider the limits of micro and macro-turbulence. The types of
PDFs considered are: (a) Voigt function and stretched exponential type PDFs for fields
with fixed direction but fluctuating strength. (b) Cylindrically symmetrical power law for
the angular distribution of magnetic fields with given field strength. (¢) Composite PDF's
accounting for randomness in both strength and direction obtained by combining a Voigt
function or a stretched exponential with an angular power law. The composite PDF pro-
posed has an angular distribution peaked about the vertical direction for strong fields and
is nearly isotropically distributed for weak fields, which could mimic solar surface random
fields. We also describe how the averaging technique for a normal Zeeman triplet may be

generalized to the more common case of anomalous Zeeman splitting patterns.

Part-11 of the Thesis: Polarized line formation in scattering media- Theory

and numerical methods

Many of the strongest and most conspicuous lines in the Second Solar Spectrum are strong
lines that are formed rather high, often in the chromosphere above the temperature mini-
mum. From the standard, unpolarized and non-magnetic line-formation theory such lines
are known to be formed under the conditions that are very far from local thermodynamic
equilibrium. They are characterized by broad damping wings surrounding the line core.
Doppler shifts in combination with collisions cause photons that are absorbed at a given
frequency to be redistributed in frequency across the line profile in a complex way during
the scattering process. Two idealized, limiting cases to describe this redistribution are
“frequency coherence” and “complete redistribution” (CRD), but the general theory that
properly combines these two limiting cases goes under the name “partial frequency redis-
tribution” (PRD). Resonance lines which are usually strong can be properly modeled only
when PRD is taken into account. To use these strong lines for magnetic field diagnostics

we need a line scattering theory of PRD in the presence of magnetic fields of arbitrary
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strength. In the second part of the thesis we develop such a theory and derive the polar-
ized PRD matrices. These matrices are then used in the polarized line transfer equation

to compute the emergent Stokes parameters.

Polarized scattering in spectral lines is governed by a 4 X 4 matrix that describes how
the Stokes vector is scattered in all directions and redistributed in frequency within the
line. In Chapter 7, using a classical approach we develop the theory for this redistribution
matrix in the presence of magnetic fields of arbitrary strength and direction, and for a
J =0 — 1 — 0 transition. This case of arbitrary magnetic fields is called the Hanle-
Zeeman regime, since it covers both the partially overlapping weak and strong-field regimes,
in which the Hanle and Zeeman effects respectively dominate the scattering polarization.
In this general regime the angle-frequency correlations that describe the so-called PRD are
intimately coupled to the polarization properties. We also show how the classical theory
can be extended to treat atomic and molecular scattering transitions for any combinations

of J quantum numbers.

In Chapter 8, we show explicitly that for a J = 0 — 1 — 0 scattering transition
there exists an equivalence between the Hanle-Zeeman redistribution matrix that is derived
through quantum electrodynamics (Bommier 1997b) and the one derived in Chapter 7
starting from the classical, time-dependent oscillator theory of Bommier & Stenflo (1999).
This equivalence holds for all strengths and directions of the magnetic field. Several aspects
of the Hanle-Zeeman redistribution matrix are illustrated, and explicit algebraic expressions

are given, which are of practical use for the polarized line transfer computations.

In Chapter 9, we solve the polarized radiative transfer equation numerically, taking into
account both the Zeeman absorption matrix and the Hanle-Zeeman redistribution matrix.
We compute the line profiles for arbitrary field strengths, and scattering dominated line
transitions. We use a perturbation method (see eg. Nagendra et al. 2002) to solve the
Hanle-Zeeman line transfer problem. The limiting cases of weak field Hanle scattering and
strong field Zeeman true absorption are retrieved. The intermediate regime, where both

Zeeman absorption and scattering effects are important, is studied in some detail.

Numerical method used to solve the Hanle-Zeeman line transfer problem in Chapter 9
is computationally expensive. Hence it is necessary to develop fast iterative methods like
PALI (Polarized Approximate Lambda Iteration). As a first step in this direction we de-
velop such a method in Chapter 10 to solve the transfer problem with weak field Hanle
scattering. We use a ‘redistribution matrix’ with coupling between frequency redistri-

bution and polarization and no domain decomposition. Such a matrix is constructed by
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angle-averaging the frequency dependent terms in the exact weak field Hanle redistribution
matrix for a two-level atom with unpolarized ground level (that can be obtained by taking
the weak field limit of the Hanle-Zeeman redistribution matrix). In the past, the PALI
technique has been applied to redistribution matrices in which frequency redistribution is
‘decoupled’ from scattering polarization, the decoupling being achieved by an adequate
decomposition of the frequency space into several domains. In this chapter, we examine
the consequences of frequency space decomposition, and the resulting decoupling between
the frequency redistribution and polarization, on the solution of the polarized transfer

equation for the Stokes parameters.
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Chapter 1

General introduction

In the review article on “Theory of Polarization: What’s Next?”, Landi Degl’Innocenti
(2003), points out three challenging fields which need theoretical improvements in the
near future. These three fields of solar spectro-polarimetry are (a) basic matter-radiation
interaction, (b) stochastic processes, (c) sophisticated modeling of the solar atmosphere.
Under topic (a), there is an urgent need for developing a fully consistent formalism capable
of handling the partial redistribution problem for polarized radiation transfer. Under topic
(b), there is a need for a deeper investigation in to the problem of line formation in a
stochastic medium. In this thesis we have attempted to advance our knowledge in both
the above mentioned issues that are of great current interest.

1.1 Sources of polarized radiation in astronomy

The information about the physical conditions prevailing in the astrophysical objects like
the Sun and stars is encoded in the radiation that we receive from them. The signatures
of the different physical parameters are imprinted in subtle and non-linear ways on the
profiles of the many spectral lines that make stellar spectra so richly structured. The
information is contained not only in the intensity but also in the state of polarization of
the radiation as a function of frequency. The full state of polarization can be completely
specified by the four Stokes parameters I, (), U and V', which will be defined in § 1.2.1.

In polarimetric observations the Stokes parameters are recorded with the best possible
spectral and polarimetric precision and good spatial and temporal resolution. Spectro-
polarimetry is the basic tool to record the polarized spectrum of the Sun or stars. From
the observed spectra we can extract the entangled information and deduce the physical

properties of the remote region, where the observed radiation originates. Therefore, it is

1
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essential to understand in detail the properties of the polarized radiation, its formation
processes and its interactions with matter. In this thesis we have attempted to advance a

particular aspect of the interaction of polarized radiation with matter (in particular atoms).

Polarization is produced when the spatial symmetry is broken in the physical process
that generates the radiation that we observe (see Stenflo 2002). Breaking of symmetry
can be caused by macroscopic magnetic (Hanle and Zeeman effects) and electric (Stark
effect) fields, by oblique reflection (eg. non-symmetrical components in a telescope), or
by an anisotropic excitation process (radiative or collisional). Collisional excitation by
directed particle beams may lead to the so-called impact polarization (eg. solar flares).
Scattering at free electrons (Compton or Thomson scattering) makes the radiation linearly
polarized (eg. solar coronal white-light). Scattering of anisotropically incident beams of
radiation, by atoms and molecules also gives rise to linearly polarized light (Rayleigh or
Resonance scattering). For a exhaustive list and detailed description of the various physical
mechanisms that can generate polarized radiation, see Landi Degl’Innocenti (2002, see also
Rybicki & Lightman 1979). In this thesis we mainly focus on the generation and transfer
of polarized radiation, that is produced by a magnetic field, and by scattering of radiation

on atoms (both in the presence and absence of magnetic field).

1.2 Representation of polarized radiation

Here we introduce the formalism and notation used in this thesis to describe the polarized
radiation. The state of polarization of a radiation beam can be described using several
different powerful tools, in particular the Jones vector, the coherency matrix, or the Stokes
vector. The Jones formalism is however unable to describe a statistical ensemble of un-
correlated photons, which is needed to relate the theory to observations. The statistical
properties of the radiation field can be described by the coherency matrix and Stokes vec-
tor formalisms, which are equivalent to each other. In § 1.2.1 we introduce the Stokes
representation for the polarized light and in § 1.2.2 we introduce the coherency matrix
formalism for the polarized light. In this thesis we use both the Stokes (in large part of

the thesis) and coherency matrix (in Chapter 7) formalisms.

1.2.1 Stokes vector formalism

It is well known that for a proper parametric representation of the polarized radiation, four
parameters should be specified which will give the intensity, the degree of polarization, the

plane of polarization, and the ellipticity of the radiation. In Stokes formalism light is
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represented by a four component vector
I=(1IQUWT, (1.1)

where [ is the intensity, () and U represent the degree and plane of linear polarization, and
V is the circular polarization. Stokes parameters were formulated by Sir George Stokes in
1852 and introduced into astrophysics by the Nobel laureate Subrahmanyan Chandrasekhar
in 1946. An excellent description of Stokes formalism is presented in Chandrasekhar (1950,
see also Rybicki & Lightman 1979). Here we briefly recall few important equations.

Let us introduce a set of orthogonal basis vectors e; and ey in a plane perpendicular
to the light beam. At any point in space the electric vector can be decomposed as

E = %(Elel + Ezez), (12)

where
Ey = Egpe @700 | =12, (1.3)

w and ¢y are the frequency and phase of the electromagnetic radiation. Clearly Ey; and
¢, with £ = 1,2 completely define the polarization state of the light beam. The Stokes
parameters are defined as

I =(E§ + Eg,); Q= <E§1 - E§2>7
U= <2E01E02 COS(¢1 - ¢2)>, V= <2E01E02 sin(qﬁl - ¢2)> (14)

In the above equations the angular brackets represent averaging over a statistical ensemble
of uncorrelated photons (or wave packets). For a completely polarized beam of light the
relation 12 = Q% + U? + V2 holds, while the partially polarized light obeys the inequality
I? > @Q? + U? + V2. In the case of unpolarized light Q = U =V = 0.

We use the standard convention for the sign of circular polarization V' (see Rees 1987,
Stenflo 1994), namely when the electric vector rotates clockwise in a fixed plane as seen
by the observer, we speak of right-handed circular polarization (V' > 0), when the sense of

rotation is counterclockwise we have left-handed circular polarization (V' < 0).
1.2.2 Coherency matrix formalism

Stokes formalism is best suited to describe the partially polarized light, which is due to the
incoherent superposition of uncorrelated photons with different polarization states (since
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they have been created by stochastically independent atomic processes). The same infor-
mation is also contained in the coherency matrix formalism, which is the best representation

of radiation in quantum field theory.

The 2 x 2 coherency matrix D of the radiation field is given by
D = (JJ), (1.5)

where the Jones vector J is defined as

JZ(%) (1.6)

and J' denotes the adjoint of J (transposition and complex conjugation of J). The
angular brackets in Eq. (1.5) again represent the averaging over a statistical ensemble of

uncorrelated photons.

The relation between the coherency matrix and the Stokes parameters is given by

D:1<I+Q U+iv>_ wn
2\ U—iV 1-Q

1.2.3 Mueller calculus

A formalism that allows to calculate the effect of a medium such as a stellar atmosphere on
the Stokes vector, goes under the name of Mueller calculus. For details of Mueller calculus
in the astrophysical context see Stenflo (1994, also Stenflo 2002). Here we present only a

few important equations.

Let us now consider a wave train that enters a medium as Jones vector J' and exits it

as J. The relation between them can be described by the complex 2 x 2 Jones matrix w:
J=wJ" (1.8)

Then the coherency matrix transforms as
D = wD'w'. (1.9)

The transformation of the incident Stokes vector I’ by a medium can be described by the
4 x 4 Mueller matrix M :
I=MI (1.10)
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Using the relation between the Stokes parameters and the coherency matrix (Eq. (1.7)),

we can express the Mueller matrix in terms of the Jones matrix w, as

M=TWT !,

(1.11)

where the physical properties of the medium are contained in

*
W11Wyy
*
W=wQw = Utz
*

W21W1y

*
Wa1Woy

*
W11W19
*
W11Wog
*
W21W19

*
Wa1Waq

*
Wi2W1y
*
W12Woq
*
W22W1y

*
Wa2Woq

*
W12W19
*
wiW
2 (1.12)
W22W19

*
Wa2Wgq

The symbols ® and * denote tensor product and complex conjugation respectively. T and
T~! are purely mathematical transformation matrices without any physical contents, given
by

1 00 1 1 10 0
1 00 -1 1o 01 i

T = . Tl=_ ' (1.13)
0 11 0 210 0 1 i
0-ii 0 1-10 0

Mueller calculus is an important tool in spectro-polarimetry, as it can be used to describe
the effect of various optical components in a telescope, spectrograph etc. Mueller matrix is
also used in radiative transfer equation for the Stokes vector (see § 1.7), both as the 4 x 4
absorption matrix that describes the Zeeman effect (see § 1.3.1), and the scattering matrix
that can include both coherent and incoherent scattering, partial frequency redistribution,
and the Hanle effect (see § 1.3.3).

1.3 Solar polarization and its diagnostic potential

The Sun provides us with an unique astrophysics laboratory because we can spatially
resolve its structures in relatively greater detail, when compared to other stars. This is
because, the nearest stares are about a million times more distant than the Sun. Thus,
we can study various physical processes occurring in different regions of the Sun. For this
reason the Sun has often been referred to as the “Rosetta Star” of astrophysics. Once
we understand the various physical processes occurring in the Sun, we can then apply the

acquired knowledge to other astrophysical objects.

By the word “Solar Polarization” we mean the polarized spectrum of the Sun recorded

in four Stokes parameters. Solar polarization is produced mainly by coherent scattering of
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the anisotropic radiation field in the solar atmosphere and by the magnetic field (Zeeman
and Hanle effects).

1.3.1 The Zeeman effect

Splitting of a spectral line in the presence of an external magnetic field is referred to as
the Zeeman effect. The Zeeman effect was discovered by Zeeman (1897) in a laboratory
in 1896. To explain the observed phenomenon, H. Lorentz quickly developed a classical
theory. In 1902, Zeeman and Lorentz shared the Nobel prize in Physics for their discovery

and understanding of the Zeeman effect.

According to the classical theory of Lorentz, an atom is viewed as a negative electric
charge (an electron) oscillating at frequency wy under the action of a positive restoring force
(central Coulomb potential due to the nucleus). In other words an atom is represented
by a classical oscillator. In the presence of an external magnetic field B and an external,
oscillating electric field E’, the motion of this bound electron is described by the oscillator

equation

dt2 - m \ dt dt
where 7 is the relative position vector of the bound electron, 7 is the damping constant,

d? d d
er,c (—r x B) o Wi = ——F, (1.14)
m

e and m are the charge and mass of the electron. To decouple the above equation, we

introduce the spherical vectors e,, with ¢ = 0, £1, where
eo=e,; e.=7F(e,+ie,))/V2. (1.15)
e,y are Cartesian unit vectors with the Z-axis along the direction of the magnetic field.

Thus the three decoupled component equation for r, are

d27“q ) 2 €
T (2giwr, — fy)% + wyrg = _EE']’ (1.16)

where wy, = eB/(2m) is the Larmor frequency. Solution of the oscillator equation (Eq. (1.14)

dry

or Eq. (1.16)), gives the trajectory of the bound electron in an external magnetic field. In
Fig. 1.1 we show the precessional motion of the bound electron in a plane perpendicular
to the direction of the magnetic field.

From Eq. (1.16), it is clear that we have three mutually independent oscillators with
oscillation frequency of wy — gqwy. The oscillator with frequency wy (referred to as -
component) oscillates along the field direction, thus representing linear polarization in this
direction, while the oscillators which resonate at frequencies wy + wy, (referred to as o-

components) represent right and left circular polarization. These three types of oscillators
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Figure 1.1: The damped rosette (precessional) motion of a bound electron in a plane
transverse to the magnetic field. Panels (a) - (h) show the damped rosette for varying
field strengths that are applied in the increasing order. When the field applied is weak we
obtain a highly damped rosette as that shown in (a), (b), (c), and (d) (Hanle effect). As
the field strength increases further, the rosette becomes more and more complete as shown
in (e), (f), and (g) (saturated Hanle regime). A complete rosette as shown above in (h) is

obtained when the field is strong, which corresponds to the case of Zeeman effect.
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emit electromagnetic radiation like a dipole. The polarization properties of the radiation
observed in a given direction is simply determined by the geometrical projection of the os-
cillating dipole vector on a plane perpendicular to the line-of-sight (LOS). Thus for a field
directed along the LOS (longitudinal Zeeman effect) contribution from the 7w-component
vanishes, while the o-components are right and left circularly polarized. For the field ori-
ented perpendicular to the LOS (transverse Zeeman effect) the o and 7-components are
linearly polarized perpendicular and parallel to the field direction (assuming an emission
line - situation is opposite for an absorption line). When the field has an arbitrary orien-
tation the Zeeman line components are elliptically polarized. For an excellent description
of classical electrodynamic theory of Zeeman effect see Collett (1993), and Stenflo (1994)

for its application in Solar magnetic field diagnostics.

The classical theory described above holds good for the so-called normal Zeeman triplet
(a J =0 — 1 — 0 transition). In this case we get one unshifted m-component and
two o-components symmetrically placed on either side of the m-component. However, in
general an “anomalous” splitting pattern arises with several 7 and o-components. The
anomalous Zeeman effect can be explained using only the quantum mechanics (which
takes into account the spin of the electron). According to quantum mechanics, an external
magnetic field causes the atomic energy levels to split into different magnetic sublevels,
and the emitted radiation gets polarized. This phenomenon is referred to as the Zeeman
effect (see Fig. 1.2). The transition from such split levels gives rise to several components
in place of an otherwise unsplit spectral line. The wavelength shift A)\g of the different

components relative to the unsplit case is
Adp = 4.67 x 10 Pg)\*B, (1.17)

where B is in Gauss units, X is the line center wavelength at zero magnetic field in A, and

g is the Landé factor.

While the amount of wavelength shift is proportional to the field strength and the
Landé factor of the line, the polarization and the relative strengths of the components are
determined by the field orientation (as described above). Thus Zeeman effect will serve
as a diagnostic tool to determine the stellar or solar magnetic fields. In fact it is through
Zeeman effect measurements that Hale (1908) discovered the existence of the magnetic

field in sunspots.

The overall spectral signatures due to the Zeeman effect, can be seen clearly in Stokes

images as shown in the Fig. 1.3 for the Na 1 D; and D, lines. The transverse Zeeman
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Figure 1.2: Level diagram for a J = 0 — 1 — 0 transition in the presence of a strong (left
panel) and weak (right panel) magnetic field. T'r and Awp are the radiative and Doppler
width of the upper level. When the Zeeman splitting (gwr,) is comparable or larger than
the total width (I'r +Awp) of the upper level, we are in the Zeeman regime. When Zeeman
splitting is comparable to the radiative width (I'g), the Zeeman sublevels superimpose and

we have Hanle effect.

effect produces line profile signatures in Stokes () and U that are nearly symmetric around
the line-center. The longitudinal Zeeman effect produces line profile signatures in Stokes
V' that are nearly anti-symmetric around the line-center. Note that there is also a fairly
strong signal from the transverse Zeeman effect in the NiI line between the Dy and D,

lines of Nal.

The full Stokes polarimetry in I, (), U, V allows us in principle, to determine both the
strength and orientation of the magnetic field vector. Zeeman effect observations in the
photosphere reveal that only about 1% of the photospheric volume is filled with strong-fields
of kiloGauss (kG) flux tubes (see Stenflo 2002). The remaining 99% of the photosphere
is however fully magnetized with weak and mixed polarity (turbulent) fields. In the first
part of the thesis we shall consider the effect of turbulent magnetic fields on the Zeeman

line formation.

1.3.2 The resonance scattering

Line polarization can also be produced by radiative scattering, when the incident radiation
has some degree of anisotropy. In contrast to polarization produced by the Zeeman effect,

scattering polarization is formed even when the magnetic field is zero. The term resonance
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Figure 1.3: Example of the Stokes vector spectro-polarimetry showing the Zeeman-effect

signatures in the four Stokes parameters. The two strong spectral lines at 5890 and 5896
A are the Na1 D, and D; resonance lines, which are formed in the lower chromosphere of

the Sun.

This illustration is taken from Stenflo et al. (2001).
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Figure 1.4: Classical description of a 90° scattering event (a) in the absence of magnetic
field and (b) in the presence of a weak magnetic field parallel to the LOS. See § 1.3.2 for

discussions.

scattering refers to the scattering on two bound levels of an atom (in particular when one
of the levels involved is the ground state). The scattering polarization is formed exclusively

by radiative excitation followed by spontaneous emission.

The formation of scattering polarization can be understood by using a classical har-
monic oscillator model for the atom. Let us consider a simple scattering event that is
illustrated in Fig. 1.4a. The beam incident along the Y-axis is unpolarized and is rep-
resented by two perpendicular uncorrelated electric field oscillations. In the absence of
the magnetic field, the atom can be represented by three independent linear oscillators
vibrating at angular frequency wy along the axes of the reference system. Clearly only
the X and Z oscillators are excited by the incident beam. These two oscillating dipoles
radiate independently in all directions except along the axis of the dipole, and they decay
radiatively with a damping constant y. Thus the scattered radiation along the Z-axis is
linearly polarized along the X-axis. It is interesting to note that, the same conclusion can
be reached by considering the X-oscillator as resulting from the coherent superposition of
two counter-rotating circular oscillators that are oscillating in phase with respect to each

other at frequency wy in the X-Y plane.

The quantum analogue of above described classical harmonic oscillator model is a two-
level atom having a lower level of angular momentum J = 0 and an upper level of angular
momentum .JJ' = 1. The excitation of one of the classical oscillator is equivalent to excita-

tion of one of the Zeeman sublevels of the upper level. In this analogy, the linear oscillator



12 Chapter 1. General introduction

corresponds to the sublevel M’ = 0, while the circular oscillators correspond to the sub-
levels M' = +1, respectively. When the field is zero, magnetic sublevels are degenerate and
the atom can exist in a coherent superposition of these levels. Thus the photons emitted
from M' =41 and M' = —1 levels (by two different atoms) are highly coherent (i.e., iden-
tical in frequency and phase), and oppositely circularly polarized. These photons interfere
to give 100% linearly polarized light (which explains the resonance scattering). Clearly
the polarization produced is due to the population imbalances and quantum interferences
among the Zeeman sublevels, which is sometimes referred to as ‘atomic polarization’ (see
Trujillo Bueno 2001).

In the solar atmosphere the atomic polarization is caused mainly by the anisotropic
illumination of the atom. This anisotropic radiative scattering (also referred to as coherent
scattering) occurs in the photosphere due to the limb darkening in the solar atmosphere.
Even with the presence of anisotropic radiation field, the emergent scattering polarization
is zero at the solar disk center due to the axial symmetry around the LOS, which leads
to mutual cancellation. The scattering polarization increases monotonically as we move
towards the limb. The whole solar spectrum, both lines and continuum, is polarized by
such scattering processes in the solar atmosphere. The continuum is polarized mainly by
Thomson scattering at free electrons and by Rayleigh scattering at neutral hydrogen. The

line is polarized due to resonance scattering.

The first systematic exploration of the linearly polarized spectrum formed by coherent
scattering processes was done by Stenflo et al. (1983a, 1983b). But only with the advent of
the CCD based polarimeter ZIMPOL (Povel et al. 1990, Povel 1995) was the polarimetric
sensitivity enhanced enough to explore this scattering polarization in greater detail. The
observations by Stenflo & Keller (1996, 1997) have revealed a highly structured linearly
polarized spectrum. Since it looks very much different from the usual intensity spectrum,
Ivanov (1991) named this linearly polarized spectrum of the sun as the “second solar
spectrum”. A complete atlas of the “second solar spectrum” near the solar limb in the
visible and near UV was recorded by Gandorfer (2000, 2002, 2005).

The word “coherent scattering processes” in the preceding paragraphs refer to the scat-
tering events that are undisturbed by collisions regardless of the frequency redistribution
(see § 1.6.1), since the phase coherence is preserved (see Stenflo 1994). However, in the
traditional literature (Mihalas 1978), the term coherent scattering referred to frequency-
coherent scattering, which is unphysical in the laboratory frame due to the Doppler redis-

tribution, although in the atom’s rest frame it is perfectly physical.
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Figure 1.5: Intensity and Polarization profile of the Ca1 4227 A line in a non-magnetic

region on the solar atmosphere. This illustration is taken from Stenflo (1994).

An example of the “second solar spectrum” produced by coherent scattering processes
is presented in Fig. 1.5. The Ca1 4227 A line is the most strongly polarized line in the
entire solar spectrum. Figure 1.5 shows the intensity and linear polarization profile of this
line, obtained inside the south solar limb in a non-magnetic region (Stenflo et al. 1983a,
Stenflo 1994, p. 99). This line is formed in the low chromosphere. The intensity spectrum
shows a strong absorption line with many blends. The linear polarization spectrum shows

a peak in the line core and two rather broad maxima in the line wings.

The linear polarization that is produced by coherent scattering processes is modified
by the weak magnetic field and also by the elastic collisions. We discuss the modifications
caused by a weak magnetic field in § 1.3.3, and that by elastic collisions in § 10.6.

1.3.3 The Hanle effect

Magnetic modification of the scattering polarization (or atomic polarization) in lines, is
referred to as the Hanle effect. The Hanle effect when first observed in 1920s, was known
as “magnetic depolarization of the resonance radiation”. The first correct interpretation of
this phenomenon, related to the effect of a weak magnetic field on the linear polarization
of the spectral line radiation scattered by a mercury vapor illuminated anisotropically, was
provided by Wilhelm Hanle of Gottingen University (see Hanle 1923, 1924), and hence
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the name Hanle effect. The observed influence of a weak magnetic field (of the order
of 1G) on the linear polarization corresponding to the zero magnetic field case, was a
rotation of the plane of linear polarization (observed experimentally by Hanle himself) and
a depolarization (clearly pointed out previously by Wood & Ellett 1923). This so-called
Hanle effect played a fundamental role in the development of quantum mechanics, since it
led to the introduction and clarification of the concept of coherent superposition of pure
states (see Bohr 1924, Hanle 1924, 1925, Heisenberg 1925).

An introduction to the Hanle effect and the historical perspective can be found in the
classical monograph of Mitchell & Zemansky (1934) and in the book edited by Moruzzi
& Strumia (1991). Other books and articles related to this topic (and its application to
solar magnetic field diagnostics) are the following: Stenflo (1994), Faurobert-Scholl (1996),
Trujillo Bueno (1999, 2001), Stenflo (2002, 2003) and Landi Degl’Innocenti & Landolfi
(2004). We shall now briefly describe the classical and quantum interpretations proposed

by Hanle to understand the observed effect.

Let us again consider the scattering event illustrated in Fig. 1.4. We now apply an
external magnetic field along the Z-axis. Thus we have to take into account the influence
of the Lorentz force on the motion of the bound electron. As a result the atom cannot be
interpreted as three independent linear oscillators (as we did in the non-magnetic case),
but as a linear oscillator parallel to the magnetic field and two counter-rotating circular
oscillators in the X-Y plane oscillating at angular frequencies wy + wy, and wyp — wy, (see
Eq. (1.16)). The resulting trajectory of the electron in the X-Y plane is given by (obtained
by solving the Eq. (1.14) by setting the r.h.s. to zero)

z(t) = e "% cos(wyt) cos(wot),

y(t) = e "2 sin(wit) cos(wot). (1.18)

The bound electron thus describes in the X-Y plane a complicated pattern called “rosette”
pattern (see Fig. 1.1). The shape of the rosette is controlled by the ratio wy,/y. We can
have three cases:

e Case 1 (wr, > 7y) - when the field applied is strong, the bound electron precesses about
the magnetic field several times before being affected by the damping. The bound electron
thus describes a “daffodil” pattern shown in Figs. 1.1g, and 1.1h. In this case scattering
polarization (along Z-axis) is zero. However in this regime polarization can be produced
by Zeeman effect (see § 1.3.1).

e Case 2 (wp, < 7) - when the field applied is very weak, the electron performs a highly
damped oscillation and linearly polarized light is emitted (the case of resonance scattering,
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see § 1.3.2).

e Case 3 (w, ~ ) - when the field applied is weak, such that w;, ~ v, then there can
occur two competing processes. The applied field, forcing the electron to precess about the
magnetic field and the radiation damping trying to suppress this motion. As a result the
bound electron describes a rosette in the X-Y plane (see Figs. 1.1a - 1.1f), and thus the
polarization of the scattered radiation - which reflects the weighted average of the pattern
- is reduced and rotated from the direction corresponding to the non-magnetic case. This

is the well known Hanle effect.

Quantum mechanically, the magnetic field lifts the degeneracy of the magnetic sublevels.
As long as the Zeeman sublevels overlap (see Fig. 1.2 right panel), the coherence among
the Zeeman sublevels are reduced and dephased. In other words atomic polarization is
modified by the magnetic field, and hence the resulting linear polarization is also modified.
This phenomenon referred to as the Hanle effect is most sensitive if the Zeeman splitting
is of the order of the natural line width (I'r, which is equivalent to the damping width ).
Quantitatively, the field for which Hanle effect is sensitive is

8.79 x 10°Bg ~ 1/tise, (1.19)

where ty. is the life time of the considered atomic level (see Trujillo Bueno 2001). On
the other hand, the typical Zeeman effect is sensitive to fields for which level splitting is
of the order of or larger than the total line width. Total line width is dominated by the
Doppler broadening on the Sun and thus much larger than the natural width of the line.
Therefore, the Zeeman effect can be used to diagnose magnetic fields of a few hundred
Gauss to a few kG, while the Hanle effect is sensitive to weaker fields, typically between
1 and 100G for upper level Hanle effect. A further difference is that the Hanle effect is
mainly sensitive to the horizontal fields, whereas the Zeeman effect is more easily seen
in the vertical fields because the longitudinal Zeeman effect gives stronger polarization
signals than the transverse Zeeman effect. The Hanle and Zeeman effects are therefore
highly complementary to each other and are used to diagnose the solar magnetic fields
(see Stenflo 2001). Hanle effect has also been used to diagnose stellar magnetic fields (see
Ignace et al. 1997, 1999, Ignace 2001).

The Hanle effect is illustrated in Fig. 1.6 which shows the intensity and polarization
profiles of the Ca1 4227 A line recorded near an active magnetic region (Stenflo 1982,
Stenflo 1994, p. 100). Because of the rotation of the plane of polarization, most of the
core peak now appears in U/I (which would be zero in the absence of magnetic field),

whereas the ()/I core peak is suppressed (compare (/I core peaks in Figs. 1.5 and 1.6).
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Figure 1.6: Intensity and Polarization profiles of the Ca1 4227 A line in a magnetic region
on the solar atmosphere. This illustration is taken from Stenflo (1994)

The polarization in the wing is largely unaffected because Hanle effect is operative in the
line core and not in the line wings (see Stenflo 1994, 1998). The anti-symmetric profile
signatures in the V/I are due to the longitudinal Zeeman effect, which affects both the Ca1
line core and the blend lines. The transverse Zeeman effect is too weak in this particular

case to compete with the linear polarization caused by scattering (see Stenflo 1994).

Hanle effect refers to scattering in the presence of weak magnetic fields. In the second
part of the thesis we consider the theory of atomic line scattering in the presence of magnetic
fields of arbitrary strength.

1.4 Turbulent magnetic fields in the solar atmosphere

It is well known that the total flux seen in longitudinal magnetograms (which is a map of
the circular polarization at a given wavelength in the wing of a spectral line), has its source
in the kG fluxtubes with an average filling factor of less than 1% (see Stenflo 1994). These
kG fields appear in magnetograms as intermittent flux patches outlining the boundaries of
the giant velocity cells of the supergranulation. The cell interior referred to as internetwork
regions occupies 99% of the photosphere, and wrongly appear as non-magnetic in routine
magnetograms. However, 99% of the photosphere cannot be field-free due to the diffusion
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processes and finite efficiency of field concentration (see Stenflo 1987). In fact the high-
spatial-resolution magnetograms show a multitude of mixed magnetic polarities within the
internetwork regions. These opposite polarity fields mixed on a small scale are apparently
“invisible” and are referred to as “turbulent” or “hidden” fields. The presence of this
hidden magnetic field in the quiet internetwork regions of the solar photosphere might
have several important consequences for the overlying solar atmosphere, such as ubiquity
of reconnecting current sheets and heating processes (see Trujillo Bueno 2005). Thus it is

important to study the nature of this hidden magnetic field.

Turbulent magnetic fields that are hidden for a low-resolution longitudinal magne-
tograms, reveal their existence through the following three effects in the solar spectrum
(see Stenflo 1982)

e magnetic line broadening,

e Hanle effect depolarization,

e transverse Zeeman effect.

For a review on the diagnostic potential of all the three effects listed above, see Stenflo
(1989). We describe these three effects briefly below. One of the effects of a hidden tangled
magnetic field is to broaden the spectral lines, although the average polarization effects
may be zero. This magnetic broadening distinguishes itself from other broadening mech-
anisms by being correlated with the Landé factor of the lines used. Searching for such a
correlation through a regression analysis involving about 400 Fe1 lines, Stenflo & Lindegren
(1977) could set an upper limit of 100 G to the strength of the possible turbulent fields.

The two principle observables for Hanle effect are rotation of the plane of linear polar-
ization (generation of U/I signal) and depolarization (decrease in @)/ signal, see § 1.3.3).
In a tangled magnetic field with random orientations of the field vectors, there is no pre-
ferred direction of rotation, but the depolarization due to the Hanle effect remains. Even if
the mixed polarities cancel each other completely within the resolution element, the Hanle
effect depolarization is never canceled out, as it has only one sign (decrement). This Hanle
effect depolarization as a diagnostic tool to determine the turbulent field was first proposed
by Stenflo (1982), who’s simplified application gave a lower limit of 10 G for the strength
of the turbulent field. Even though this technique has a great promise for diagnosing the
turbulent fields, the interpretation of the observations is very complicated as it relies on the
comparison between the observed linear polarization and that calculated for the zero-field
reference case. Applying a one-dimensional (1D) polarized radiation transfer approach to
model the scattering polarization observed in Sr1 4607 A line, Faurobert-Scholl (1993a),
Faurobert-Scholl et al. (1995), and Faurobert et al. (2001) determined the strength of the
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turbulent field to be between 20 and 10 G. Recently Trujillo Bueno et al. (2004, see also
Trujillo Bueno 2005, Trujillo Bueno et al. 2006) have modeled the same line using a more
realistic multi-level scattering polarization calculations in 3D models of the solar photo-
sphere. They estimate a mean magnetic field between 60 and 130 G. All these authors
assume a micro-turbulent magnetic field (see § 1.5) with isotropic angular distribution. A
general theory of Hanle effect in random magnetic field with finite correlation length has
been recently developed by Frisch (2006).

The transverse Zeeman effect as a diagnostic tool to determine the quiet Sun turbulent
fields was first considered by Stenflo (1987). Over the last few years the observational
and theoretical evidence for small-scale mixture of weak and strong fields in the quiet Sun
has increased considerably (eg. Socas-Navarro & Sanchez Almeida 2003, Khomenko et
al. 2003, Socas-Navarro & Lites 2004, Sanchez Almeida et al. 2003a, 2003b, Catteneo
1999, Catteneo et al. 2003, Vogler 2003, Stein & Nordlund 2006), so also the controversy
about the true abundance of kG fields in the internetwork regions of the quiet Sun (eg.
Dominguez Cerdena et al. 2003a, 2003b, Lites & Socas-Navarro 2004, Sanchez Almeida et
al. 2004, de Wijn et al. 2005, Khomenko et al. 2005). For recent reviews with contrasting
viewpoints on the magnetism of the very quiet Sun, see Sdnchez Almeida (2004) and
Khomenko (2006).

In the part I of the thesis we approach the problem of turbulent magnetic fields purely
from the theoretical view point. In particular we consider the effect of random magnetic

fields with finite correlation lengths on the Zeeman line formation.

1.5 Historical background on stochastic Zeeman line formation

theory

It is well known that the turbulence causes the formation of eddies of many different length
scales. The average eddy size is referred to as correlation length. A statistical theory of
turbulence was first proposed by Kolmogorov (1941). Still, a complete description of
turbulence remains one of the unsolved problems in Physics. For a detailed description
of Kolmogorov 1941 theory and other developments in the theory of turbulence see the
monograph by Frisch (1995).

The effect of turbulent velocity on spectral line formation was studied in detail in 1970’s.
See Frisch & Frisch (1975) and also Mihalas (1978) for a review on this topic. As a conse-
quence of velocity turbulence, magnetic fields present in the stellar atmosphere also become
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turbulent (frozen-in condition). The form of polarized transfer equation in the presence
of a micro-turbulent (correlation length much smaller than the photon mean free path)
magnetic field was first written by Stenflo (1971). The effect of micro-turbulent magnetic
field on spectral lines formed in optically thin atmospheres were first considered by Dolgi-
nov & Pavlov (1972), and Domke & Pavlov (1979). We re-examine this micro-turbulent
limit in detail in Chapter 2. In this limit the Zeeman absorption matrix is replaced by an
average over various realization of the random magnetic field. To incorporate the effect of
such micro-turbulent magnetic fields in realistic model atmosphere calculations, Sdnchez
Almeida et al. (1996) have developed MISMA (MIcro Structured Magnetic Atmospheres)

model.

The macro-turbulent limit, wherein the correlation length is much larger than the
photon mean free path, was considered by Stenflo (1971, 1973, 1994) and Stenflo et al.
(1984). In this limit averaging over different realization of the random field should be

performed on the ‘emergent solutions’ of the transfer equation.

The general regime referred to as meso-turbulence leads to stochastic polarized radia-
tive transfer equation (transfer equation with random coefficients). This regime has been
considered by Landi Degl’Innocenti (1994, see also Landi Degl’Innocenti & Landolfi 2004),
and more recently by Carroll & Staude (2003a, 2003b, 2005a, 2005b, 2006), and Carroll &
Kopf (2007). We study this meso-turbulent regime in greater detail in Chapter 4.

1.6 Theory of light scattering on atoms

Radiation becomes polarized upon scattering even in the absence of magnetic fields. For
example the polarization of the blue sky is due to the molecular Rayleigh scattering. On
the Sun scattering processes contribute to the formation of both the continuous and line

spectrum.

In a scattering event, the direction, frequency, and polarization of the scattered photon
may change relative to that of the incident photon. A proper description of the angle, fre-
quency and polarization correlation between the incident and scattered photon goes under
the name of partial frequency redistribution (PRD). The effects of PRD are observable in
the wings of strong resonance lines and to a lesser extent in the line core. For example two
broad maxima in the wings of Ca1 4227 A line (see Q/I panel in Figs. 1.5 and 1.6), are
due to the PRD.

Partial frequency redistribution effects are described by a 4 x 4 redistribution matrix
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R(v,n,v',n') in the absence of the magnetic field and R(v, n,v', n'; B) in the presence of
the magnetic field. R gives the joint probability of absorbing a photon with frequency v/
and direction n’ and re-emitting a photon with frequency v and direction . Aim of a scat-
tering theory is to determine this R in the most general situation. For the scalar case (no
polarization) R becomes a redistribution function R(v, n,r',n’). Scalar frequency redistri-
bution functions for two-level atoms, neglecting collisions were derived both in the atomic
and laboratory frame by Hummer (1962). More general expressions for collisional fre-
quency redistribution on resonance and subordinate lines were derived by Oxenius (1965),
Heinzel (1981), Hubeny (1982), Hubeny et al. (1983a, 1983b), Hubeny & Cooper (1986),
and Hubeny & Lites (1995). For an introduction to the scalar PRD functions see Mihalas
(1978). For a classic review on PRD and its application to astrophysics see Hubeny (1985)
and Frisch (1988). In the following section we briefly describe the scalar PRD functions.

1.6.1 Scalar redistribution functions

Here we discuss only the redistribution functions for frequency coherent (in the atomic
frame) and frequency incoherent scattering. For other type of redistribution function we
refer the reader to Mihalas (1978), and Heinzel (1981). Redistribution functions are first
derived in the atomic frame. Doppler effects due to the thermal movements of the atoms
are then incorporated by means of a convolution with a velocity distribution to obtain
the laboratory (observers) frame redistribution functions. Following two assumptions are
made, first that the atomic velocity is unchanged during the scattering process, second
that the velocity distribution for the lower level of the transition is a Maxwellian. The
former approximation is justified by the short duration of the scattering process. The
latter approximation certainly holds for the resonance lines because the lower level of the
transition can be considered as having an infinite life-time. For more detailed discussion
on these assumptions and the possibility of relaxing these assumptions see Hubeny (1985),
Landi Degl’'Innocenti (1996) and Bommier (1999, 2003).

The scalar redistribution function in the atomic frame may be written as

RO(&: n, fla nl) = T(é-a gl)p(na nl): (120)

where the subscript “0” identifies the quantities in the atomic rest frame. &, & are the
frequencies of the scattered and incident photons in the atomic frame. The angular phase
function p(n,n') describes the probability that the photon is scattered from solid angle
dn' in direction n/, into solid angle dn in direction n.



1.6. Theory of light scattering on atoms 21

Frequency coherent scattering

Consider an atomic transition with an infinitely sharp lower level and a radiatively broad-
ened upper level. In the atomic frame, the absorption of radiation with frequency & will
be followed by the re-emission at the same frequency, and the frequency redistribution

function is given by
ru(§,€) = L(£)d(¢ - &), (1.21)

where ¢ is the Dirac distribution and £(¢') is the rest frame absorption profile, which is a

Lorentzian.

The convolution of r11(&, ") with a Maxwellian distribution (to take care of the Doppler
motion of the atoms) gives the laboratory frame redistribution function Ry (v, n,v',n'),
where v and v/ are the frequencies of the scattered and incident photons in the laboratory
frame. The explicit form of Ry can be found for example in Mihalas (1978, see also
Chapter 7 of this thesis).

Frequency incoherent scattering

Consider again the same atomic transition. Now the upper level is broadened not only by
the finite life time of the upper level but also due to elastic collisions with other atoms.
We assume that the collisions are so frequent that all the excited electrons are randomly
reshuffled over the substates of the upper state before emission occurs. Thus the incident
and scattered photon frequencies are uncorrelated and the redistribution function in the

atomic frame is given by
rui(§, &) = L(E)L(E). (1.22)

Since there is no correlation between the frequencies of the absorbed and emitted photons,
the redistribution is referred to as complete frequency redistribution (CRD).

In the laboratory frame the resulting redistribution function is denoted by Ry (v, n, v/, n').
See Mihalas (1978) for its explicit form (see also Chapter 7 in this thesis).

1.6.2 Historical account of the polarized PRD theories

The determination of a self-consistent PRD redistribution matrix both in the presence
and absence of magnetic field is a difficult theoretical problem. This problem has been
approached using both the classical physics and quantum mechanics. A correct description

of the scattering physics under the most general situation of course, requires a quantum
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mechanical approach. However a major advantage of the classical approach is that it is
physically transparent, and it gives us excellent guidance for an intuitive grasp of the
physics. For a review on PRD of polarized radiation see Frisch (1996, see also Frisch et al.
2001). See Stenflo (1996) for a review on scattering physics both from the classical and

quantum mechanical perspective.

In classical theory a scattering system is represented by a forced damped oscillator (see
Eq. (1.14)). The classical theory of PRD was originally introduced by Zanstra (1941a,b).
He addressed the issue of collisions on non-magnetic frequency redistribution in resonance
lines. A modern approach to the classical oscillator theory was developed by Stenflo (1994,
1996, 1998), where he considered frequency coherent scattering in the presence of arbitrary
strength magnetic fields. This classical framework was extended by Bommier & Stenflo
(1999) to handle PRD effects in the presence of arbitrary field strengths and collisions.
They showed that the stationary solutions of the harmonic oscillator corresponds to the
frequency coherent terms and the transitory solutions to the frequency incoherent ones.
They derived the redistribution matrix in the atomic frame.

In a quantum mechanical atomic system scattering can occur between different atomic
states. When the quantum numbers of the initial and final states are the same, we speak
of Rayleigh scattering, when they are different we have the more general case of Raman
scattering. The special case of Rayleigh scattering when the frequency of the incident
photon does not differ from the resonant frequency of the atomic transition by much more
than the damping width is usually called resonant scattering. The corresponding special

case of Raman scattering is called fluorescent scattering.

The first quantum mechanical calculation of the redistribution matrix for the resonance
polarization, taking into account the effects of elastic collisions was performed by Omont
et al. (1972, see also references cited therein). The effect of magnetic field is considered
in Omont et al. (1973). This paper contains several interesting comments and remarks,
in particular that the Hanle effect may act in the core of a line but not in its wings
because of the very short life-time of the excited level for wing frequencies. For non-
magnetic resonance polarization, based on the work of Omont et al. (1972), Domke &
Hubeny (1988, see also Streater et al. 1988) derived a tractable analytical expression
of the redistribution matrix. It contains frequency coherent and incoherent terms with
branching ratios depending on the atomic model and various collision rates.

“Density matrix” is a fundamental concept in atomic physics. The first application of

density matrix for the interpretation of the linear polarization observed in a solar promi-
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nence was by Bommier (1977), Bommier & Sahal-Bréchot (1978), Landi Degl’Innocenti
(1982). In a series of papers Landi Degl’Innocenti (1983a, 1983b, 1984) showed that the
density matrix technique, combined with the formalism of the irreducible tensor compo-
nents of radiation field offer an alternative and powerful approach. This theory can handle
polarized scattering on multi-level atoms, but is restricted to CRD. Using this theory
Landi Degl’'Innocenti & Landi Degl’Innocenti (1988) derived the explicit analytic form of
the Hanle phase matrix in the atmospheric reference frame (Z-axis along the normal to
the atmosphere) for a two-level atom. A first attempt to include PRD in density matrix
formalism was by Bommier (1996). To incorporate PRD into the density matrix approach,
Landi Degl’Innocenti et al. (1997) developed a theory based on the formalism of metalevels
to describe coherent scattering, which is valid in the absence of collisions only. The problem
of PRD including collisions was re-analyzed by Bommier (1997a, 1997b, see also Bommier
1999, 2003) who could show that PRD appears automatically in the density matrix for-
malism when the perturbation expansion in the atom-radiation interaction is continued to
all orders in a quantum electrodynamic (QED) theory. CRD corresponds to the dominant

term in such an expansion.

In Chapter 7 of this thesis, starting from the classical approach of Bommier & Stenflo
(1999), we derive the laboratory frame PRD redistribution matrix in the presence of arbi-
trary magnetic fields, and including collisions. The equivalence between the classical and
QED approach of Bommier (1997b) will be established in Chapter 8.

1.7 Polarized line radiation transfer and numerical methods of

solution

The basic theoretical tool for the quantitative analysis of Stokes spectral line observation is
the polarized radiative transfer equation (which is the statement of conservation of energy
for a ray of light passing through a medium). It describes how the Stokes vector spectrum

that we observe is formed in the solar atmosphere in the presence or absence of magnetic
field.

In this thesis we always assume that the solar or stellar atmosphere can be approximated
by a plane-parallel, static slab with homogeneous layers. Further, we assume a two-level
atom with unpolarized lower level. The polarized radiative transfer equation can then be
written as

or

 _KI-j=K(I- 1.2
Has J (I-95), (1.23)
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where the depth, frequency, and angle dependence of the variables has been omitted for
brevity of notation. Here I is the Stokes vector; s is the ray-path coordinate which varies
inside the medium from 0 to oo, with the surface at s = 0; K is the 4 x4 absorption matrix;
7 is the total emission vector; and S is the total source vector. As usual, ;4 = cos®, with

¥ the angle made by the line-of-sight with the normal to the atmosphere.

The source vector describes the interaction of the radiation field with the plasma when
the light propagates through the atmosphere. Thus the exact form of S depends on the
physical processes that are considered. Under local thermodynamic equilibrium (LTE), the
source vector is given by unpolarized Planck function, which is determined exclusively by
the local temperature. LTE is a good approximation in the lowest regions of the atmosphere
(lower photosphere), where the collisions dominate. However in the outer layers of the
atmosphere (upper photosphere, chromosphere), where the radiative scattering dominates,
we have non-local coupling of the atmosphere over distances that are of the order of the
photon mean free path. Thus non-local thermodynamic equilibrium (NLTE) prevails in
such scattering dominated atmospheres. In this case the source vector becomes decoupled
from the local temperature and instead is determined by the radiation field from non-local

sources.

In § 1.7.1 we shall present historical developments in the theory of Zeeman line transfer
(both under LTE and NLTE - incoherent scattering included through CRD like source
function). Historical background on NLTE polarized line transfer both in the presence and

absence of magnetic field will be considered in § 1.7.2.
1.7.1 Zeeman line radiation transfer

The polarized line transfer problem where in polarization signal can be produced only
through the Zeeman effect is referred to as the Zeeman line transfer problem. The Zeeman

line transfer equation is given by Eq. (1.23), with the 4 x 4 absorption matrix of the form
K =k.E+ ky®, (1.24)

where k. and k( are the continuum and line center opacity, E is 4 X 4 unit matrix and ® is
the Zeeman line absorption matrix. The explicit form of ® will be presented in Chapter 2.

The total emission vector is given by
j = k.S.U + kOSLUa (125)

where U = (1000)", S, and S, are the continuum and line source functions.



1.7. Polarized line radiation transfer and numerical methods of solution 25

Under LTE, both S, and S, are given by Planck function. Zeeman line transfer prob-
lem under LTE for a normal Zeeman triplet was first formulated by Unno (1956) in a
phenomenological way, and independently by Stepanov (1958a) using a more stringent
classical derivation that implicitly also included the magneto-optical effects. Stepanov’s
approach was extended by Rachkovsky (1962a, 1962b), who provided a firm classical foun-
dation for the problem, and later by Beckers (1969a, 1969b) to treat arbitrary Zeeman
multiplet. A new classical derivation of the LTE transfer equation for normal Zeeman
triplet has been performed by Jefferies et al. (1989). A similar approach is presented in
Stenflo (1994). For a historical review on Zeeman line transfer see Stenflo (1971), Rees
(1987). A quantum electrodynamical theory for the same problem was developed by Landi
Degl’'Innocenti & Landi Degl’Innocenti (1972).

Analytic solutions to the LTE Zeeman line transfer equation for a Milne-Eddington
atmosphere (linear variation of source function with optical depth) and constant magnetic
vector were given by Unno (1956), Rachkovsky (1962a, 1967). The numerical method
of solution started with the work by Beckers (1969a, 1969b). Some of the numerical
methods developed later are by Wittmann (1974), Landi Degl’Innocenti (1976), Martin &
Wickramasinghe (1981), and Nagendra & Peraiah (1985a, 1985b). For a detailed discussion
on various numerical methods of solution see Landi Degl’Innocenti & Landolfi (2004). An
excellent description of Zeeman line transfer can be found in Stenflo (1994), del Toro Iniesta
(2003), and Landi Degl’Innocenti & Landolfi (2004).

The earliest attempts to include incoherent scattering in Zeeman line transfer theory
was by Stepanov (1958b) and Rachkovsky (1963). For NLTE Zeeman line transfer problem,
the continuum source function S, is given by Planck function B,,, while the line source

vector which now includes incoherent scattering is given by (see Stenflo 1994)

St = (1 — C)Jpol + EBVO, (1.26)

where € is the photon destruction probability per scattering, and

1 [T

ol = 7
Am J_o

Jp dv' / dn' (erI' + o Q' + puU' + oy V'), (1.27)

where ¢1q,u,v are the elements of first column of Zeeman line absorption matrix ® (see

Chapter 2), the ‘prime’ on the quantities indicates the incoming frequency v/'.

The basic theory for the NLTE Zeeman line transfer has been developed by Domke &
Staude (1973a), Dolginov & Pavlov (1973, 1974), Sidlichovsky (1974), House & Steinitz
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(1975), Landi Degl’'Innocenti & Landi Degl’Innocenti (1975), Landi Degl'Innocenti et al.
(1976), and Landi Degl’Innocenti et al. (1991b).

First numerical solution of the NLTE Zeeman line transfer problem was by Rees (1969),
and later by Domke & Staude (1973a, 1973b), Auer et al. (1977), Stenholm & Stenflo
(1978), and Rees et al. (1989). All these authors assumed ‘field-free approximation’,
namely Jpo was replaced by Junper = (1/47) [72°dv' [ dn'¢,I', where ¢,/ is the absorption
profile function. Jynpor is computed with a non-magnetic NLTE code and then simply apply
a formal solution of the Stokes transfer equations accounting for Zeeman effect.

Trujillo Bueno & Landi Degl’Innocenti (1996) show that the field-free approximation
cannot be safely used for a height dependent magnetic field. To handle such field gra-
dients, they introduced polarization free (POF) approximation. In this approximation,
one replaces Jyo by Jpor = (1/47) fjozo dv' [ dn'/@pI’, which is obtained again by solving
scalar NLTE transfer equation but with ¢, replaced by ¢;. Other alternative methods
to solve the same problem are those by Bommier & Landi Degl’'Innocenti (1996), Takeda
(1991). The POF approximation has been extended by Bruls & Trujillo Bueno (1996) to

solve multi-level NLTE Zeeman line transfer problem.

Auer et al. (1977) used the vector version of the scalar Feautrier (1964) method to
solve the NLTE Zeeman line transfer problem. Another exact method to solve the same
problem again by a matrix method based on discrete space theory is presented in Nagendra
& Peraiah (1985a, 1985b). These methods involve matrix manipulations and hence are
slow. A much faster method was developed by Rees et al. (1989), which they called DELO
(Diagonal Elements Lambda Operator) method. The DELO method can be used as a
formal solver (for a given source vector) to solve the NLTE Zeeman line transfer problem.
A highly accurate formal solver, which is a vector version of the scalar short-characteristic
method of Kunasz & Auer (1988) has been developed by Trujillo Bueno (2003a). He also
developed a more accurate version of DELO, which he calls as DELOPAR.

In the NLTE Zeeman line transfer formulation presented above only incoherent scat-
tering (CRD) has been included. The way to include coherent scattering (PRD) in this
formalism was first discussed by Stenflo (1994). In this thesis we will consider a numerical

method of solution for this latter class of problem (see Chapter 9).
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1.7.2 NLTE polarized line radiation transfer

NLTE polarized radiative transfer problem in the absence of magnetic field (resonance
scattering) for monochromatic radiation was first formulated by Chandrasekhar (1950).
He solved also this transfer problem exactly. The relevant scattering phase matrix was
derived quantum mechanically by Hamilton (1947, see Chandrasekhar 1950 for a classical
derivation of the same). Since then, problems of increasing degree of complexity have been

formulated and solved.

In the literature, the polarized line transfer problem has been formulated using two
different approaches, namely the ‘scattering approach’ and the ‘density matrix approach’.
The scattering approach makes use of vector (polarized) differential and integral equations
for polarized line transfer, which requires the explicit analytic form of the redistribution
matrix. In this approach the radiative transfer equation plays a pivotal role. The density
matrix approach is based on the formalism of quantum electrodynamics. In this formalism
the atom is described by its density matrix, while the polarized radiation field by means
of irreducible tensors. The transfer equations for the irreducible tensors are coupled to
the statistical equilibrium equations for the density matrix elements. In this approach
the central role is played by the statistical equilibrium equations. This formalism lends
itself easily to multi-level atoms including lower-level atomic polarization. Frisch (1998,
1999) has shown that the two approaches are equivalent in the case of two-level atom with
CRD. In this thesis we pursue the scattering formalism, which allows a somewhat straight

forward implementation of PRD effects.

Density matrix approach

The theoretical formalism for density matrix approach was developed by Bommier & Sahal-
Bréchot (1978), and Landi Degl’Innocenti (1982, 1983a, 1983b, 1984, 1985). In the first two
papers mentioned above only statistical equilibrium equations were considered, while in
other four papers a more general formalism capable of describing the physics of resonance
polarization for a multi-level atom in an optically thick, magnetized, multi-dimensional
medium was developed. Coupled system of equations resulting from this formalism for
the Hanle effect was solved by Landi Degl’Innocenti et al. (1987) using a perturbation
method. In this method the intensity of the radiation field is first calculated neglecting the
polarization and the magnetic field; the elements of the density matrix are then derived by
solving the statistical equilibrium equations and the resulting polarization of the radiation

field is deduced. This method relies on the fact that the observed linear polarization rates
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are small (a few % in solar prominences).

The above theoretical formalism was particularized to two-level atomic model neglecting
lower-level polarization and stimulated emission by Landi Degl’Innocenti et al. (1990) for
Hanle effect, Landi Degl’'Innocenti et al. (1991a) for arbitrary field strength and Landi
Degl'Innocenti et al. (1991b) for strong field (neglecting coherences between the Zeeman
sublevels). An “integral equation method” to solve the Hanle line transfer problem based
on the formalism of Landi Degl’Innocenti et al. (1990) was developed by Bommier et al.
(1991). For a review on density matrix approach see Landi Degl’Innocenti (1996), Bommier
(1996), and Landi Degl’'Innocenti & Landolfi (2004).

Fast iterative methods based on operator splitting for the density matrix approach of
Landi Degl’Innocenti have been developed by Trujillo Bueno and co-workers. Such iterative
methods for resonance scattering in a two-level atom have been developed by Trujillo Bueno
& Manso Sainz (1999) neglecting lower-level polarization, and by Trujillo Bueno & Landi
Degl’'Innocenti (1997) with lower-level polarization included. Trujillo Bueno & Manso
Sainz (1999) generalize to the polarized case the Jacobi-based approximate A-iteration
(ALI) method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel and
successive overrelaxation (SOR) methods of Trujillo Bueno & Fabiani Bendicho (1995)
developed for solving scalar NLTE problems. Trujillo Bueno (1999) has then generalized
this iterative method to handle multi-level atom with lower-level polarization. The same
iterative scheme has been extended to include Hanle effect in 1D, 2D, and 3D atmospheres
by Manso Sainz & Trujillo Bueno (1999) for a two-level atom neglecting lower-level po-
larization and by Manso Sainz & Trujillo Bueno (2003, see also Manso Sainz 2002) for
multi-level atom with both upper and lower-level polarization. They use the formal solver
developed by Fabiani Bendicho & Trujillo Bueno (1999) to solve 3D Hanle line transfer

problems. For a fine review on all these developments see Trujillo Bueno (1998, 2003a).

It is important to note that the theory and method of solution for density matrix
approach discussed above is restricted to CRD only. The PRD effects has only been recently
included in the formalism of density matrix for a two-level atom by Landi Degl’Innocenti
et al. (1997) neglecting collisions and by Bommier (1997a, 1997b, see also Bommier 1999,
2003) including collisions.

Scattering approach

The traditional scattering approach is presented in Mihalas (1978) for the unpolarized case,
and in Stenflo (1994), Ivanov et al. (1997) for the polarized case.
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In the scattering approach, the zero field NLTE theory of resonance line polarization
was given by Stenflo (1976), which is in principle applicable to multi-level atom and multi-
dimensional geometry. This theory was applied by Stenflo & Stenholm (1976) to calculate
UV emission polarization in resonance lines of a two-level atom. They solved the transfer
problem using Rybicki’s core saturation method, treating the Stokes () parameter as a
perturbation. Rees (1978) solved the same problem using a polarized integral equation

method. Both the above mentioned papers assumed CRD during scattering.

PRD effects were first taken into account by Dumont et al. (1977) who used a Feautrier
method. However they considered only the case of pure Doppler redistribution in the line
core. PRD calculations coupling the wings and the line core have been done by Rees
& Saliba (1982), McKenna (1984a, 1984b, 1985), Saliba (1985, 1986), Faurobert (1987,
1988), and Nagendra (1986, 1988, 1989, 1994, 1995). Rees & Saliba (1982) and Saliba
(1985, 1986) used a differential equation method such as the Feautrier method with Stokes
@ treated as a perturbation. McKenna (1984a, 1984b, 1985) used the integral equation
method, while Faurobert (1987, 1988) used non-perturbative Feautrier method. Nagendra
(1986, 1988, 1989, 1994, 1995) used a non-perturbative discrete space method (DSM) to
solve the resonance line transfer problem. All the above mentioned authors used plane-
parallel atmosphere, except Nagendra, who used spherical atmosphere. For a review on

analytic/ asymptotic methods in polarized line transfer see Ivanov (1991).

The paper by Rees & Saliba (1982) represents an important epoch in this field. They
introduce the so called ‘hybrid approximation’, which assumes a full decoupling of the
frequency redistribution and the polarization (represented through a angular phase matrix).
In the absence of the magnetic field, the NLTE transfer equation is given by Eq. (1.23)
with K = [k, + koo(z)|E, where ¢(z) is the normalized absorption profile with x being

non-dimensional frequency. The source vector is given by

_ koop(x)S1(z, p) + kB, ,U

S(z, : 1.28
(z, 1) o+ ko0 (@) (1.28)
with the line source vector
1—ce¢ oo ! ! ! i ' !
Si(z, ) = o) dz' ¢ dn'R(z,n,z',n')I(z',n') + €B,,U, (1.29)

where U = (10)", and I = (I Q)" (since the radiation field is axisymmetric U = V = 0).
According to the hybrid approximation of Rees & Saliba (1982),

R(z,n,2',n') = R(z,n,z',n')Pr(n,n’), (1.30)
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where Pg(n,n’) is the Rayleigh phase matrix (see Chandrasekhar 1950). For the redis-
tribution function R(z,mn,z’,n’) one uses Ry function of Hummer (1962) for resonance
lines. To reduce the CPU requirements in radiative transfer calculations an assumption is
normally made that the function Ry can be angle-averaged independent of Pg(n,n’), so
that we can write

R(z,n,2',n') = R(z,2")Pr(n,n'). (1.31)

Under CRD approximation, R(z,z') = ¢(z)¢(z") and for PRD R(z,z') = Ru(z,z').

Angle-dependent redistribution function R(z,n,z’,n') were used by Faurobert (1987,
1988) and Nagendra (1986, 1987, 1989), while other authors mentioned above used angle-
averaged Ry(z,z") or CRD. The correct form of redistribution matrix for resonance line
scattering including collisions was derived by Domke & Hubeny (1988) and Streater et al.
(1988). The Domke-Hubeny redistribution matrix was used in line transfer computation
by Nagendra (1994, 1995), who used the discrete space method for the solution.

A weak field NLTE theory of Hanle effect line polarization under scattering approach
was first developed by Stenflo (1978). He derived the Hanle phase matrix in a reference
frame where magnetic field is along the normal to the atmosphere. For arbitrary orientation
of magnetic field the Hanle phase matrix is derived by Landi Degl’Innocenti & Landi
Degl’'Innocenti (1988). This phase matrix has been used for the first time by Faurobert-
Scholl (1991) to solve the Hanle PRD line transfer problem. As a bold step, she introduced
the following 1D-domain based Hanle redistribution matrix

Pu(n,n',B) for |z| < z.,
R(z,n,7',n') = Ry(z,2') x a( ) < (1.32)
Pg(n,n’) for |z| > z.,

based on the fact that Hanle effect is operative only in the core. Py(n,n’, B) is the Hanle
phase matrix, z. is the cut-off frequency. Faurobert-Scholl (1991) used two methods to
solve the Hanle line transfer problem, one is the non-perturbative Feautrier method and
the other which treats polarization as a perturbation to the specific intensity (Rees 1978).
The latter method uses the Fourier azimuthal expansion of the radiation field with respect
to the azimuth angle ¢ of the direction of propagation. Such an expansion ‘reduces’ the
non-axisymmetric (p-dependent) problem to the axisymmetric one (only u-dependent).
A correct form of Hanle redistribution matrix including collisions was given by Bommier
(1997b). She derived these matrices by going to the weak field limit of her more general
theory. She gave more sophisticated 2D-domain based PRD matrices, the so called “Ap-
proximation II” that uses angle-dependent frequency redistribution functions of Hummer,



1.7. Polarized line radiation transfer and numerical methods of solution 31

and “Approximation III” that uses corresponding angle-averaged functions. Approxima-
tion III, but without collisions has been used by Faurobert-Scholl et al. (1999) to solve
Hanle PRD problem using a perturbation method. Nagendra et al. (2002) have used both
the Approximation IT and III (also including collisions) to solve the Hanle PRD problem us-
ing a perturbation method. In the works mentioned above the Zeeman effect was neglected,
by using a scalar absorption coefficient instead of an absorption matrix. In Chapter 9 of
this thesis we solve an even more general “Hanle-Zeeman” PRD line transfer problem using
a perturbation method, which takes into account both the ‘Zeeman absorption matrix’ and
‘Hanle-Zeeman redistribution matrix’ (that will be derived in Chapters 7 and 8).

The various numerical methods mentioned above are computationally expensive. Hence
it is necessary to develop fast iterative methods. Novel iterative methods were developed
for the scalar transfer problems in the 1970’s. One such method is called Approximate
A-Tteration (ALI) method, which is based on the idea of operator perturbation. It was
developed by Olson et al. (1986). One of the best reviews that describes the concept of ALI
in scalar line transfer theory is that of Hubeny (2003, see also Hubeny 1992). Extension
of ALI methods to include polarization under the scattering approach, was done in the
following series of papers. Faurobert-Scholl et al. (1997) developed a PALI (Polarized
ALI) method for resonance line scattering with CRD. The PRD effects were incorporated
for the same problem by Paletou & Faurobert-Scholl (1997). PALI method for Hanle effect
with CRD was developed by Nagendra et al. (1998). The 1D-domain based PRD for Hanle
effect was then included by Nagendra et al. (1999, see also Nagendra et al. 2000). The
2D-domain based PRD (Approximation III of Bommier 1997b) was implemented in PALI
method by Fluri et al. (2003b). For a fine review on the development of PALI methods see
Nagendra (2003a). Current information on state-of-the-art numerical methods used in line

radiative transfer can be found in the proceedings volumes “Stellar atmosphere modeling”,
edited by Hubeny et al. (2003).

The “traditional” PALI methods are based on the azimuthal Fourier expansion of the
radiation field I with respect to the outgoing ray azimuth ¢, and a double Fourier expansion
of the redistribution matrix with respect to both outgoing and incoming ray azimuths
¢ and ¢’ respectively. Such an expansion allows to decompose the non-axisymmetric
radiative transfer equation into a p-independent form. The concept of Fourier azimuthal
expansion was first introduced by Chandrasekhar (1950) for Rayleigh scattering problem.
This was extended to Hanle scattering problem by Faurobert-Scholl (1991). A better way
of expansion is presented in Nagendra et al. (1998). Recently Frisch (2007) has proposed a
elegant method for the above said decomposition, using the irreducible ‘spherical tensors for
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polarimetry’ introduced by Landi Degl’Innocenti (1984, 1985). This new approach is used
in Chapter 10 of the thesis to develop a PALI method for a non-domain based PRD theory
of Hanle effect. A non-domain based PRD matrix is obtained there by performing an angle-
average over the laboratory frame redistribution matrix derived under the Approximation
I of Bommier (1997b).

1.8 Outline of the thesis

In this thesis we have attempted to improve our knowledge on two topics of current interest
in the field of polarized line radiation transfer theory. The thesis consists of two parts.
Chapters 2 to 6 constitute Part-1 of the thesis. Part-I deals with a detailed investigation
of the Zeeman line formation in a stochastic medium. Chapters 7 to 10 constitute Part-II
of the thesis. In Part-II we develop the theory of line scattering with PRD in the presence

of arbitrary strength magnetic fields, and also present numerical methods of solution.

1.8.1 Outline on part-I of the thesis

In Chapter 2 we revisit the micro-turbulent limit and study the mean Zeeman absorption
matrix in detail. The micro-turbulent limit refers to the case when the scales of fluctua-
tions of the random field are much smaller than the photon mean free paths associated to
the line formation. Random magnetic field is characterized by isotropic (which we call 3D
turbulence) or anisotropic (which we call 1D or 2D turbulence) Gaussian distributions. A
detailed analytic as well as the numerical study of this limit is necessary for understanding
the more complex problem of meso-turbulence (random magnetic field with finite correla-
tion length). Some of the mathematical details on the special functions and on the method

of averaging that are required in Chapter 2 are presented in Appendices A - C.

Chapter 3 is devoted to a detailed study of a new class of functions which we call
generalized Voigt and Faraday-Voigt functions, that were first introduced by Dolginov &
Pavlov (1972). They appear in the analytic expression for mean Zeeman absorption and
dispersion coefficients, that are obtained when we consider isotropic fluctuations of the
random field in Chapter 2. It is necessary to develop numerical algorithm for correct

evaluation of these functions. Chapter 3 focuses on these aspects.

Observations and numerical simulations of magneto-convection show a highly variable
solar magnetic field. To interpret these observations, there is a need to develop theory of

polarized line formation in the presence of a random magnetic field with finite correlation
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length (the so called meso-turbulent limit). Chapter 4 is devoted to the detailed study
of this meso-turbulent limit. We model the random vector magnetic field by a Kubo-
Anderson process (KAP). KAP is characterized by a correlation length and a probability
distribution function (PDF) for the random values of the magnetic field. Some properties
of the transport operator that is used in Chapter 4 are presented in Appendix D. In
Appendix E we give the Zeeman absorption matrix in a frame where the mean magnetic

field is along the polar Z-axis.

In Chapter 5 we undertake a detailed study on the effects of random magnetic fields on
Stokes line profiles. For this purpose we restrict ourselves to micro and macro-turbulent
regimes, which provide bounds for a more general meso-turbulent regime. In this chapter
we continue to use Gaussian PDFs that were considered in Chapter 2. The solution of the
transfer equation for the deterministic fields (Unno-Rachkovsky solution) are presented in

Appendix F. They are useful for the interpretation of the results presented in Chapter 5.

Empirically determined PDF's from observations and numerical simulations of magneto-
convection are used to compute mean Stokes profiles in Chapter 6. PDFs need to be actu-
ally determined from observations. So far PDF's corresponding ‘only to the field strength’
have been provided by observations (see eg. Stenflo & Holzreuter 2002, 2003a, 2003b).
However there is an urgent need to determine from observations the PDF's not only for the
field strength but also for the ‘field orientation’.

1.8.2 OQutline on part-IT of the thesis

The polarized spectrum of strong resonance lines like Ca1 4227 A could be modeled only
when the PRD is taken into account in line scattering. Hence it is necessary to develop po-
larized PRD line formation theories in the presence of arbitrary strength magnetic fields.
In Chapter 7, we develop the theory for the PRD redistribution matrix for a two-level
atom (J = 0 — 1 — 0 scattering transition) in the presence of magnetic fields of arbitrary
strength and direction. We transform the atomic frame time-dependent classical oscillator
theory of Bommier & Stenflo (1999) to the laboratory frame. It involves extensive calcula-
tions. We refer to the resulting redistribution matrix as the ‘Hanle-Zeeman redistribution
matrix’, as it covers the entire field strength regime. The auxiliary coefficients and phase

matrices entering the redistribution matrix are listed in Appendix G.

The equivalence between the Hanle-Zeeman redistribution matrix that we derive through
quantum electrodynamic approach of Bommier (1997b) and the one we derived in Chap-

ter 7 through the classical theory is established in Chapter 8. This ‘equivalence’ is proved
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explicitly for a J = 0 — 1 — 0 scattering transition both in the atomic as well as the
laboratory frames. The various functions and phase matrices contained in type III redistri-
bution matrix are presented in Appendices H and I. In Appendix J we describe the method
to include the spherical tensors in to the Hanle scattering matrix of Stenflo (1994). This
method is used in Chapter 8 to establish the equivalence between the classical and QED

redistribution matrices. The frame transformation equations are presented in Appendix K.

In Chapter 9, we solve the polarized radiative transfer equation numerically, taking
into account consistently and simultaneously both the Zeeman absorption matrix and the
Hanle-Zeeman partial redistribution matrix in arbitrary fields. We apply a perturbation
method (see eg. Nagendra et al. 2002) to solve this highly general Hanle-Zeeman line

transfer equation. It represents the very first solution of this problem.

Apart from deriving the theoretical framework, the challenge for theorists is to develop
‘efficient algorithms’ to solve the polarized radiation transfer equation. The numerical
method used in Chapter 9 is computationally expensive. Hence it is necessary to develop
fast iterative methods based on operator perturbation. As a first step in this direction,
we develop such a method in Chapter 10 in the particular case of ‘weak field limit’ of
Hanle-Zeeman redistribution matrix. The elements of the weak field non-domain based

partial redistribution matrix are listed in Appendix L.

Finally, open questions and the future developments in the theory of polarized line
formation are discussed in Chapter 11. The ultimate goal of astrophysical scattering theory
is to model the observations, and to understand the various physical processes occurring in
the distant source. In our case, the idea behind developing such a sophisticated scattering
theory is to model the Hanle effect signatures in the “second solar spectrum”.
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Chapter 2

Zeeman absorption matrix in a random mag-
netic field!

2.1 Introduction

Observations of the solar magnetic field and numerical simulations of solar magneto-
hydrodynamical processes all converge to a magnetic field which is highly variable on
all scales, certainly in the horizontal direction and probably also in the vertical one. Solv-
ing radiative transfer equations for polarized radiation in a random magnetic field, is thus
an important but not a simple problem since one is faced with a transfer equation with
stochastic coefficients (Landi Degl’Innocenti 2003, Landi Degl’Innocenti & Landolfi 2004,
henceforth LL04). In principle the mean radiation field can be found by numerical aver-
aging over a large number of realizations of the magnetic field and other relevant random
physical parameters like velocity and temperature. A more appealing approach is to con-
struct, with chosen magnetic field models, closed form equations or expressions for the
mean Stokes parameters. Landi Degl’Innocenti (2003) has given a nice and comprehensive
review of the few models that have been proposed.

The problem of obtaining mean Stokes parameters simplifies if one can single out fluc-
tuations with scales much smaller than the photon mean free paths. The radiative transfer
equation has the same form as in the deterministic case, except that the coefficients in the
equation, in particular the absorption matrix, are replaced by averages over the distribution
of the magnetic field vector and other relevant physical parameters. This micro-turbulent

approximation is currently being used for diagnostic purposes in the frame work of the

! This chapter is based on the publication: Frisch, H., Sampoorna, M., & Nagendra, K. N. 2005, A&A,
442, 11-28
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MISMA (Micro Structured Magnetic Atmospheres) hypothesis (Sdnchez Almeida et al.
1996, Sanchez Almeida 1997, Sénchez Almeida & Lites 2000) and commonly observed fea-
tures like Stokes V' asymmetries and broad-band circular polarization could be correctly
reproduced. In the MISMA modeling the mean Zeeman absorption matrix is actually a
weighted sum of two or three absorption matrices, each corresponding to a different con-
stituent of the atmosphere characterized by its physical parameters (filling factor, magnetic
field strength and direction, velocity field, etc.).

The problem simplifies also when the scales of fluctuations are much larger than the
photon mean free paths. The magnetic field can then be taken constant over the line form-
ing region and the transfer equation for polarized radiation is the standard deterministic
one. Mean Stokes parameters can be obtained by averaging its solution over the magnetic
field distribution. For magnetic fields with a finite correlation length, i.e. comparable to
photons mean free paths, the macro-turbulent and micro-turbulent limits are recovered

when the correlation scales go to infinity or zero.

The micro-turbulent limit is certainly a rough approximation to describe the effects
of a random magnetic field, but as the small scale limit of more general models, it is in-
teresting to study somewhat systematically the effect of a random magnetic field on the
Zeeman absorption matrix. This is the main purpose of this chapter. The problem has
actually been addressed fairly early by Dolginov & Pavlov (1972, henceforth DP72) and by
Domke & Pavlov (1979, henceforth DP79), with anisotropic Gaussian distributions of the
magnetic field vector. These two papers have attracted very little attention, although they
contain quite a few interesting results showing the drastic effects of isotropic or anisotropic
magnetic field distributions with a non zero mean field. More simple distribution have been
introduced for diagnostic purposes, in particular in relation with the Hanle effect. For ex-
ample, following Stenflo (1982), a single-valued magnetic field with isotropic distribution
is commonly used to infer turbulent magnetic fields from the linear polarization of Hanle
sensitive lines (Stenflo 1994, Faurobert-Scholl 1996, and references therein). A somewhat
more sophisticated model is worked out in detail in LL04 for the case of the Zeeman effect.
The angular distribution is still isotropic, but the field strength has a Gaussian distribu-
tion with zero mean. The two models predict zero polarization for the Zeeman effect, since
all the off diagonal elements of the absorption matrix are zero. Recently, measurements
of the fractal dimensions of magnetic structures in high-resolution magnetograms (Stenflo
& Holzreuter 2003a), and numerical simulations of magneto-convection (Cattaneo 1999,
Cattaneo et al. 2003, Janflen et al. 2003) have suggested that distribution of the ver-
tical component of the magnetic field strength could be described by Voigt or stretched
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exponential functions respectively. Such distributions are now considered for diagnostic
purposes (Socas-Navarro & Sanchez Almeida 2003, Trujillo Bueno et al. 2004). Actually
not so much is known on the small scale distribution of the magnetic field vector and on
the correlations between the magnetic field and velocity field fluctuations. For isotropic
turbulence, symmetry arguments show that correlations are zero when the magnetic field

is treated as a pseudo-vector (DP79).

Here we concentrate on the effects of Gaussian magnetic field fluctuations. We believe
that a good understanding of the sole action of a random magnetic field is important
before considering more complex situations with anisotropic random velocity fields and
correlations between velocity field and magnetic field fluctuations, although they seem to
be needed to explain circular polarization asymmetries. One can find in LL04 (Chapter
9) a simple example showing the effects of such correlations. So here we assume, as in
DP79, that there is no correlation between the magnetic field and velocity field fluctuations
and that the latter behave like thermal velocity field fluctuations. They can thus be
incorporated in the line Doppler width. We assume that the medium is permeated by a
mean magnetic field By with anisotropic Gaussian fluctuations. We write the random field
distribution function, also called probability distribution function (PDF), in the form

2 EPRY:
P(B)dB = ;exp [_QBTT] exp [—M] d*Br dBr.. (2.1)

(27)3/202.07, 2 207

Here Bt and Bi, are the components of the random field in the directions perpendicular
and parallel to the mean field. The coefficient o1, and o1 are proportional to the root
mean square (rms) fluctuations of the longitudinal and transverse components. With the
above definition ((Br, — By)?) = of and (B2) = 202. We will also consider the case of
isotropic fluctuations with or = o, = 0. In that case ((B — By)?) = 302. The distribution
written in Eq. (2.1) is invariant under a rotation about the direction of the mean field and
is normalized to unity. The choice of the factor 2 in the exponential is arbitrary. Changing
it will modify the normalization constant and the relation between the rms fluctuations
and the coefficients o1 and o7,.

The distribution written in Eq. (2.1) is the most general azimuthally symmetric Gaus-
sian distribution. Here we consider three specific types of fluctuations : (i) longitudinal
fluctuations in the direction of the mean field, also referred to as 1D fluctuations; they cor-
respond to the case or = 0. (ii) isotropic fluctuations, also referred to as 3D fluctuations;
they correspond to o = oy. (iii) fluctuations perpendicular to the mean field which we

refer to as 2D fluctuations; they correspond to the case o, = 0. In cases (i) and (iii) the
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fluctuations are anisotropic. They are isotropic by construction in case (ii). In case (i),
only the magnitude of B is random but in cases (ii) and (iii), both the magnitude and the

direction of the magnetic field are random.

For these three types of distribution we give expressions, as explicit as possible, of the
mean absorption and anomalous dispersion coefficients. Many of them can be found also
in DP72 and DP79 where they are often stated with only a few hints at how they may be
obtained. Here we give fairly detailed proofs. Some of them can be easily transposed to
non-Gaussian distribution functions. Also we perform a much more extended numerical
analysis of the mean coefficients and in particular carry out a detailed comparison of the
frequency profiles produced by the longitudinal, perpendicular and isotropic distributions.

This comparison is quite useful for building a physical insight into the averaging effects.

This chapter is organized as follows: In § 2.2 we establish a general expression for
the calculation of the mean Zeeman absorption matrix which holds for any azimuthally
invariant magnetic field vector distributions. In §§ 2.3, 2.4 and 2.5 we consider in detail
the three specific distributions listed above. § 2.6 is devoted to a summary of the main

results and contains also some comments on possible generalizations.

2.2 The Zeeman absorption matrix

We are interested in the calculation of
(®) = / ®(B) P(B)dB, (2.2)

where @ is the absorption matrix in the transfer equation for polarized radiation. It
depends on the strength of the magnetic field |B| = B and on the angle between the
line-of-sight (LOS) and the direction of the magnetic field. In the LOS reference frame
shown in Fig. 2.1 where the Z-axis is toward the observer, ® depends on the polar and
azimuthal angles # and ¢ of the random magnetic field. In contrast, the magnetic field
distribution introduced in Eq. (2.1) is defined with respect to the direction of the mean
field By. In terms of © and ¥, the polar and azimuthal angles of B with respect to By,
the distribution function has the form

B?sin? 0 (Bcos© — By)?
(27)3/20201, P [_ 202, :| xp [_

B? sin ©dBdOdv.

(2.3)
To carry out the averaging process, one must either express P(B) dB in terms of § and ¢ or

P(B)dB =

2
207

the matrix ® in terms of © and ¥. The second option is actually simpler to work out. As
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Z

X

Figure 2.1: Definition of # and ¢, the polar and azimuthal angles of the random magnetic
field vector B, and of 6, and ¢, the corresponding angles for the mean magnetic field B.
The angles # and 6y are defined with respect to the LOS n.

pointed out in DP79, the angular dependence of the elements of ® can be written in terms
of the spherical harmonics Y}, (6, ¢). This comes out naturally when the radiation field is
represented by means of the polarization matrix rather than with the Stokes parameters.
The Y},,, because they are tensors of rank [, obey well known transformation laws under
a rotation of the reference frame. A rotation of the LOS reference frame to a new frame
defined by the direction of the mean magnetic field will thus yield the elements of ® in
terms of © and W. The averaging process can then be carried out fairly easily.

In § 2.2.1 we recall the standard expressions of the elements of the 4 x 4 Zeeman absorp-
tion matrix in the Stokes parameters representation and in § 2.2.2 we give their expression
in the polarization matrix representation. In § 2.2.3 we explain in detail the transformation

of the Y}, and in § 2.2.4 establish general expressions for the mean coefficients.

2.2.1 Absorption and anomalous dispersion coefficients

We consider for simplicity a normal Zeeman triplet but our results are easily generalized
to the anomalous Zeeman effect (see §§ 2.6 and 6.6). For a normal Zeeman triplet, the line
absorption matrix can be written as (Landi Degl’Innocenti 1976, Rees 1987, Stenflo 1994,
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LL04)
Y1 PqQ Yu ¥v
& — YQ Y1 Xv  —Xu
Yu —Xv ¥ XQ
v Xu —XQ ¢¥1
The absorption coefficients, ¢rq uv and the anomalous dispersion coefficients xq u,v may

(2.4)

be written as

1 1

pr o= 5% sin” § + Z(S0+1 +¢-1)(1 + cos®b),
1] 1 . 9

vq = 3 (‘00_5(@+1+¢_1) sin” 6 cos 2¢,
11 o

v o= 3 @O—i(gp_i_l—i—(p_l) sin” @ sin 2¢,
.

oy = §(gp+1—gp,1)cosﬁ,
1[ 1 .2

X = 5 fo—i(f+1+f71) sin”  cos 2¢,
1 1 .2

o= fo_i(fﬂ—'_f_l) sin” # sin 2¢,
.

Xv = §(f+1—f—1)C059' (2:5)

Here ¢, (¢ = 0, £1) are Voigt functions and f, Faraday-Voigt functions defined below.

We introduce a Doppler width Avp and measure all the independent variables appearing
in ¢, and f, in Doppler width units. We thus write

2

a +0oo e~
@q(z,a,B) = H(x — qAzB,a) = m/ G — b, Bt du, (2.6)

and

fq(x,aa B) = F(CU — CIAzB,a,) =

d 2.7
w (x—qAzB —u)?+ a? w (2.7)

where x = (vy — v)/Avp is the frequency measured from the line center, in units of Avp,

1 /+°° (x —qAzB — u)e‘“2

e

a the damping parameter and Az B the Zeeman displacement by the random field with
e 1

Ay = —.

7 g47rm Avp

Here g is the Landé factor, m and e, the mass and charge of the electron.

(2.8)

We use here Voigt functions which are normalized to unity when integrated over the

dimensionless frequency z, and the associated Faraday-Voigt functions (a factor 1//7
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is added to the usual definition of H and a factor 2//7 to the usual definition of F).
With this definition the Voigt function is exactly the convolution product of a Lorentzian
describing the natural width of the line and of a Gaussian. The latter can describe pure
thermal Doppler broadening, or a combination of thermal and micro-turbulent velocity
broadening, provided the velocity field has an isotropic Maxwellian distribution. What we
call here the Doppler width and denote by Avyp is actually the total broadening parameter,

including the micro-turbulent velocity field. Thus, with standard notations,

1/2
Avp = 2 (wf + o) (2.9)

where v, is the line center frequency, ¢ the speed of light, vy, = (2k7/M)'/? and v, are
the rms thermal and turbulent velocities, respectively.

If the frequency z is measured in units of thermal Doppler width Avp = vyvy, /¢, then
©q(z, a)dz become @, (7 /vy, a/vy)dz /v, with v, = (1402, /v3 )2, The change of variables
z/v — x and a/v, — a and the definition of Avp as in Eq. (2.9) lead back to Egs. (2.6)
and (2.7).

2.2.2 An alternative form for the absorption and dispersion coefficients

For the calculation of the mean Zeeman absorption matrix, it is convenient to rewrite the

elements as in DP79, namely in the form

or = Ay — %AQ(B cos?f — 1); oy = Aj cos b,
¢q = Ay sin? 0 cos 2¢; oy = Ay sin® fsin 2¢, (2.10)

with

q=+1

1
Ay = gz%(m,a,B), g=0,+1

g=-1
1
Al = 5 Z quq(x’a: B)a
g==%1
1=t
AZ = Zq;1(2_3q2)g0q(x7av B)7 q= Ovj:l (211)
The anomalous dispersion coefficients have similar expressions with the ¢, replaced by
the f,. It is straightforward to verify that the expressions given above are identical to

those given in Eq. (2.5). We note here that they appear automatically when the polarized
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radiation field is represented by the time averaged polarization tensor rather than by the
Stokes vector (DP72, DP79, Dolginov et al. 1995).

The main interest of this formulation, in addition to the fact that the A4;, (i = 0,1, 2)
depend only on the strength of the random magnetic field, is that the functions which
contain the angular dependence can be expressed in terms of spherical harmonics Y; (6, ¢)
and Legendre polynomials P;(cos ) which obey simple transformation laws in a rotation
of the reference frame.

In terms of these special functions,

o1 = Ao — (2/3) Ay Py(cos 6); oy = Aj Pi(cos ),
oq = Ao/ (321 /15) R[Y22(0, 0)];  @u = A2/ (327/15) J[Ya2(0, #)].  (2.12)

The Legendre polynomials P;(cos ) are special cases of Y, (6, ¢), corresponding to m = 0
(see Appendix A).

2.2.3 Rotation of the reference frame

We now perform a rotation of the reference frame to obtain the absorption coefficients
in a reference frame connected to the mean magnetic field where the averaging process is
easily carried out. The initial reference frame is the (XY Z) frame, also referred as the
LOS reference frame (see Fig. 2.1). We perform on this reference frame a rotation defined
by the Euler angles o = ¢, 8 = 6y and v = 0. This rotation is realized by performing
a rotation by an angle §, around the Y-axis and a rotation by an angle ¢ around the
initial Z-axis. Since the random field is invariant under a rotation about the direction of
the mean field, we have taken v = 0. Rotational transformations and Euler angles are
described in many textbooks (Brink & Satchler 1968, Varshalovich et al. 1988, LL04).

The spherical harmonics Y}, are irreducible tensors of rank [. They are particular cases
of the Wigner fol)m, (o, B,7y) functions corresponding to m = 0 or m’ = 0 (see Appendix A).
In a rotation of the reference frame, defined by the Euler angles o, 3, 7y, they transform
according to (Varshalovich et al. 1988, p. 141, Eq. 1)

Yim(©,®) =Y Vi (6, 6) DY), (e, B,7), (2.13)

where 6 and ¢ are the polar angles in the initial LOS coordinate system and © and ¥
the polar angles in the final mean magnetic coordinate system. Thus © and ¥ define the

direction of the random field B in the new reference frame.
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Actually, we need the inverse transformation which will give us the ¥,,(6, ¢) in terms
of the Y, (©, ¥). The inverse transformation is (Varshalovich et al. 1988, p. 74, Eq. 13)

Yin(0,0) = > Vi (0, W) DY), (0, —0y, — o). (2.14)

The inverse transformation is obtained by performing the three elementary rotations in
the reverse order and with the opposite rotation angles. Explicit expressions of the Y,

and Dﬁ,?,m are given in Appendix A.

To calculate the mean coefficients (¢rqu,v) we have to integrate Eq. (2.12) over W.
Since the distribution function P(B) and the A; (i = 0,1,2), are independent of ¥ (see

Egs. (2.3) and (2.11)), only the Y}, have to be integrated over ¥. When Eq. (2.14) is

integrated over W, only the term with m’ = 0 will remain. For m' = 0 the Dsz),m reduce to

Y. and the Yy to Legendre polynomials. Thus after integration, Eq. (2.14) reduces to

1

o / Vi (0, 6)d = Py(cos ©)Yim(—bo, — o). (2.15)
We are now in the position to average Eq. (2.12).
2.2.4 The mean coefficients

Using Eq. (2.15) with [ =2, m =0 for ¢, { =1, m = 0 for ¢y and | =2, m = £2 for ¢q

and @y, we obtain the very compact expressions

(¢1) = Ag — 5A5(3 cos? Oy — 1); {py) = Aj cos by,
(pq) = Ay sin? 6 cos 2¢y; (pu) = (pq) tan 2¢,, (2.16)

where

AO = <A0($, a, B)>,
Ay = (Ai(x,a, B)cosO),
Ay = (Ay(z,a, B)%(3 cos” © — 1)). (2.17)

The notation ( ) represents an integration over © and B weighted by the azimuthal average
of the magnetic field distribution. This result is quite general and can be used for any
random field distribution, provided it is invariant in rotations about the mean magnetic
field direction. We have similar expressions for the xq uv with the ¢, replaced by the f,.
Since (py) is simply related to (¢q), (see Eq. (2.16)) we do not consider it in the following.
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With the PDF considered here (see Egs. (2.1) or (2.3)), the mean coefficients have
the same symmetry properties as the non-random coefficients, namely (¢;) and (¢q) are
symmetric with respect to the line center x = 0 (they are even functions of x) and (pv) is
antisymmetric (odd function of z). We stress also that the integrals of (¢r) and (pq) over
frequency are not affected by turbulence. Hence if one consider only the integration over
x > 0, the integral of (¢q) is zero and the integral of (¢r) equal to 1/2.

2.3 Fluctuations parallel to the mean field (1D turbulence)

When fluctuations are along the direction of the mean field By, the PDF for the random
field can be written as

1
(2m)Y2%0
where B is the 1D random magnetic field which varies between —oo and +oo and o =
[((B — By)?)]/? = [(B?) — BZ]'/? is the square-root of the dispersion (or variance) around

the mean field By, also known as the standard deviation or rms fluctuations. The factor

(B — By)?

202

P.(B)dB = exp [— ] dB, (2.18)

2 ensures that o is exactly the rms fluctuation defined as above. This distribution is
normalized to unity. It can be obtained from Eq. (2.1) by integrating over the transverse
component of the magnetic field. To simplify the notation, we have set o, = 0. We note
that the Gaussian tends to a Dirac distribution when o0 — 0. Thus for o = 0, the magnetic

field is non-random and equal to the mean field B.

We introduce the new dimensionless variable y and the parameters y, and g defined

by
B By

y_Ea yO_Ea

where the constant Ay is defined in Eq. (2.8). These dimensionless quantities will also

v8 = Az 20, (2.19)

be used in the case of isotropic and 2D turbulence. The variable y and the parameter
Yo measure the random field and mean field in units of the standard deviation. The
random Zeeman displacement is Az B = yyp and the Zeeman shift by the mean field is
AzBy = yoyg- The variable yp represents the rms fluctuations o converted to Zeeman

shift in Doppler width units. In these new variables, ¢, can be written as

a [T e~v’
S 2.2
a(2,0,9) = —p5 /_oo TR (2.20)

and the distribution function becomes

1
P,(B)dB = NG e~ dy for — oo < y < 4oo. (2.21)
m
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To calculate the mean absorption coefficients it suffices to take the average of the A;
over B in Eq. (2.11) since the random field is along the direction 6y, ¢o. This procedure is
equivalent to set cos© = 1in Eq. (2.17). The averaging over the magnetic field distribution
amounts to the convolution product of a Voigt function with a Gaussian coming from
the distribution of the magnetic field strength. The effect is similar to a broadening by
a Gaussian turbulent velocity field, except that it does not affect the ¢ term (the 7-
component) since the latter does not depend on the strength of the magnetic field. One
obtains (see Appendix B)

q

_ 1981
AO = 3 —H(.fq,&q), q= Oaj:la
3 = Ve
_ 1 1
A = b q—H(Z,,a,),
q==%1 ’Yq
_ 1S 1
A = 5 Y (2-3¢")—H(z,a,), ¢=0,+1, (2.22)
Yq

where H is the Voigt function introduced in Eq. (2.6),

—qAzB
T, = M, g = g, (2_23)
Yq Yq

Vg = A /1 + q2fy]23; q=0,£l. (2.24)

We see that v is a broadening parameter which combines the Doppler and magnetic field

and

effects. Note that 79 = 1, Zo = = and ay = a. The ¢, term is not modified as already
mentioned above. Note also that the functions H(Z,, a,)/v, are normalized to unity (their

integral over z is unity).

The broadening of the o-components can be described in terms of a total Doppler width
Ac that combines the effects of thermal, velocity and magnetic field broadening. It can be

written as

A \/A 2 1 g2 %V 9p
c= vi+yg (47T ) 202, (2.25)
where Avp is the Doppler width defined in Eq. (2.9).

When the Zeeman shift by the mean magnetic field Az By is smaller than the combined
Doppler and magnetic broadening (AzBy < 71), a situation referred to as the weak field
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limit, as in DP72, one has, to the leading order

A, ~ %[H(x,awz}l(ﬁ ﬁ)}

N 71’ 4!

_ 2A ;B
4, ~ 8B [xH (£,1>_ap<£,g>],
M TN TN

i =~ %[H(m,a)— Lu <£ i)} (2.26)

il il ’ 7

When the mean field By is zero, the circular polarization is zero but not the linear po-
larization unless the random field fluctuations are along the LOS (fp = 0°). The mean
diagonal absorption coefficient is given by

r a

1 1
= —H(z,a)sin?4 +—H< ,
(1) D) (z,a) 0T 5 "

) (1 + cos?® bp). (2.27)
T

To summarize, in the case of longitudinal fluctuations, the mean absorption coefficients
have the same form as the original coefficients given in Egs. (2.5) or (2.10) but the o-
components are broadened by the random magnetic field while the 7-components are not
affected. Mean coeflicients for longitudinal fluctuations are shown in § 2.5.2 and compared
to the mean coefficients for 2D and 3D turbulence.

2.4 Isotropic fluctuations (3D turbulence)

We now assume that the fluctuations of the magnetic field are isotropically distributed.
This implies that o1, = or in Eq. (2.1). The PDF takes the form

1 (B — By)*

PI(B) dB = mexp [— 902

] B?sin©dB dO dV¥. (2.28)
Here B, the strength of the magnetic field, varies from 0 to oo. The rms fluctuations
are [((B — By)?)]"/? = [(B?) — B2]'/? = \/30. In terms of the dimensionless parameters
introduced in Eq. (2.19), the distribution function becomes

1

P(B)dB =

e~ Woty?) 20ycos© ¢ 2 gy gin © dO U, (2.29)

where y varies from 0 to co, the angle © from 0 to 7 and ¥ from 0 to 27. The azimuthal

average of this distribution is simply given by the r.h.s. of Eq. (2.29) without the dW.
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2.4.1 Exact and approximate expressions for the mean coefficients

We now calculate the A; defined in Eq. (2.17). Introducing the variable y = cos ©, we can

write ) - "
A, = —/ e W) Ay(z, a, \/iay)yQ/ eV e, (1) du dy, (2.30)
VT Jo 1
where .
cop) =1, alp)=p c(p)= 5(3,“2 —1). (2.31)

The integration over p can be carried out explicitly. Regrouping the exponential terms
e~@s+v”) and €20¥ and then taking advantage of the symmetries with respect to a change

y into —y, one obtains

g=+1

_ 2 1 [T 2
A= —— - (W) [ (r — d 2.32
0= 5 q;l o /Ooe (z — qyBY, a)y dy, (2.32)

- 1 1 [F 2 1
W9’ [ (5 — ——)d 2.33
A N > q2y0/ e (= — g8y, a) (y 2y0> Y, (2.33)

g==%1

g=+1

_ 1 1 [+ )
A= —— 2 — 3¢%)— ~v=v0)” F (1 — , -
NG q;lﬁ( q )2y0 / e (z—qvBY,a) | ¥

These equations, which are of the convolution type, were first given in DP79. Note that y

3
= 4
2y0  4ydy

) dy. (2.34)

varies from —oo to +00. For the anomalous dispersion coefficients we have similar relations
where the Voigt functions H are replaced by the Faraday-Voigt functions F'.

As shown in Appendix B, the A; can be expressed in terms of the generalized Voigt
and Faraday-Voigt functions H™ and F™ defined by

+o0 n,—u?
(n) -2 _we
H™(z,a) 7 /_Oo Guiid du, (2.35)
1 [T u(z—u)e ™
(n) = -
F(z,0) = —7 /_oo EEm (2.36)

They were introduced in DP72 where the F are denoted G™ (in DP79 they are denoted
Q™). For n = 0, one recovers the usual Voigt and Faraday-Voigt functions. The functions
H®™ and F®™ are plotted in Fig. 2.2 for ¢ = 0, n = 0,1,2. They can be calculated with
recurrence relations given in Chapter 3 which take particularly simple forms for a = 0. In
particular

1
H™(2,0) = ——z" ™. (2.37)

H
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(a) H™ (x, a = 0) (b) F™ (x, a = 0)
0.6 T TS 0’3é_...,...,...,...,...,...,...,...l...l...j
0.4} 0 ] o2
0.2:— 1
0.0
—0.2:‘ ] : ; 3
-8-6—-4-20 2 4 6 8 —-8-6-4-20 2 4 6 8
Frequency x Frequency =

Figure 2.2: The H™ and F™ functions for several orders n. The damping parameter
a = 0. The H™ are even functions when n is even and odd when n is odd. For the F(™

it is the opposite.

We also note that the H™ and F™ functions are simply related to the derivatives of the
Voigt and Faraday-Voigt functions (see Chapter 3).

The functions Ay and A; have closed form (i.e. exact) expressions in terms of the H™
but not A, for which only approximate expressions can be given because of the term with
1/y (see Eq. (2.34)). The exact expressions for Ay and A; are

_ 1 1 o VB _
Ay == —[H<°)x,a +q——HY(z,,a ] 2.38
0 3(2_:1 Yq ( I q) YoYq ( ! q) ( )
A=5Ya [(l - %) HO (z,,a,) + q”—BH‘”(iq,éq)] o (239)
2 T 2y, YoYq

where z, and a, have been defined in Eq. (2.23).

For A,, approximate expressions can be constructed in the limiting cases yo > 1 and
Yo < 1, which we refer to respectively as the strong mean field and weak mean field limits

for reasons explained now. We discuss these two cases separately.
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Strong mean field limit

When the mean field strength By is much larger than the rms fluctuations, i.e. when
By > /20, one has yo > 1. In this case the Zeeman shift A, B, by the mean magnetic
field is much larger than the broadening vz = Azv/20 by the random magnetic field
fluctuations. We call this situation the strong mean field limit but it can also be viewed as
a weak turbulence limit. When g, >> 1, one can neglect the term 3/4y2y in Eq. (2.34) and
thus obtain

1°R 1

- st 3 _ YB _ _
Al=g ) 5@ -3) [(1‘2_@ HO(z,,a,) + ¢ -HO(E,a,)|,  (240)

where the superscript “st” stands for strong.

We remark here that if we keep g finite but let yy, — oo, we recover the longitudinal
turbulence case discussed in the preceding section. This can be checked on Egs. (2.38) to
(2.40).

Weak mean field limit

We now consider the case where yo < 1. This means that the Zeeman shift by the mean
field satisfies Az By < ~vp. Since vg < 71, this condition automatically implies that the
mean Zeeman shift is smaller than the combined Doppler and Zeeman broadening. Thus
in this limit, which we refer to as weak mean field limit, the mean magnetic field is too
weak for the o-components to be resolved. The best method to obtain the mean absorption
coefficients is to start from Eq. (2.30) and expand the exponentials exp(—y2) and exp(2y,y)
in powers of yy. Using the change of variables described in Appendix B with yy = 0, one

obtains at the leading order,

- 1 1 T a T a 4 T a
Ay 2= {H(O) T,0) — — [H(O) (—,—) + 294 H® (—,—) + —yEHW (-,—)] }
R (.0) = 2 o) TR non) 3P nm
(2.41)
where the superscript “w” stands for weak. The important point is that A," is of order

y2. This point has already been made in DP72 and DP79 but the full expression was not

given.
For the functions Ay and A;, the expansion in powers of y, yields

1
— [H(O) (£ ﬁ) + 2¢°43H®? <£ ﬁ)} : (2.42)

0% Yo Vq Yo Vq

g=+1

/IOWQ%Z

g=-1
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AV~ 2Y0YB [H(l) (ﬂ’ ﬂ) + EW%H(?’) (i, ﬂ)] . (2.43)
vt mon) 3 MM

Note that A;" is proportional to yyyz, i.e. to the shift A, B, by the mean magnetic field.

In this weak field limit the mean value of the absorption coefficient ¢; is simply given
by (1) ~ A" since the contribution from A,", which is of order %2, can be neglected.
Thus (i) is independent of the direction of the mean field. This property holds also when
the mean field is constant. The proof given here is an alternative to the standard method
which relies on a Taylor series expansion of the Voigt function (Jefferies et al. 1989, Stenflo
1994, LL04).

When the total broadening of the line is controlled by Doppler broadening, i.e. when
v = AzV/20 < 1, one can set y; = 1. Equations (2.42) and (2.43) lead to the standard
results ¢r ~ H(z,a) and @y ~ 2AzByHM (2,0) = —AzB,0H® (z,a)/0z.

Zero mean field

When the mean magnetic field is zero, the angular averaging over © and ¥ (or # and ¢
in the original variables) becomes independent of the averaging over the magnitude of the
magnetic field. Because of the isotropy assumption, A; = A, = 0 and the polarization is
zero, namely (pquv) = 0 and (xq,uv) = 0. The diagonal absorption coefficient is given
by (@) = Ay" with Ay" equal to the r.h.s. of Eq. (2.42). One can verify that our result
is identical to the last equation in § 9.25 of LL04. There (¢;) is written in terms of the

second order derivative of the Voigt function.
2.4.2 Profiles of the mean coefficients in the weak and strong mean field limits

In Figs. 2.3 to 2.5 we show the effects of an isotropic distribution with a non-zero mean
field on the absorption and anomalous dispersion coefficients ¢rq v and xq,v. We discuss
separately the weak and strong mean field limits. The results are presented for the damping

parameter a = 0.

Weak mean field profiles

In the weak mean field limit, (¢;) = Ap", up to terms of order y2, {(p,) = A;" cosby,
up to terms of order y3, and (pq) which is order of y? can be neglected. As already
mentioned above, () is independent of the mean field direction. We show in Fig. 2.3 the
profiles of (1) and (py) for 6, = 0° calculated with A;zBy = 0.1 and v5 = 1,2,3. With
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Figure 2.3: Weak mean field limit. Isotropic fluctuations. Absorption coefficients (¢rv)
for a longitudinal mean magnetic field are shown. Mean Zeeman shift Az By = 0.1; Voigt
parameter ¢ = 0. The curve vg = 0 corresponds to a constant magnetic field equal to By.

this choice of parameters, we satisfy the weak mean field condition since yo = AzBy/vB
stays smaller than unity. As can be observed in Fig. 2.3a the increase of yg produces two
different effects on (7). There is a global decrease in amplitude due to the factor 1/73
in front of the square bracket in Eq. (2.42) and the appearance of two shoulders created
by the increasing contribution of the term with H®). They are clearly visible for v = 3.
The position and amplitude of these shoulders can be deduced from the behavior of H®.
Equation (2.37) shows that the H™ have maxima at ), = + n/2. A rescaling of
frequency by the factor ;, predicts that the position of these shoulders is around |z| ~ v,
and their amplitude around (7%/73)(4/3e/7), in agreement with the numerical results.
These shoulders are a manifestation of the o-components which appear with increasing

probability when g, i.e. the dispersion o of the random magnetic field, increases.

Strong mean field profiles

In this limit (pr,q,v) are given by Eq. (2.16) with Ay, A; given by the exact expressions in
Egs. (2-38), (2.39) and A, given by the approximate relation (2.40). Thus errors that can
be created by this approximation will all come from A, and affect only (¢q) and to a lesser

extent than (¢r). For (¢y) we are using an exact expression. Figures 2.4 and 2.5 illustrate
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Figure 2.4: Strong mean field limit. Isotropic fluctuations. Absorption coefficients (¢r)
and (py) for a longitudinal mean magnetic field (6, = 0°) are shown. Mean Zeeman shift
Az By = 3; Voigt parameter ¢ = 0. The curve yg = 0 corresponds to a constant magnetic
field equal to By.

the variations of (1), (¢q) and (py) with the parameter vy5. To satisfy the strong field
condition (yo = AzBy/vs > 1), we have chosen A;By = 3 and kept g smaller than
1.5. The variations of (1) are more easy to understand if we expand the sums over ¢ in
Eqgs. (2.38) and (2.40). This gives

(o) ~ %H(m,a) [1—%(3608200—1) (1—1)} + 2 H(EE) + H(E 1,8

2y; e
1 3 1 YB _ _ _ _
14+ >(3cos’fp—1) (1 - = - HY — HY(z_
x[ +4( cos? Oy )( 2y§>] + 3yo’yf[ (T11,0) (T_1,a)]
1
X [1 + 1(3 cos® By — 1)} : (2.44)

To simplify the notation we have used H®(z,a) = H(z,a), G+, = @ and d = a.

The term containing H (z, a) creates a central component even when the mean field is
longitudinal (6 = 0°). The existence of this central component, which has no polarization
counterpart, was pointed out in DP72. It is created by the averaging of the m-component
opacity g sin?f/2 over the isotropic random magnetic field distribution. When 6, = 0°,

this central component behaves as H(x,a)/2ya. It becomes clearly visible when vz = 1.5
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Figure 2.5: Strong mean field limit. Isotropic fluctuations. Mean values of (¢r) and (pq)
for a transverse mean magnetic field (fy = 90°). Same parameters as in Fig. 2.4 (Az By = 3;
a=0).

(i.e. yo = 2). In Fig. 2.4 it increases with yp because we are keeping the product yoyp =
AzBy constant. When 6, = 90°, this component behaves as (1 —1/2y2)H(z,a)/2. As can
be seen in Fig 2.5, it is not very sensitive to the value of vz.

The o-components come mainly from the second term in Eq. (2.44). They vary like
(1 —1/2y3)H(T11,a)/2v for 6y = 0° and as (1 + 1/2y2)H(z11,a)/4v, for 6 = 90°. Thus,
an increase in g produces a broadening of the components and a decrease in their peak
value. There is also a shift away from line center more specifically due to the increase of

the relative importance of the H(®) terms with respect to the H terms.

The mean coefficients (py) and (pq) are given by (pv) = Ajcosfy and {(pq) =~
A, sin? 0 cos 2¢ with A; and A,* given in Egs. (2.39) and (2.40). The profiles shown
in Figs. 2.4 and 2.5 are easy to understand. The dominant contributions come from the
terms with H© (Zg,84), ¢ = 0,£1. For (py), the o-components behave essentially as
(1 —1/2y3)H®(z41,a)/2v, i.e as the o-components of (). Hence their amplitude de-
creases and their width increases when g increases. For (¢q), the o-components behave
as —(1 — 3/2y2) H©(Z1,,a@)/4v; and the central component as (1 — 3/2y2)H®) (z,a)/2, to
be compared to (1 —1/2y2)H©) (x,a)/2 for (). Hence as observed in Fig. 2.5, the central
component of (pq) is more sensitive to the value of 75 than the central component of (¢r).
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2.4.3 The general case of arbitrary mean fields - Numerical evaluations

We now discuss the behavior of the mean opacity coefficients when 3, = By/v/20 is of
order unity. For Ay and A; we have exact expressions given in Egs. (2.38) and (2.39) but
there is nothing similar for A,. Roughly, the weak field limit is valid for y, < 0.1 to 0.2
and the strong field limit for y, > 2. Hence for gy, of order unity, neither the weak nor the
strong mean field approximation holds and (¢r) and (¢q) must be calculated numerically.
For the numerical calculations it is preferable to return to Eq. (2.30). The integration over

i can be carried out explicitly. One obtains, for the mean absorption profile,

4 1 2 o 2 Vs 1
— % Y2 L I 9(2 — Z15(2 3cos?f, — 1
(p1(z, a)) 3\/776 i e vy ,/4y0y{ [ 1/2(2y0y) 5 5/2(2y0y) (3 cos” 6y — 1)

1
xH(z,a) + [Il/Q(Qyoy) + 115/2(2y0y)(3 cos® By — 1)]

< [H(z = y5y,0) + H(z + 15y, 0) } dy, (2.45)

for the mean linear polarization profile

2 o
(palz.a) = sin*tyeon2on— e [ e g7 [ g

1

Y {H(x, 0) = 2 [H (e — a,0) + H(z + oy, a)]} dy,  (2.46)

and for the mean circular polarization,

(vt =cos bo—=e [ ey [ uny) 5 (e = 0. 0) = H (o + 70, 0)) .

(2.47)
The I, 1 are the modified spherical Bessel functions of fractional order (Abramowitz &
Stegun 1964, p. 443). They have explicit expressions in terms of hyperbolic functions
(see Appendix C). In (pr) the terms with I;/» come from A, and the terms with I5/
from A,. These expressions are a bit bulky but clearly show the coefficients of the 7 and

o-components and how they differ from the coefficients in Eq. (2.5).

The integration over y is performed numerically using a Gauss-Legendre quadrature
formula. The integrand varies essentially as e v e2wY with the factor e2vov coming from
the Bessel function. The maximum of the integrand is around y = y,. With 10 to 30
points in the range [0, 2y,] we can calculate the integrals with a very good accuracy (errors
around 107%). The averaging process increases the overall frequency spread of the mean

coefficients. A total band width =, & 4A By is adequate to represent the full profiles.
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In the following sections we discuss the dependence of (1) on the strength of the mean
field, on its rms fluctuations and on the damping parameter a. A full section is devoted
to (1) which has the most complex behavior. Then we discuss the dependence of all the
mean coefficients, including the anomalous dispersion coefficients, on the Landé factor for
a given random magnetic field. All the calculations have been carried out with a damping

parameter a = 0, except when we consider the dependence on a.

2.4.4 The mean coefficient {y)

Equation (2.45) shows that () has a central component around z = 0 which corresponds
to the m-component. It is of the form H(z,a) times a factor which depends on y, and on
the orientation # of the mean magnetic field. When g, is small, the Bessel functions can
be replaced by their asymptotic expansions around the origin (see Appendix C) and the

central component has the approximate expression

211 2
(p1)r =~ 7% 3 gll—g (3cos?fy — 1)]H(aj, a). (2.48)

For o = 0 and a = 0 we recover the weak field limit (), ~ e */3\/m. The two
other terms in Eq. (2.45) correspond to the two o-components, averaged over the random

magnetic field. They depend on y, and 6, and also on v = Az\/20.

Dependence on the mean magnetic field strength

We show (¢r) in Fig. 2.6 for different values of yy. We keep v = 1, hence AzBy = yp.
We cover all the regimes of magnetic splitting from the weak field regime for y, < 0.1
to the strong field regime for y, > 2. These two regimes have been discussed in §§ 2.4.1
and 2.4.2. For y, < 0.1 there is a single central peak described by the H® terms in
Eq. (2.42). There is essentially no contribution from the term with H®. For y, = 1,
one is in the intermediate regime described by Eq. (2.45). There is still a single peak
because the Zeeman shift A, By = 1 is smaller than the broadening parameter v; = /2.
Once yy > 2, one enters in the strong field regime, with well separated o-components at
x = £AzBy = tyo, discussed in detail in § 2.4.2. When yy — oo while g is kept finite,
the isotropic distribution goes to the 1D distribution. In the longitudinal case (6, = 0°),
the central component goes then to zero and the o-components to H(Z+1,a)/27;, while in

the transverse case (fy = 90°), they go to H(x,a)/2 and H(Z11,a)/4v1, respectively.
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Figure 2.6: Dependence of () on the mean magnetic field strength measured by the
parameter yo. Isotropic fluctuations. The parameters used are : ¢ = 0, yg = 1. The
curves for 1o = 1072 and 0.1 coincide. The panels (a) and (b) correspond to the longitudinal

(fy = 0°) and transverse (6, = 90°) cases, respectively.

Dependence on the magnetic field dispersion

Figure 2.7 shows (¢p) for a fairly strong mean magnetic splitting Az By = 2 and several
values of yg varying from 0 to 6. For vz = 0 we are in the deterministic case with two well
separated o-components at x = £+A;By = £2. Their amplitudes are H(AzBy, a)/2 and
H(AzBy,a)/4 for 8y = 0° and 6y = 90°, respectively. The m-component for 6, = 90° has
an amplitude H(0,a)/2 = 1/24/7 since a = 0. For yg = 1, we are still in the strong field
regime (yo = 2) with o-components still roughly at © = £A B, but the peaks have smaller
amplitude because of the factor 1/v; in Eq. (2.44). For v = 3, one starts entering into
the weak field regime which has been discussed in § 2.4.2 since the corresponding value of
Yo is 2/3.

Dependence on the damping parameter

Figure 2.8 shows (i) for the longitudinal Zeeman effect. Panel (a) is devoted to the
strong mean field regime (see also Fig. 2.4) and panel (b) to the weak field regime (see also

Fig. 2.3). Aslong as a < 1072, there are no observable effects on the mean value of ¢;. The
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Figure 2.7: Dependence of (¢r) on the magnetic field dispersion measured by . Isotropic
fluctuations. The parameters used are : a = 0, AzBy = 2. The panels (a) and (b)
correspond to longitudinal (6, = 0°) and transverse (6, = 90°) cases respectively. Notice

the saturation of the central m-component for yg > 3.

effects of the damping parameter on () become noticeable when a > 0.1. As expected,
the peak value of the 7 and o-components decrease and Lorentzian wings appear. When
a > 0.5, the central component in the strong field case almost disappears. Thus for values
of a =~ 1073 to 0.1, the 7 and o-components are insensitive to changes in a and the effects
of turbulence discussed in this chapter for a = 0 survive. In the solar case, this situation

will hold except for very strong lines.
2.4.5 Dependence on the Landé factor

We now consider the effect of a given random magnetic field on lines with different Zeeman
sensitivities. We give B and the dispersion o, but let the Landé parameter g vary. Thus
Yo = By/V/20 is constant, but v = Azv/20 and AzBy = yyyp are varying with g (see
Eq. (2.8)). The mean coefficients have been calculated with yo = 1 and 7y = 1 to 6. For
this choice of yo we are in an intermediate field regime and the mean coefficients are given
by Egs. (2.45), (2.46) and (2.47).

Figure 2.9 shows (pr). For 75 = 1 the Zeeman components are not resolved (the

same curve is shown in Fig. 2.6a, yo = 1). For 6, = 0°, the central peak is quite broad
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Figure 2.8: Dependence of (¢r) on the damping parameter a in the 6y = 0° case. Isotropic
fluctuations. Panel (a) shows the strong field case (AzBy = 3 and v = 1.5) and panel
(b) the weak field case (AzBy, = 1072 and v = 3). For large values of a, the 7 and

o-components decrease in strength.

(Full Width at Half Maximum FWHM=5) because of the superposition of the central 7-
component coming from the first term in Eq. (2.45) (responsible for the narrow tip) with
the two o-components given by the two other terms in the same equation. For 6, = 90°,
the central peak is more narrow (FWHM = 3), because the contribution from the o-
components is smaller. As can be observed in Eq. (2.45), the coefficient of H(z £ vy, a)
is ([1/2+ %15/2) for 6, = 0° but only (I, — %15/2) for 6, = 90°. We recall that the modified
Bessel functions are positive functions. When 7 is large enough, the m-component is given
by the first term in Eq. (2.45). It is independent of v and its FWHM is around 2. Its
amplitude is larger in the transverse than in the longitudinal case since the coefficients of
H(z,a) in the integrand are respectively (I12 + 3I5/2) and (I12 — I5s2). If it were not for
the isotropic distribution, there would be no m-component when 6, = 0°.

The o-components have essentially the same behavior in the longitudinal and transverse
case. The positions of the peaks depend little on 6, and can be deduced from the position
of the maximum of the integrand in Eq. (2.45). Ignoring the shifted H functions, keeping
only the Bessel function of order 1/2 and the positive exponential in the sinh function (see
Eq. (C.1)), we find that the maximum is at ymax ~ (yo + /%8 +2)/2. For yo = 1, we
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Figure 2.9: Dependence of (o) on the Zeeman sensitivity (the Landé g factor) introduced
through the g parameter (see the text for details) Isotropic fluctuations. The parameters
used are ¢ = 0, and yo = 1. Notice the saturation of the m-component at the line center.
The panels (a) and (b) correspond to longitudinal (6, = 0°) and transverse (6, = 90°)
cases respectively.

get Tmax =~ YmaxYB = 1.357yp in fair agreement with the numerical results. The height of
the peaks is somewhat larger in the longitudinal than in the transverse case, because the

coefficients of the shifted H functions are larger in the first case, as pointed out above.

Figure 2.10 shows the mean absorption coeflicient (¢v) divided by cosy and (pq)
divided by sin? §; cos 2 (see Eqs. (2.47) and (2.46)). The profile of {py) is quite standard.
As with {¢;) the positions of the peaks increase linearly with the Landé factor g and are
around 1.35yg. For (pq), the central peak, given by term with H(z,a) is independent of
B, hence it goes to a constant value when the two o-components are sufficiently far away

from line center. This constant value will of course depend on .

Finally, in Fig. 2.11 we have plotted the mean anomalous dispersion coefficients (xq),
divided by sin® 6 cos 2¢y, and {xv), divided by cos . They are given by Eqgs. (2.46) and
(2.47) with the Voigt function H(z, a) replaced by the Faraday-Voigt function F(z,a). The
coefficient (xq), which has the same symmetry as (¢v), keeps more or less the same shape
as the Landé factor increases, except for a small broadening long ward of the peaks. This

can be explained by considering Eq. (2.46). The overall shape is controlled by the first
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Figure 2.10: Same as Fig. 2.9, but for (¢q) and (¢y). The panels (a) and (b) correspond
to (pq)/sin’fy cos2py and (py)/cosfy respectively

term which is independent of vg. The two other terms are responsible for the broadening
of the peaks but since they more or less compensate each other around x = 0, they do not

affect the central part of the profile.

The coefficient (xv), has the same symmetries as (¢q) but the opposite sign. Because
it involves the difference F(x — ypy,a) — F(z + vpy, a) (see Eq. (2.47)), it is very sensitive
to the value of yg and hence to the Landé factor. For vg > 3, one clearly recognizes the
shapes of two shifted Dawson integrals with opposite signs in Fig. 2.11b.

2.5 Fluctuations perpendicular to the mean field (2D turbu-

lence)

We now assume that the fluctuations of the magnetic field are confined to a plane perpen-
dicular to the direction of the mean field By. Integrating over the longitudinal component
in Eq. (2.1), we get the PDF

1

Pr(B)dB = ok

202

B2
Xp [ —T} BrdBrdV¥, (2.49)

where Br is the amplitude of the magnetic field in the plane perpendicular to By and ¥
its azimuthal angle in this plane. To simplify the notation we have set o = 0. We recall
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Figure 2.11: Dependence of magneto-optical coefficients (xq,v) on the Landé factor. Same
model as Fig. 2.9. Notice the similarity between (xq) and (pv) as well as (xv) and (¢q).

that (B4) = 20%. The random field B is the sum of the mean field B and the fluctuations

B. Its amplitude satisfies
B*= B3+ B?. (2.50)

Using Eq. (2.50) and introducing the dimensionless variables defined in Eq. (2.19), we can

rewrite the 2D distribution function as
1 _( 2_ 2)
Pr(B)dB = —e WV %) ydydV¥, (2.51)
T

where y varies from y, to +o0o. Equation (2.17) with cos© = By/B = y,/y leads to

g =11
Z / H(z — qvpy, a)y dy, (2.52)
q*—l
A=y q / ) H(z — qypy, a) dy, (2.53)
qx1 Yo
- 1R © 2
4 g=—1 Yo y?

When y; — 0, i.e. when the mean magnetic field is zero, A; = 0 and thus (py) is also zero.

In contrast, A, and hence the mean linear polarization coefficients (pq,u) are not zero.
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2.5.1 Exact and approximate expressions for the mean coefficients

As shown in DP79, closed form expressions of Ay and A; can be obtained in terms of the
error function when the damping parameter a = 0. For A, approximate expressions can
be obtained for yy > 1 and yy < 1. These different expressions are easily deduced from
Egs. (2.52) to (2.54). We give them below together with the weak mean field limits for A4,
and A;. They will be used to analyze the effects of 2D turbulence. Equations (2.52) and
(2.53) lead to

_ 101 . 1 1 2 181 ¢
Ay==|—=e " + = e (@ahzBo) 4 9y 12~ A4, 2.55
3|7 2 zi:l\/% 7 Yo (2:59)
with )
2m Yq

g=+1
where erfc is the standard complementary error function (Abramowitz & Stegun 1964). If
the erfc function is approximated by a Gaussian, one can regroup the exponentials, and
their product behaves as exp[—(z — gAzBy)?|, i.e. as a shifted Gaussian (we have used
YoyB = AzBp). Thus in contrast with 3D and 1D turbulence, there is little broadening of
the o-components by the turbulent magnetic field and the positions of the o-components

will be almost independent of vg.

When yq > 1, one has the approximation

—Z

2
— str e 3 Yo 2 _.2/.2 YB
A~ (1 — —) — LYo /m erfc (yw — qx—) . 2.57

20T 202)  Am q;l I Y (2.57)
The first term is obtained by an asymptotic expansion for large x, of the the integrand in
Eq. (2.54) and the second one by assuming y =~ y, in the term (3y?2/y? — 1)y. The factor
3/2y2 is not present in the expansion given in DP79. This factor is needed to explain the

m-component observed in Fig. 2.15.

The combination of Egs. (2.55) and (2.57) with Eq. (2.16), yields an expression of {¢r)
for large values of y,. It contains a term proportional to e‘“z, which yields the central
component, and terms which are exactly or approximately of the form e~(*=94250)” which

determine the o-components.

In the weak mean field limit, i.e. when yy < 1, we have, to leading order,

- 112 21
Ay~ = +271 —e 4 2$7—§e_z2/"1zerf (3:7—3)] : (2.58)
3L v v N "
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Figure 2.12: Dependence of (¢r) and (pv) on the magnetic field distribution in the weak
mean field limit for the longitudinal Zeeman effect (§y = 0°). The model parameters are
a=0,AzBy=0.1 and g = 1 (hence yo = 0.1). The curves with 75 = 0 correspond to a
constant magnetic field equal to B.

A~ R o= et (m’Y—B> , (2.59)
ga! N
Ay~ —% ’yfgieﬂ52 — g B et <x7—3>] . (2.60)
Ay | WV M gl

The corrections are O(y2) for Ay and A, and O(y3) for A;. If the erf function is approx-
imated by a Gaussian, its product with e~ e/ yields e~*". This implies that broadening
by 2D turbulence will be weak.

When the mean field is zero, A; = 0 and A and A, are given by the r.h.s. in Egs. (2.58)
and (2.60) which become exact results.

2.5.2 Profiles of the mean coefficients for 1D, 3D and 2D turbulence

We compare in Figs. 2.12 to 2.15, the mean absorption coefficients corresponding to 1D,
2D and 3D turbulence. Figure 2.12 corresponds to a weak mean field limit and the other
figures to an intermediate regime, neither weak nor strong, with y, = 1. In each figure
we also show the absorption coefficients corresponding to a non-random field equal to the

mean field By. It will be seen that the frequency profiles of the mean coefficients are very
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Figure 2.13: Dependence of (¢r) on the magnetic field distribution. The model parameters
are a = 0, AzBy = 1, yg = 1 (hence yo = 1). The curves with 75 = 0 correspond
to a constant magnetic field equal to By. Panels (a) and (b) correspond to longitudinal

(fy = 0°) and transverse (6, = 90°) cases, respectively.

sensitive to the nature of the turbulent fluctuations. However there are a few common
features linked to the invariance of the frequency integrated mean coefficients (see § 2.2.4).
In particular a broadening (narrowing) of the profile is associated to a decrease (increase)

in the peak value.

In Fig. 2.12, yo = AzB,/vg = 0.1 is much smaller than the broadening parameter
71 = (14 9%)/? = \/2. Hence {¢) shows a single central peak. The random fluctuations
produce a decrease in the peak value and an associated broadening. The decrease in peak
value is the largest for 3D turbulence and the smallest for 2D turbulence. This can be

explained with equations established in the previous sections.

For 1D fluctuations and 6, = 0°, we have (see Eq. (2.27)),
1 Tz a

A i i 2.61
teip g (’Yl ’Y1> ( )

For 2D turbulence,
- 2+ ’}/?3 1 —z2?
<Q01>2D — 2,}/% \/7—1_6 ’
around the line center (see Eqgs. (2.58) and (2.60)). For isotropic turbulence (see Eq. (2.42))

(2.62)
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Figure 2.14: Dependence of (¢q) and (¢y) on the magnetic field distribution. Same model
parameters as in Fig. 2.13. Panels (a) and (b) correspond to transverse (6, = 90°) and

longitudinal (6y = 0°) cases, respectively.

we can neglect the contribution of Ay, which is O(y32). Hence, {¢1)" reduces to Ay, and we

have

1 2 T a T a
Vo~ = |HY(z,a) + —HO (—,—) + 4y2H? (—,—)}. 2.63
<€01>3D 3 ( ) - "o B " m ( )

The contribution of the term with H® is negligible when vz = 1, but becomes relevant
when v = 2, creating pseudo o-components at |z| ~ v, as in Fig. 2.3. One can verify that

the above expressions correctly predict the profiles shown in Fig. 2.12.

For circular polarization, {¢pv) = AV, with A} given in Eqgs. (2.26), (2.43) and (2.59) for
1D, 3D and 2D turbulence, respectively. The peak value is the largest for 2D turbulence
and the smallest for isotropic turbulence (see Fig. 2.12b), exactly as observed for (pr). The
frequencies of the (py) peaks are at || = 1/v/2 for zero turbulence, around |z| ~ v, /v/2 =
1 for 1D turbulence and further away from line center for isotropic turbulence because of
the contribution of the term with H® (see the discussion in § 2.4.2). For 2D turbulence,
numerical simulations show that the maxima are around |z| ~ 1 with not much dependence

on the value of yp. This result is suggested in § 2.5.1.

We now discuss Figs. 2.13 and 2.14 where AzBy = 1 and yg = 1. In the non-random
case, the two o-components of the ¢; profile are partially separated when 6, = 0° but
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Figure 2.15: Dependence of (¢r) on the magnetic field distribution. The model parameters
are a = 0, AzBy = 2, yg = 2 (hence yo = 1). The curves with 75 = 0 correspond
to a constant magnetic field equal to By. Panels (a) and (b) correspond to longitudinal
(fy = 0°) and transverse (6, = 90°) cases, respectively.

form a single peak with the m-component when 6, = 90°. Panel (a) shows that the central
frequencies are quite sensitive to the angular distribution of the random field. For 1D
turbulence there is a strong broadening of the o-components which fill up the depression
at line center. For 2D turbulence, the o-components are still well marked but have a smaller
magnitude. As pointed out above, the broadening of the o-components is small in the 2D
case. For isotropic turbulence, there is also a single broad peak (the same profile is shown
in Fig 2.9a). Fig. 2.13b corresponds to ; = 90°. We note that 2D and 3D turbulence
have essentially the same effects. The decrease in the central peak value comes from the
angular averaging over sin?#. In contrast, the profile is left almost unaffected in the 1D
case because the main contribution to the central peak comes from the m-component which

is insensitive to the fluctuations of the random field strength.

Figures 2.14a,b show (pq) and (py) respectively. We see that {¢q)/ sin? 6 cos 2¢pp = Ay
behaves in much the same way as () for ) = 90°. For 1D turbulence, the central peak is
not significantly affected for the reason given above. The o-components on the other hand
suffer some broadening, which goes together with a decrease in its amplitude. For 2D and

3D turbulence there is a sharp drop in the central peak and also in the o-components, but
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the broadening with 2D turbulence is, as already pointed out, much smaller than with 3D
turbulence. For (py)(= A;), the fluctuations of the magnetic field produce a decrease in
the peak value, a small shift away from line center and a broadening which has its largest
value for 3D and its smallest value for 2D. The strongest effect is produced by isotropic
fluctuations. The decrease in the peak value can be explained by the factor (1 —1/2y?) in

Eq. (2.39).

When the rms fluctuations increase, i.e. when g increases, the profiles (pq) and (pv)
keep essentially the same shape but the effects are amplified. All the peaks have a smaller
value and for 2D and 3D turbulence the o-components are moved away further from line

center. One also observes a significant decrease in the slope of {¢y) at line center.

In Fig. 2.15 we still have yo = 1, (rms fluctuations equal to the mean field strength) but
AzBy = 2 and vg = 2. Hence the o-components are well separated as can be observed.
Panel (a) of this figure clearly shows the central component created by the averaging of
m-component over the random directions of the magnetic field for 2D and 3D turbulence.
For 2D turbulence, the o-components are significantly more intense and more narrow than
for 3D turbulence. The central peak on the other hand is shallower. For 1D turbulence,
there is no central component but a strong broadening of the o-components. The decrease
in the amplitude of the o-components is controlled by the factor 1/, ~ 1/ Vb ~ 0.44
(see Eq. (2.22)). For the transverse case (panel (b)), the o-components disappear for 1D
turbulence because they are multiplied by 1/, but the central peak increases due to the
contribution of the broadened o-components. This increase of the central peak can also
be understood in terms of the constancy of the frequency integral of (¢r). For 2D and
3D turbulence, the o-components are still well marked but they are somewhat shifted
away from line center with the 3D components being broader and shallower than the 2D

components. The decrease of central peak is due to the averaging over (g sin? /2 term.

2.6 Summary and concluding remarks

In this chapter we have examined the effects of a random magnetic field on the Zeeman line
transfer absorption matrix. We have considered a fairly general case where the magnetic
field has anisotropic but azimuthally invariant Gaussian fluctuations about a given mean
magnetic field By which can be set to zero. We have examined in detail three types of
random fluctuations: (i) longitudinal fluctuations which take place along the direction of
the mean field, referred to as 1D or longitudinal turbulence; (ii) fluctuations which are

distributed isotropically around the direction of the mean field, referred to as isotropic or
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3D turbulence; (iii) fluctuations isotropically distributed in a plane perpendicular to the
mean field, referred to as 2D turbulence - the total random field (sum of the fluctuating
part and of the mean field) does not lie in this plane unless the mean field is zero. In
all three cases, the random field depends on two parameters, the mean field By and the
dispersion o2 around the mean field (see Egs. (2.18), (2.28), and (2.49)).

First we give a fairly compact and simple expression for the mean coefficients of the
absorption matrix. It is valid for any random field invariant in a rotation around the mean
field direction (Eq. (2.16)). This general expression is obtained by taking advantage of the
fact that the angular dependence of the Zeeman matrix elements can be written in terms
of the spherical harmonics Y},,,(f, ¢), where 6 and ¢ are the polar and azimuthal angles of

the random field with respect to direction of the line-of-sight.

The random fluctuations of the magnetic field have two types of effects. The fluctuations
of the magnetic field strength produce random Zeeman shifts which lead to a broadening
of the o-components. It is important to note that the m-component is not affected by this
phenomenon. The second effect, which occurs only for 2D and 3D turbulence, is the averag-
ing over the angular dependence of the coefficients which affects both 7 and o-components.
As a result, the frequency profiles of the mean coefficients can look quite different from the
standard profiles created by a constant magnetic field. The physically relevant parameters
for the analysis of the mean profiles are the dimensionless parameters 3, - which measures
the strength of the mean magnetic field By in units of the rms fluctuations o - and g
the Zeeman shift by the rms fluctuations. The Zeeman shift by the mean magnetic field
is Az|Bo| = yoys- The broadening by the magnetic field strength fluctuations combined
with the standard Doppler broadening (by thermal and/or micro-turbulent velocity fluc-
tuations) is described by a parameter v; = \/m. There are two interesting limiting
regimes. A weak mean field regime corresponding to Az|Bg| < 71, i.e. to a Zeeman shift
by the mean magnetic field smaller than the combined Doppler and magnetic broadening.
The other interesting limit, referred to as the strong mean field or weak turbulence regime,
corresponds to 4y > 1. In this limit, the o-components stay well separated in spite of the
random field fluctuations, provided v, stays smaller than y5. We now briefly summarize

the main effects for three types of fluctuations that we have considered.

For 1D turbulence, the direction of the random magnetic field remains constant and
same as the direction (fy, ¢g) of the mean magnetic field. The only effect is a broadening
and a decrease in amplitude by a factor v; of the o-components (see § 2.3 and Figs. 2.12

to 2.15). For the transverse Zeeman effect (6, = 90°) and when yy ~ 1, a consequence of
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this broadening is that the central m-component can be enhanced by the magnetic field
fluctuations while the o-components almost entirely disappear (see Fig. 2.15). When the
strength of the mean magnetic field is zero, the coefficient of circular polarization (¢v) (and
(xv)) are zero but not the mean linear polarization coefficients (pq) and (py). Circular
polarization is destroyed by fields of opposite directions but not linear polarization which

has a quadratic dependence on the polar angle of the magnetic field.

For isotropic (3D) turbulence, the two effects namely, magnetic broadening of the o-
components and angular averaging are at work. The dependence of the absorption and
anomalous dispersion coefficient profiles on the magnetic field parameters and on the Landé
factor is discussed in detail in § 2.4. One striking effect in the case of the longitudinal Zee-
man effect (A = 0°) is the formation in () of a central component with no polarization
counterpart created by the averaging of g sin?#/2. This component is particularly notice-
able when yy ~ 1 (see Figs. 2.9 and 2.15). The circular polarization coefficients (py) (and
{(xv)) can be expressed in terms of generalized Voigt and Faraday-Voigt functions H™ and
F®)_ We study these functions in a grater detail in Chapter 3. The other mean coefficients
can also be expressed in terms of these generalized functions but only in weak mean field
and strong mean field regimes. When the mean magnetic field is zero, the random field B
is strictly isotropic (there is no preferred direction) and both circular (pv) and linear (¢q)
and (py) polarization coefficients are zero. The same is true of course for the anomalous

dispersion coefficients.

For 2D turbulence the mean profiles resemble the mean profiles for isotropic turbulence.
One can observe in particular the formation of a non-polarized central component due
to the averaging of gsin®@#/2 over the directions of the random field, but in contrast
to isotropic turbulence, there is very little broadening of the o-components because the
magnitude of the random field is more centered around the magnitude of the mean field.
The o-components are not only more narrow they are also stronger than with 1D or 3D
turbulence (see the figures in § 2.5). When the mean magnetic field is zero, the mean
circular polarization coefficient (¢y) is zero but not the linear coefficients (¢q) and (py).
So even if the mean magnetic field is zero, anisotropic turbulence like 1D or 2D turbulence

will produce linear polarization.

In this work we have considered for simplicity a normal Zeeman triplet. In the anoma-

lous Zeeman splitting case, each elementary component ¢, (¢ = 0,£1) must be replaced
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by a weighted average of the form

$q = ZSq(Mla My)H(z4,a), q= M, — M,, (2.64)
My

where S, is the strength of the transition between the lower and upper levels of magnetic
quantum numbers M; and M, and z, = = — (g M, — g, M,)A’, B, with B the strength of
the random magnetic field (Stenflo 1994), and A’, = e/(4mmAvp). The absorption and
anomalous dispersion coefficients can still be written as in Egs. (2.10) and (2.11) with
the ¢, replaced by ¢, and the summation now over M,. Similarly, the mean coefficients
are given by Eq. (2.16) where the A4; are now calculated with the @,. The exact and
approximate expressions given for 1D, 2D and 3D turbulence can thus be carried over to

the anomalous Zeeman splitting.

In this chapter we have considered only Gaussian distributions but it is clear that the
averaging method and the main effects that we have described will carry over to other
types of distributions. Such effects as the broadening of the o-components by random Zee-
man shifts or the appearance of unpolarized central components due to angular averaging
should persist. The assumption that the random fields are azimuthally symmetric plays
an important role in the averaging method, but is a fairly realistic assumption for small
scale fluctuations. As for correlations between magnetic and velocity fluctuations, they

can certainly be incorporated in the averaging method without major difficulties.

For weak lines (optical depth small compared to unity), the opacity coefficients give a
fair approximation to the observable Stokes parameters and a comparison between observa-
tions and mean coefficient profiles could provide informations on the statistical properties
of the magnetic field. For example, the strength of the mean magnetic field could be ob-
tained with the center-of-gravity method (see e.g. LL04, p. 640). This method is based
on the measurements of the center of gravity wavelength z... For weak lines, they can be

written as

_ JUen) £ {pv)zdx

Ty = )
J{en) = (pv)) do
where the frequency integration is extended to the full line profile. As (py) is antisymmetric

(2.65)

with respect to line center, (¢;) symmetric and normalized to unity, Eq. (2.65) reduces to
Ty = :l:/((pv>x dz. (2.66)
Using Egs. (2.11), (2.16) and (2.17), one obtains

xy = tcosbpAy / Bcos©OP(B)dB, (2.67)
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where O is the angle between the random field B and the mean field By. Hence B cos©
is the longitudinal component of the random field. The integration over the magnetic field

distribution given in Eq. (2.1) leads to
T+ = £ costyAzBy, (2.68)

hence to a measure of the longitudinal component By cos f, of the mean magnetic field.

A detailed analysis of Stokes profiles for lines with different Zeeman sensitivity (Landé
factors) would be a way to evaluate the dispersion of the random fluctuations. The de-
tection of an unpolarized central component in Stokes I would indicate strong variations
in the direction of the magnetic field. However, specific observations at high resolution
would be required to verify this fact, because a central unpolarized component may also

be produced by a non-magnetic region within the resolution element.

For spectral lines with moderate to large optical depths, radiative transfer effects must
be taken into account. The Unno-Rachkovsky solution shows very large differences in the
observable Stokes parameters, depending on whether the magnetic field is random or not.
This topic will be addressed in Chapters 4 and 5, where we consider line formation in a

random magnetic field with a finite correlation length.
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Chapter 3

Generalized Voigt functions and their deriva-

tives?

3.1 Introduction

The Voigt function H(z,a) = H®(x,a) is widely used to represent spectral line shapes in
many fields of physics such as astrophysics, atmospheric spectroscopy, plasma physics etc.,
wherever measurements and theory of spectral line profiles are involved. The quantity x is
the non-dimensional frequency and «a is the damping parameter, both expressed in Doppler
width units. In the presence of a magnetic field, the medium becomes anisotropic, causing
differential absorption/refraction for different states of polarization. The absorption of
radiation is described by the imaginary part of the complex refractive index of the medium.
The real part describes the dispersive effects, also called magneto-optical effects, when the
anisotropy is caused by the presence of a magnetic field. The dispersive or magneto-optical
effects involve a line shape function called “anomalous dispersion function” F(z,a) =
FO(z,a) (also denoted by K(x,a), or G(x,a), or L(x,a) in literature). These functions
HO)(z,a) and F®(z,a) together have been traditionally employed in the theory of Zeeman
line formation, which involves absorption and emission of photons between the Zeeman
sub-states of an atom (see Chapter 2).

Magnetic fields met in astrophysics, say stellar atmospheres, will have in general random
fluctuations and the line formation theory has to be extended to account for the randomness
of the field. When the characteristic scale of the fluctuations is much smaller than the

photon mean free path, randomness of the field can be taken into account by locally

! This chapter is based on the publication : Sampoorna, M., Nagendra, K. N. & Frisch, H. 2007, JQSRT,
104, 71-85
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averaging (convolving) the Zeeman “absorption matrix” with a given vector magnetic field
PDF (see LL04, Chapter 2 and references cited therein). In some cases the averaging
process can be performed analytically, for example when the PDF of the magnetic field is
an isotropic Gaussian. For isotropic fluctuations, the mean coefficients can be expressed
in terms of new class of functions called generalized Voigt and Faraday-Voigt functions
H®™(z,a) and F™(z,a) introduced in Dolginov & Pavlov (1972, see also Chapter 2).
They appeared first in the theory of the turbulent Zeeman effect, but may be of interest
in other related fields. This has motivated us to study them in some detail. Hereafter, for

convenience, we drop the arguments (z,a) on these functions.

Non-linear least square fitting algorithms require higher order partial derivatives of H(®
and F(© in extracting physical parameters from the polarized spectral line data (see Stenflo
1994, del Toro Iniesta 2003, LL04). Rapid approximations to compute the derivatives of
H©® and F© have been developed by Heinzel (1978) and Wells (1999, see also references
cited therein). In this chapter we discuss H ) and F™ for n > 1, and also their m™ order
partial derivatives. They will be essential for the development of inversion techniques
employing Zeeman line formation theory in turbulent media (DP72, DP79, Chapters 2, 4).

In § 3.2 we define H™ and F™ and introduce a new function W™ (z), where z is
complex. Starting from this function W™ (z) we derive recurrence relations for H™ and
F(™_ We show that F™ can be expressed in terms of the real Dawson’s function for the
special case of @ = 0. In this § 3.2, we also graphically present the H™ and F™ up to
7-th order, for different values of a, and discuss the properties of these functions as well as
computational aspects. A method for obtaining simple recurrence relations for the partial
derivatives of H™ and F(™ with respect to z and a is presented in § 3.3, along with the
computational details. In § 3.4, we show that partial derivatives of the conventional Voigt

and Faraday-Voigt functions H® and F(© can be expressed in terms of H™ and F(™).

3.2 Generalized Voigt functions H™ and F™

3.2.1 Definitions and recurrence relations

For the sake of clarity, we re-write the functional form of H™ and F®™ presented in
Eqgs. (2.35) and (2.36) as

n a [T wre ™
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We know that for n = 0, the usual H® and F© functions are the real and imaginary part
of the function W (z), known as the complex probability function or Faddeeva function
(see for e.g. Abramowitz & Stegun 1964, Faddeeva & Teren’tev 1961, Humlicek 1982). In

a similar way H™ and F™ are the real and imaginary parts of a complex valued function

" i T yn e
WO = o |

o Z—U

2

du, (z) >0, (3.3)

where z = z + ia, with 2 and a being real and a > 0. The function W™ is analytic in the
upper half of the complex plane. It has a branch cut along the real axis. The limit a — 0
can be taken in the definitions of H(™(z,a) and F™ (z,a). When a — 0, the Lorentzian
in Eq. (3.1) becomes a delta function and the integral can be calculated exactly. The
H®(z,0) are modified Gaussian functions (see Eq. (3.8)). As for the F(™ (x,0) functions,
they can be expressed in terms of the real Dawson function (see Eq. (3.11)).

The W™ satisfy a recurrence formula which in turn leads to simple recurrence relations
for H™ and F™ and enable us to propose a method of calculation. In the numerator of

Eq. (3.3), we can write u™ = " !(u — z + 2) and immediately obtain

3 +0o0
WM (2) = ;WD (z) — - / e du, n> 1. (3.4)

73/2

Separating the real and imaginary parts, we find the two recurrence relations

H™(z,0) = 2H" Y(z,0) — aF™V(z,a), (3.5)
1

F™ (2, a) = 2F™ Y (z,a) + aH® Y (z,a) — =™, (3.6)
s

where ¢ 1 is a constant which is zero when n is even. When n is odd, say n = 2k + 1,

with £ a positive integer, we have

1 [t 1.3...(2k -1
) = —/ u?e du = 3. ) (3.7)
VT ) o 2k

The recurrence relations take very simple forms when the Voigt parameter ¢ = 0. For

H®™)_ we obtain from the recurrence relation, or directly from Eq. (3.1),

1
H™(z,0) = —=2"e ™. (3.8)

H
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For F™ we have two different expressions depending on the parity of n. For odd values of
n(n=2k+1),

1
FeH (5 0) = zFR) (3, 0) — =), (3.9)
s

and for even values of n (n = 2k),
F@) (z,0) = 2F®=Y(z,0). (3.10)

F©(z,0) can be simply expressed in terms of the real Dawson’s function, D(z), as shown
in Heinzel (1978). The recurrence relations (3.9) and (3.10) yield higher order F(®) (x,0)
(n > 1). We list below first four £ (z, 0) for convenience :

FO(z,0) = 2D(x); FO(z,0) = % [— 1+ 2:cD(a;)],
F®(z,0) = g[— 1+ 23:D(ac)}; F® (2,0) = % [— % 24 2:1:3D(:r)], (3.11)

where the real Dawson’s function is defined (see for example Abramowitz & Stegun 1964)

as

T 1 o
D(z) = e / ot = / e/ sin (2t) dt. (3.12)
0

0

3.2.2 Some properties of the generalized Voigt functions

We have calculated the H™ and F™ with recurrence relations given above. They have to
be initialized with the values of H(®), F(®) and D(z). For the calculations of the latter we
have used the algorithm given in Matta & Reichel (1971, see also Chiarella & Reichel 1968).
Recently an efficient algorithm has been proposed by Wells (1999). We have compared
graphically the results presented in Wells (1999, see his Figs. 1, 2, 11 and 12) for H©®  F©)
and first partial derivative of H(®), with the results of the Matta & Reichel algorithm. We
have found that the latter has a comparable accuracy and hence have retained it for its
simplicity. Actually many algorithms are available for computation of H® and F(©. They
have been introduced for studies in atmospheric physics or astrophysics. Schreier (1992)
has made a comparative study of some of them based on the accuracy and computational
speed (see also Wells 1999). Unfortunately these studies do not include the algorithm of
Matta & Reichel (1971) but they show for example, that algorithms by Humlicek (1982)
and Wells (1999) provide a greater accuracy in the computation of H® and F(© over a
larger domain in z and a than that of Hui et al. (1978). In § 3.2.3 we give some details
on the Matta & Reichel algorithm and discuss accuracy problems, but first we show the

overall behavior of H™ and F™ around the line center. They are displayed in Figs. 3.1
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and 3.2 respectively, for n = 0 to 7 and several damping parameter values (a = 0, 0.1, 0.5,
1.0, 2.0). For computing H™ (z,0), we use recurrence relation (3.5), although Eq. (3.8)
can also be employed. Similarly, for computing F(®)(z,0), the first one among the set of

Eqgs. (3.11) is used, and for n > 1, recurrence relation (3.6) is used.

We now discuss Fig. 3.1. The first obvious remark is that for even n the H™ are even
functions of x, and for odd n, odd functions of . For a = 0, we can easily find the position
and amplitudes of the maxima. Differentiating Eq. (3.8) with respect to z, we get

" = +1/n/2, (3.13)
and hence the value of H™ at z,,,, is

1 /n\n/2
H® (™) 0)| = — (—) “n/2, 14
.0 = (5)" e (314
We note that the absolute value of H™ at maxima decreases from n = 0 to n = 2, but then
increases for n > 2 as exp{(n/2)[In(n/2) — 1]}. When a # 0, we observe a broadening of
the peaks and a decrease in their amplitude. For even n, the broadening of the individual

peaks causes a superposition, resulting in profiles with a single peak at line center.

We now turn to Fig. 3.2. The definition of F(™ shows immediately that the F(™ are
odd functions of x for even n and even functions of x for odd n. For a = 0, the recurrence
relations (3.9) and (3.10), and the explicit expressions given in Eq. (3.11) allow one to
understand the qualitative behavior of the F(. The function F© is an odd function of
x, which is zero at x = 0 and has two symmetric peaks around |z| = 1 (the maximum of
the Dawson’s integral is at x = 0.924 and has a value 0.541, Abramowitz & Stegun 1964,
p. 298 or p. 319). To go from F(© to F() there is multiplication by x which transforms
the odd function into an even function. Further, a subtraction of the term 1/7 then yields
the result shown in Fig. 3.2. To go from F) to F® there is only a multiplication by .
The central dip in F(!) gives rise to a sine-shaped curve around z = 0 in F® and the two
maxima around |z| = 1 get transformed into a maximum about x = +1 and a minimum
about £ = —1. The sine-shaped curve around z = 0 in F® will lead to a w-shaped
minimum around z = 0 in F®). For n > 4, we have similar patterns. All the F(® with
odd values of n are similar to F® and all the F() with even values of n are similar to
F®_ We observe a small shift of the extrema away from z = 0, when n increases together
with an increase in the absolute values of extrema. The reason for this behavior, common

to H™ and F(™_ is given above (see discussion following Eq. (3.14)).

When the damping parameter is not zero, the curves keep the same shapes but we can
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Figure 3.1: H™ functions for n = 0 to 7. Various line types refer to different values of
the damping parameter a. All the functions are expressed in same scale for the sake of
comparison. H™ (n =1,3,5,7...) have positive and negative maxima, while H™ (n =

2,4,6...) are entirely positive valued functions.
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observe a flattening of the peaks with increasing values of a due to the factor a? in the

denominator of Eq. (3.2).

The H™ and F™ functions have simple asymptotic behaviors for |z| and a going to
infinity which can be deduced from Eq. (3.3). In the limit z — oo, we can write

i1

T2 2

+00
W (2) ~ / ue ™™ [1 + g + h.o.t. | du, (3.15)

where h.o.t. stands for higher order terms. Thus when n is even, say n = 2k, we have to

the leading order

: (2Kk)
W (z) ~ L E 3.16
() = (3.16)
where c(?#) is the constant already introduced in Eq. (3.7). Thus, to the leading order,
H)(z,0) ~ 1o M a#0 (3.17)
’ T x?2 + a? ’ ’
1 =z
k) ~ — (@), 3.18
(5,0) = =" (3.18)

When n is odd, say 2k + 1, the leading term comes from the second term in the square
bracket of Eq. (3.15). We thus obtain

< (2k+2)
W(Zlc—l—l)(z) ~ %c poa (3.19)
from which we deduce
1 2ax
2%k+1 ~ 2k+2
2 2
F(2k+1)($,a) ~ 1 27— a” ok (3.21)

T (22 + a?)?
When a = 0, the H™ (x,0) decrease exponentially at large |z| as already pointed out above
(see Eq. (3.8)).

For |z| going to infinity and a small or order of unity, Egs. (3.17) - (3.21) simplify to

1 11
H k) (x,a) ~ ;—;2 k), pk) (z,a) ~ i ), (3.22)
12a 11
HE (@, 0) o — =5 40, FORD(g,0) o —— P42, (3.23)

For a smaller than unity, this asymptotic behavior holds for |z| > +/—Ina. One can
observe in Figs. 3.1 and 3.2 that the H™ and F™ of odd order have less extended wings
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than the corresponding functions of even order. We stress that the asymptotic behavior
of F(") is independent of a. Thus, even for a = 0, the F(™ have slowly decreasing wings.
In Fig. 3.3, we can clearly observe that the wings of the F(™ functions are independent
of a, for say z > 5. The asymptotic behavior of the F(™ can also be deduced from the
asymptotic behavior of the Dawson’s integral (see Abramowitz & Stegun 1964):

D(z) ! (1+i1'3”'(2k_1)>, T — 0. (3.24)

T 2 2k 2k
k=1

When |z| is small and a large, Egs. (3.17) - (3.21) yield

11 1
H®) (g, q) ~ — ). F@R) (g q) ~ ;% %), (3.25)
12 11
HOED (,0) = 120 00, (g g L (300

These asymptotic behaviors can be observed in contour plots shown in Fig. 3.3.
3.2.3 Computational aspects of H" and F™ functions

In this section we discuss details of computation of the generalized Voigt functions. All the
calculations have been performed in double precision. For computing H® and F©), we
use algorithm of Matta & Reichel (1971), where H® and F® are represented as a series
in terms of an expansion parameter h. The exact values are recovered when h goes to zero.
The errors due to the finite value of h can be expressed in terms of a function E(h) that
goes to zero with h. They vary like aF(h) for H® and like zE(h) for F(®). Here we use
h = 0.5 and 12 terms in the series expansion. For this choice, Matta & Reichel give E(h)
around 107!% and errors around 10~!° in the summation due to truncation of the series.
The H™ and F™ functions are computed with the recurrence relations given in Egs. (3.5)
and (3.6). In Figs. 3.1 and 3.2 we have shown these functions up to n = 7 for values of
a and z typical of LTE (Local Thermodynamic Equilibrium), and non-LTE astrophysical
problems. These figures clearly show that an asymptotic regime is reached for |z| > 4.

In Fig. 3.3 we present H®'2 and F(12) computed on a logarithmic grid of damping
parameters (107 < a < 10%) and frequencies (1072 < |z| < 10%), both with a resolution
of 51 points per decade. We have chosen this very wide parameter range as considered
in previous works on the numerical calculations of the function H(® and its derivative
(see Wells 1999) to examine the applicability of our recurrence relations in the asymptotic

regime.
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Figure 3.3: Higher order generalized Voigt functions in the (||, a) plane. Notice a departure
from the correct asymptotic regime (large |z| and large a) visible through the change of
slope in the panel for H®.
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Since we are using recurrence relations to calculate the functions H™ and F™ errors
contained within the initial n = 0 solution will propagate in the generalized Voigt functions
of higher order, due to additions and subtractions of terms involved in these relations.
The nature of these numerical errors are similar to those discussed by Wells (1999), with
reference to the use of recurrence formula. Also, since the functions of order (n — 1) in the
r.h.s. of Egs. (3.5) and (3.6) are multiplied by factors « and a, one can expect the errors
to increase with the value of these variables. This phenomenon can indeed be detected in
the contour plots shown in Fig. 3.3. In the regime of large |z| the functions H™ and F®™
become straight lines in the (log|z|,loga) plane since they vary algebraically with ¢ and
|z| (see the asymptotic behavior given in Eqs. (3.22) and (3.23)). When errors become
significant, this asymptotic behavior is destroyed. In Fig. 3.3, panel with H®, we see that
the straight lines start bending for large |z| values (see the contours for function values
< 1077). For F (2) the asymptotic behavior is preserved, presumably because there are
less rounding errors, F® decreasing more slowly than H®. The region of (|z|, @) plane in
which H™ and F™ functions are computed to acceptable accuracy gradually shrinks as
n increases. Figs. 3.1 and 3.2 are computed for values of z, a and n (z < 20, a < 3, n <7)
for which the recurrence relations yield numerically reliable results. That the recurrence
relations may have some problems in the asymptotic regime of large |x| can be guessed by
inserting the leading terms of the asymptotic behaviors of H®~Y and F(™=") in the r.h.s. of
Egs. (3.5) and (3.6). For n even, one correctly recovers the leading terms in the asymptotic
behaviors of H™ and F™, but for odd values of n, the leading terms cancel each other,
and it becomes necessary to go to higher order terms in the asymptotic expansion. In the
asymptotic regimes of large || and/or a, the best strategy is to use asymptotic formulae
rather than recurrence relations. This strategy is recommended by Wells (1999) for the
calculation of the functions H(® and F© and is carried out in § 3.3.4 to calculate the
partial derivatives of H™ and F™.

3.3 Partial derivatives of generalized Voigt functions

Closed form expressions to evaluate partial derivatives of H® and F(® are presented in
Heinzel (1978). We have adapted Heinzel’s approach to obtain the partial derivatives of
H™ and F™ to all orders m. We first re-express W (z) in a form more suitable for
the construction of recurrence relations for these partial derivatives. Following the same
method as for H® (see Mihalas 1978), we set z = x + ia in Eq. (3.3) and recognize that
we can write

1 — = —ay i(wfu)yd 3.97
x—u+ia /0 e v (3:27)
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The function W (z,a) can thus be rewritten as

1 +00 o] .
WM™ (z,0) = — u"e‘“2/ e~ Wl @Y dy du. (3.28)
0

2 )

Introducing the n' derivative of e~ with respect to y, and then calculating the integral

over u, we obtain

n oo dn
W®(t) = 1;/0 e_tyd—yn (e‘y2/4) dy, (3.29)

where t = a — iz. The function W(™(t) is analytic in the right-hand part of the complex
plane defined by R(t) > 0.

We remark that for a # 0, it is possible to construct series expansions in powers of a in
the form H™(z,a) =Y, a*H ,5") () with a technique inspired from the method described
in Mihalas (1978). This is achieved by expanding e * in Eq. (3.28) in power series of a.
This method is interesting when ¢ < 1 and may provide H™ with a greater accuracy than
the method based on recurrence relations. As recalled in Wells (1999), the calculation of
H© for a very small is a numerical challenge. Similar series expansions can be constructed
for the F™ and for the partial derivatives of H™ and F®.

Differentiating Eq. (3.29) m times with respect to ¢, we obtain
dm (=1)™i™ [ dr 2
= = 7/ m —ty—( Y /4) dy. 3.30
yrm N ARG y (3.30)
For n = 0, the above equation is the same as Eq. (3.1) in Heinzel (1978). For simplicity
we introduce the notations

damwm = Z_w)  gmng) = oG =
¢ dtm T oxm ¢
where G stands for any of the functions W, H and F. The analyticity of W (see e.g.

Eq. (3.30)) yields for any m, the two important relations:

oG
oa™

)

drw® = g™ = gmH® 4 ignF™), (3.31)
W™ = imorw™ = i [grH™ + 19 F™], (3.32)
which are the consequence of the regularity (differentiability) of W (™. Equating the r.h.s.
and taking the real and imaginary parts, we obtain Cauchy-Riemann conditions for the

partial derivatives of H™ and F™ with respect to z and a (see for e.g. Carrier et al.

1966). For even values of m, they may be written as:

OmMH™ = (—1)™2gmH™ (3.33)
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with a similar expression for 9™ F(™). For odd values of m,
OMH™ = (—1)mtD/2gmp®). gmpm) — (_1)m=1/2 gm ) (3.34)

In the next section we show how to calculate the partial derivatives with respect to x of
H®™ and F™ of any order m. Using the Cauchy-Riemann conditions one can then get

their partial derivatives with respect to a.
3.3.1 Recurrence relations

To compute d*W ™ for all possible n and m, a direct recurrence formula is most convenient.
Such a formula can be derived from Eq. (3.30). Following Heinzel (1978) we integrate
Eq. (3.30) by parts and thus obtain

de(n) B (_1)m—|—1 in [o© y(m—|—1) iy |: dn d(n—|—1)
: =

| (e dy. 3.35
T 0 m+ 16 dyn + dy(n+1):| (6 ) Yy ( )

Changing m — m — 1 and n — n — 1 in the above equation, we obtain the recurrence

relation
d"W™ =imdr WY Loirdgrw® Y (n,m) > 1. (3.36)

However the above relation holds only for n > 1. To get recurrence relation for n = 0, we
start from Eq. (3.30) with n = 0. An integration by parts yields
d"W® =2t "W 4+ 2(m - 1)d2WO; m > 2. (3.37)

We note that our symbols W, ¢ and z correspond to respectively D(w), w, and u of
Heinzel (1978) and that our Eq. (3.37) is Heinzel’s Eq. (4.1).

Using Egs. (3.31) and (3.32), we can write the recurrence relations for the partial

derivatives of W™ ag

W™ = (z +ia) dmWm D 4 mom b, (3.38)
OmW®™ = (z +ia) O"W™Y 4+ imdmtw D (m,n) > 1. (3.39)

With Eq. (3.38), as we now show, it is possible to construct separate recurrence relations
for the partial derivatives of H(™ and F(® with respect to z. Taking the real and imaginary
parts of Eq. (3.38), we obtain

R [orWw™ —mor W) — gorw Y] = —a S [orw Y], (3.40)
S [rw ™ — martw ) — garw Y] = o R [orw Y. (3.41)
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To obtain a recurrence relation for, say, [a;nW(")} = 0™ H™, we extract from the r.h.s.
of Eq. (3.40) the three terms which appear in the left hand side of Eq. (3.41). For this
purpose we write Eq. (3.40) for the three sets (m,n), (m,n — 1) (Eq. (3.40) itself), and
(m —1,n). Exchanging the roles of Egs. (3.40) and (3.41), we obtain a recurrence relation
for 3 [gmW™] = gmF™. It is actually the same as the recurrence relation for 9" H™.

They can be written as
ImG™ — 200" GV 4 (22 4+ 0®) 0" G D) — 2mar G Y
+2mzd™ ' G 4 m(m — )" 2G" 2 = 0; (n,m) > 2, (3.42)
where G stands for H™ or F().

The partial derivatives with respect to a can be deduced from the partial derivatives
with respect to z by making use of the Cauchy-Riemann conditions written in Eqgs. (3.33)
and (3.34). We remark here that the procedure applied to Eq. (3.38) to obtain recurrence
relations for the partial derivatives with respect to = does not work with Eq. (3.39). The
real and imaginary parts of Eq. (3.39) yield a set of equations similar to (3.40) and (3.41)
but they cannot be combined to obtain recurrence relations separately for the partial

derivatives of H™ and F™ with respect to a.
3.3.2 Initialization of the recurrence relations

In order to apply the recurrence formula given in Eq. (3.42) to the computation of the
partial derivatives with respect to x, it is necessary to know all the m*™ derivatives of H®,
FO_ HO and FO, and the first derivatives with respect to = of all the H™ and F™.
The m'* derivatives of H® and F(© are given in Heinzel (1978) (see also Eq. (3.59)). The
m' derivatives of HD and F(I can be related to the m'™ derivatives of H® and F©.

Starting from the definition of H® and F® making the change of variable z —u = v, and

using
dm —(z—v)? dm—l —(z—v)?
Jom [e (z=v) } = _2dvm*1 (z —v)e @V (3.43)
we immediately obtain
1
oG = —56;”“6*(0), m > 1, (3.44)

where G stands for H or F. The first derivative with respect to = of all the H™ and F(™
can be obtained with the same procedure. Starting from the definition of H®™ (or F™),
we find

LG = pant) — 9GntY), (3.45)

where, again G stands for H or F.
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3.3.3 Asymptotic behavior of the partial derivatives

The partial derivatives of H™ and F(™ have simple asymptotic behaviors for |z| and a

going to infinity which can be deduced from Eq. (3.3). In the limit z — oo, we can write

dmw ™) m 1 m!
dzm (2) ~ (=1) 372 gmtl

+o0 ) U
/ u"e " [1 + (m+ 1); + h.o.t.} du. (3.46)

We thus obtain up to the first order sub-leading term

dm W (2k) i oml 2k +1)(m+2)(m+1
— ()= (=) ;—zmﬂc(%) [1 + ( J ) ig )} : (3.47)
dmWW (2k+1) i (m+1)! (2k +3) (m+3)(m + 2)
~ (1 \ym 2 YT ) (2k+2)
o (2) ~ (=1) TR [1 + 0 v } : (3.48)

where k is a positive integer and the constant ¢, n even, has been introduced in Eq. (3.7).
For example ¢ = 1, ¢ = 1/2, ¢® = 3/4. Separating real and imaginary parts, one
readily obtains the partial derivatives with respect to z or a of H™ and F™ of any order

m. The asymptotic formulae for the first two partial derivatives of H(® are:

OH® 1 2ax [ 3(z? — a2)] (3.49)
or — w(x2+4a?)? (22 +a?)? ]|’ ’
9*HO _ 2a(32® —a®) [ 3(5z* + a* — 10:62@2)] (3.50)
oz2 7 (22 +a?)? (322 — a?) (22 +a?)? |’ '
oH"Y 1a(3s® —a?) [ 3(bz* + a* — 10x2a2)} (3.51)
or 7 (2% +a?)? (322 — a?) (2% + a?)? |’ '
*HY 12az(2® - d®) [ 5 (32* 4 3a" — 10:1:2612)] (3.52)
or? = 7w (22 +a?)? 2 (22 —a?)(2? + a?)? ’
The corresponding formulae for F(OD are:
oF©9 1 (2 —d?) [ 3 (z' +a' - 62%a?) } (3.53)
or 7 (2?24 a?)? 2 (22 — a?) (22 + a?)?]’ )
PrO N 2 z(z* — 3a?) [1 N 3(z* + bat — 10332@2)] ; (3.54)
0z? m (2? +a?)3 (2% — 3a?)(2? + a?)?
oF(M o laz(a®—-3a% [ 3(z* + ba* — 10x2a2)] (3.55)
or 7 (2% +a?)? (22 — 3a?) (22 + a?)? |’ '
PFO 3 (z' +a' - 6270 { 5[x% — a® — 152%a?(z? — a?)] } (3.56)
dx? 7 (224 a?)* (z* + a* — 62%a?) (22 + a?)? '

The first and second partial derivatives of H® and F® can be easily deduced from the
corresponding derivatives of H® and F©. It suffices to multiply the leading terms by
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c? /¢ = 1/2 and the sub-leading term by ¢ /c(®) = 3/2. We stress that the asymptotic
expansions for the first derivatives of H1) and F®) satisfy the exact relation in Eq. (3.44)
which yields 9™ H® in terms of 97"*'H(®) and similarly for F().

For |z| going to infinity and small a, the expressions given above simplify. We note that
the leading terms can be recovered in a straight forward way by taking partial derivatives
with respect to x of the leading terms of H™ and F™ given in Eqgs. (3.22) and (3.23).

3.3.4 Computation of the partial derivatives of H™ and F®™

We have used the recurrence relations given in Egs. (3.42), (3.44) and (3.45) to calculate
the m = 1 and m = 2 partial derivatives of H(»? and F? with respect to z. All the
partial derivatives entering in Eqs. (3.42) and (3.44) have been expressed in terms of H™
and F(™ using the results in Table 3.1. Fig. 3.4 left side panels show O:H®Y, 91H®),
O2H®Y | 92H? as a function of x for different values of a and right side panels show the
corresponding quantities for F. In addition to the obvious symmetries, this figure shows
that an asymptotic regime is reached for |z| > 4 and in some cases even for |z| > 3. For
small values of a (say, a < 0.5), the derivatives show a strong frequency dependence in
the line center region (|z| < 4). For larger values of a, these derivatives weakly depend
on frequency and approach an asymptotic regime with respect to a also. When |z| and a
take large values, in the hundreds or thousands, the recurrence relations fail to reproduce
the correct asymptotic behavior. We have encountered a similar numerical problems when
computing the H™ and F(™ functions for n > 2 (see Fig. 3.3). They are due to cancellation
effects and rounding errors. The accuracy problem is accentuated for larger n and larger
m, and also larger values of |z| and a. For the partial derivatives considered here (m < 2,
n < 2) the applicability domain of the recurrence relations is |z| < 11, @ < 11. It will
be larger for lower order derivatives and smaller for higher ones. From the asymptotic
expansions, it is clear that they are valid if |x| and/or @ are sufficiently large. We have
found by trial and error, comparing values given by the asymptotic expansions and values
given by the recurrence relations, that they give identical results in the region 6 < |z| < 11
and 6 < @ < 11. To obtain matching solution in this domain, the asymptotic expansion
had to be pushed to the first order sub-leading term. Keeping only the leading term was
not sufficient. In contrast with the upper bound of the matching domain, the lower bound
for the validity of the asymptotic expansion will be essentially independent of the values
of n and m (see Figs. 3.1 and 3.2 for H™ and F®).

We show in Fig. 3.5 contour plots corresponding to Fig. 3.4. They are computed using
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Figure 3.4: Partial derivatives first and second order (m < 2) generalized Voigt functions.

Notice the onset of the asymptotic regime |z| ~ 5 and a > 2.
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totic formulae are used, as the recurrence relations become less accurate.
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the recurrence relations inside the domain (|z|,a < 6) and the asymptotic formulae outside
this domain. One can note a perfect matching between the two set of values. We stress
that the same cut-off between the asymptotic domain and the recurrence relations should
be applied to all the functions occurring in the recurrence relation (3.42). In computing
Fig. 3.5 we use a grid resolution of 51 points per decade in both |z| and a variables. For
the practical range of parameters that we encounter in Solar line formation theory, namely

a smaller than unity and = a few Doppler widths, the recurrence relations are applicable.

3.4 Partial derivatives of H® and F© in terms of H™ and F®

The partial derivatives of H(® and F© have been expressed in terms of H©® and F©
themselves in Heinzel (1978). In this section, we show that it is possible to write the
partial derivatives of H(® and F(© in terms of the H™ and F™. Setting n = 0 and
r—u=wvin Egs. (3.1) and (3.2), we see that the calculation of the m' partial derivative
of H©® with respect to & requires the m*™ derivative of e~@~%”_ As recognized in Luque
et al. (2005), they can be expressed in terms of Hermite polynomial #,, (see Abramowitz
& Stegun 1964, p. 785). Indeed we have

jx—mm () = (0" Hulo) (3.57)

The Hermite polynomial can be written as a power series in x (see Abramowitz & Stegun
1964, p. 775)

B ' [m/2] (_1)k (k)
Hp(z) = m! ; m(zp) : (3.58)

where [m/2] means m/2 for even m and (m — 1)/2 for odd m. Using the definition of H™),

we obtain the general formula

[m/2] k
mrr(0) _ (_1\m (_1) (m—2k) ry(m—2k)
OrTHY = (=1)"m! E F(m = 9%)1 2 H . (3.59)

k=0

For the 9™ F® we have an expression similar to the above with H(™=2%) replaced by
F(m=2k) With this general formula one can determine the partial derivatives of H(®) for
any given m, in terms of H™ functions, which in turn can be easily computed using the
recurrence relations (3.5) and (3.6). We note that m'" partial derivatives of H") and F®)
with respect to z can also be expressed in terms of H™ and F(™ by combining Eqs. (3.44)
and (3.59).
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Table 3.1: First three partial derivatives of H® and F(© in terms of H™ and F™. The
partial derivatives of F(*) with respect to z have the same form as that for H(®, but with
H®™ replaced by F™

OLHO®) = —2HW OLH© = 2F®) OLF© = 27
0?HO = 27©® 1 4@ 92HO =200 —4g®  §2F0) = oF©) _4Fp®)
BHO =120 —8H®  §BHO =12F0) —8F®) BFO = 1271 4 8H®)

The derivatives of H© and F© with respect to the damping parameter a can also
be expressed in terms of H™ and F™. Using for n = 0 the Cauchy-Riemann conditions
given in Egs. (3.33) and (3.34), we obtain

m/2

_1)k
mH(O) = (-1 3m/2 ! ( 2(m—2k) H(m—2k) ]
o (—1)*"/2m Z_j Flm = 27 , (3.60)

for even values of m, and a similar expression for 07 F(©). For odd values of m

(m—-1)/2

k
mrr0) _ [ 1\(3m+1)/2 (DY ok pme—2k)
OmH®O = (—1) m ) i _Qk)'2 F : (3.61)
el !
(m 1)/2 )k
mF(O) — (3m 1)/2 (m—2k) H(m—?k)_ 62
orPO = (-1 T (3.52)

In Table 3.1 we list the first three partial derivatives of H(®) with respect to z, calculated
using Eq. (3.59). The partial derivatives of F(©) satisfy the same relation. We also list
OmH© and 9mF© for m = 1,2,3, calculated using the Egs. (3.60) - (3.62). If we use
the recurrence relations given in Eqgs. (3.5) and (3.6) for H™ and F(™, we recover the
expressions given in Table 1 of Heinzel (1978), where the derivatives are expressed in

terms of H® and F© and polynomials in a and z.

3.5 Concluding remarks

In this chapter we have studied in detail a special class of functions called generalized
Voigt functions H™ (z,a) and F(™(z,a) and their partial derivatives, which are useful in

the theory of polarized spectral line formation in stochastic media. For n = 0 they reduce
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to the usual Voigt and Faraday-Voigt functions H(z,a) and F(x,a). Simple recurrence
relations are established and used for the calculation of the functions themselves and of
their partial derivatives. Asymptotic expansions are given for large values of  and a. They
are used to examine the range of applicability of the recurrence relations and to construct
a numerical algorithm for the calculation of the generalized Voigt functions and of their
derivatives valid in a large (z,a) domain. It is also shown that the partial derivatives of

the usual H(z,a) and F(z,a) can be expressed in terms of H™(z,a) and F™(z, a).
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Chapter 4

Zeeman line radiative transfer in a random

magnetic field!

4.1 Introduction

The Zeeman effect has been used in Astrophysics for more than a century to measure
magnetic fields in the Sun, stars and other objects. The very first analysis of the Zee-
man effect was carried out with uniform magnetic fields. Together with a higher quality
of data, appeared multi-components models (Stenflo 1994), each component having a dif-
ferent but uniform, or slowly varying, magnetic field. For these models, the observable
Stokes parameters are given by a conveniently weighted average of the Stokes parameters
of each component. Prompted by measurements of asymmetrical Stokes V' profiles, multi-
components models of another type were introduced under the name of MISMA (Sanchez
Almeida et al. 1996). In this model, each component is optically thin and the Zeeman
absorption matrix is replaced by an average over the various components. These two types
of models can be made quite sophisticated. With the terminology used for random ve-
locity fields broadening, one can say that the first model is of the macro-turbulent type,
since the averaging is over the radiation field, whereas the second type of model is of the

micro-turbulent type since the averaging is done locally over the absorption matrix.

These two types of models may be insufficient to encompass the complexity of the
solar atmosphere which shows inhomogeneities, undoubtedly related to the magnetic field
structure, down to scales at the limit of the resolution power of present day telescopes.

For example there is an active discussion on the fine structure of sunspot penumbrae. It

! This chapter is based on the publication: Frisch, H., Sampoorna, M., & Nagendra, K. N. 2006, A&A,
453, 1095-1109
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seems accepted that penumbral magnetic fields have a more or less horizontal component
in the form of flux tubes embedded in a more vertical background. However the diameter
of these flux tubes and their spatial distribution is still a matter of controversy, the number
quoted in the literature varying from 1-15km to 100 km (Sdnchez Almeida 1998, Martinez
Pillet 2000, Borrero et al. 2005). In addition, because of very large kinetic and magnetic
Reynolds numbers prevailing in the solar atmosphere(Childress & Gilbert 1995), turbulent
magnetic and velocity fields have spectra extending over a wide range of wave-numbers.
We were thus strongly motivated to consider the Zeeman effect in a medium where the
magnetic field is random with a correlation length, i.e. characteristic scale of variation,
comparable to radiative transfer characteristic scales. The importance of this problem has

been stressed again recently (Landi Degl’Innocenti 2003, LL04).

The general regime, neither macro nor micro-turbulent, leads to polarized radiative
transfer equations with random coefficients. Only a few papers have been devoted to this
subject in the past (see however, Faulstich 1980, Landi Degl’Innocenti 1994, henceforth
L94). Recently this field seems to be receiving some renewed interest (Carroll and Staude
2003a, 2005a, Silant’ev 2005). Similar problems, somewhat simpler though, have been
solved in the seventies for the transfer of unpolarized radiation in the presence of a turbulent
velocity with a finite correlation length (see Mihalas 1978 for a list of references). Turbulent
velocity field models introduced were less or more sophisticated. The simplest one, is the
Kubo-Anderson process (KAP). For radiative transfer problems, it was used in the context
of turbulent velocity fields for LTE lines (Auvergne et al. 1973) and non-LTE lines (Frisch
& Frisch 1976, Froeschlé & Frisch 1980), and also in the context of random magnetic fields
for the Zeeman (L94) and Hanle (Frisch 2006) effects. Actually KAP was introduced for
nuclear magnetic resonance (Anderson 1954, Kubo 1954). It was also used to model the
electric field in stochastic Stark effect (Brissaud & Frisch 1971, Frisch & Brissaud 1971).
The name Kubo-Anderson process was introduced in Auvergne et al. (1973).

The idea of the KAP is to describe the atmosphere in a number of “eddies” having
lengths distributed according to a Poisson distribution with given density. It is assumed
that in each eddy the magnetic field and other random parameters, such as the velocity or
temperature, are constant and their values drawn at random from a probability distribution
function (PDF). The mean polarized radiation field is obtained by averaging over this
distribution, and the distribution of the length of the eddies. A KAP is thus characterized
by a correlation length and a PDF for the values of the random variables. The correlation
length and the PDF can be selected independently. This model is fairly simple but has

the correct micro and macro-turbulent limits corresponding to a correlation length which
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is zero or infinite. As we show here, when associated to a simple atmospheric model like
the Milne-Eddington model, it yields a convolution-type integral equation for the mean
propagation operator from which one can deduce explicit expressions for the mean and
rms fluctuations of the Stokes parameters at the surface of the atmosphere, and also for
the cross-correlations between Stokes parameters. In L94, only the mean Stokes parameters
at the surface are considered. It is quite clear that having explicit expressions is very useful

for exploring finite correlation length effects.

Chapter 2 was devoted to a detailed study on the effects of a micro-turbulent magnetic
field. In this chapter the main focus is on the effects of random magnetic fields with a finite
correlation length. For a full description of say, turbulent eddies or random distribution
of flux tubes in a sunspot penumbrae, it is necessary to incorporate all the other relevant
atmospheric parameters which typically should be described by the same type of random
process as the magnetic field, in particular the same correlation length. When the magnetic
field is described by a KAP, incorporating other random parameters, in particular a velocity
field, also described by a KAP with the same correlation length as the magnetic field is no
additional work as we explain in the Remark at the end of § 4.2.6.

In § 4.2 we define the random magnetic field model, establish a convolution-type inte-
gral equation for the mean propagation operator, solve it exactly for its Laplace transform
and give an explicit expression for the mean value of the Stokes parameters at the sur-
face of the atmosphere. The latter is used in § 4.3 to study numerically the sensitivity
of the mean Stokes parameters to the correlation length of a random magnetic field with
isotropic Gaussian fluctuations. In § 4.4 we establish an explicit expression for the second-
order moments of the Stokes parameters and study numerically the dispersion of the Stokes
parameters about their mean values. The second-order moments give also access to the
mean cross-correlations between Stokes parameters. In § 4.5 we introduce various exten-
sions of the Milne-Eddington and magnetic field model and establish the corresponding
integral equations for the mean propagation operator. A summary of the main results is

presented in § 4.6.

4.2 Analytical calculation of the mean Stokes parameters

4.2.1 Expression for the emergent Stokes parameters

We consider a line formed in LTE in semi-infinite one-dimensional medium and assume

that the source function is a linear function of depth. The radiative transfer equation for
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the Stokes vector I = (I QU V)T for rays propagating outwards along the normal to the

surface may be written as
d

25 1(s) =K(s)[I(s) — S(s)]- (4.1)
Here, s is the ray-path coordinate which varies inside the medium from 0 to oo, with the
surface at s = 0, K the 4 x 4 propagation matrix and S(s) the vector source function

which is of the form
S(s) =(Co+Cy5)U, (4.2)

where Cy and C] are constants and U a constant vector. If S(s) is of thermal origin, say
the Planck function, U = (1000)T. The Stokes vector and the matrix K are functions of
frequency. We omit the frequency variable since there is no scattering term to couple the
frequencies of incident and emergent beams.

Following the usual procedure, we define the evolution operator O(s, s'), as the linear
operator which transforms I(s') into I(s) when the source term S in Eq. (4.1) vanishes
(Landi Degl’Innocenti 1987, see also the Appendix D). Since photons propagate from
positive s (inside) to s = 0 (surface), we always take s’ > s. The formal solution of the
transfer equation at s = 0 may be written as

1(0) = [COE + O /0 7000, 5) ds} U, (4.3)

where E is the 4 x 4 identity matrix. We are interested in the calculation of (I(0))ka, the

mean value of I(0) over all the realizations of the random magnetic field, given by

(I(0))xa = [COE+01 /O oo<0(0,s)>KA ds] U. (4.4)

The notation (---)ga will always mean an average over all the realizations of the KAP.
4.2.2 The random magnetic field model

Assuming that the magnetic field B(s) is a KAP implies that B(s) is piecewise constant,
jumping at randomly chosen points between random values. The jumping point s; are
uniformly and independently distributed in [0, +00] with a Poisson distribution of density
v independent of s. In each interval s;_; < s < s;, the magnetic field takes a constant
value B(s) = B;. The B, are random variables with a PDF P(B) independent of s.
Hence a KAP is fully characterized by a PDF and a correlation length here defined as 1/v.
Figure 4.1 shows a typical realization of a KAP. We recall that for a Poisson distribution
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Figure 4.1: A typical realization of Kubo-Anderson process B(s) with density v (mean

correlation length is 1/v).

of density v, the probability of having r jumps in an interval of length L is e™*(vL)" /r!.
Since B(s) is a KAP, any element of the Zeeman propagation matrix K is also a KAP.

The absence of memory of the Poisson process implies that a KAP is a Markov process
(see the definition after Eq. (4.7)). The Markov property and the fact that B(s) is piecewise
constant are the two properties which allow us to obtain an integral equation for the mean
propagation operator. In addition, because P(B) and v are chosen independent of s, the
KAP is a stationary process (unconditioned statistical properties are invariant under space
translations). As a consequence, the integral equation for the mean propagation operator
is of the convolution type (see Eq. (4.10)). Examples of integral equations, which are not
of the convolution type because the stationarity assumption has been relaxed, are given in
§ 4.5.

4.2.3 The mean propagation operator

The mean value (O(0, s))ka can be calculated by summing the contributions from realiza-
tions having N=0, N=1, N=2, etc. jumping points (e.g. Brissaud & Frisch 1971). This
technique yields the mean value as sum of a series. The latter is equivalent to a Neumann
series expansion of the convolution-type integral equation (see Eq. (4.10)). Following Bris-
saud & Frisch (1974) (see also Auvergne et al. 1973) we show how to establish an integral
equation for (O(0, s))ka directly. A summation method is used in § 4.4 to calculate the

second-order moments of the Stokes parameters.
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When the propagation matrix is independent of space, the propagation operator O(s, s)
is an exponential and depends only on the difference s — s’. Henceforth referred to as the

“static” evolution operator and denoted by Og (S stands for static), it may be written as
Og(s, s') = e 'K, (4.5)

The exponential of the constant matrix K is defined in a standard way, e.g. by its power-

series expansion. The operator Og will play an important role in the following.

First we consider all the realizations without jumping point between 0 and s. For each
realization K is constant in the interval [0, s] and the propagation operator is given by its
static value. The probability that there is no jump in the interval [0, s] is e “*. Thus, the
contribution to the mean propagation operator from the realizations with no jump is given
by :

(0(0, )y ™™ = e™*(e7) = e™*(0s(s)), (16)
where (...) denotes an average involving only the PDF P(B) of the magnetic field.

Next we assume that there are one or several jumping points between 0 and s and
denote by t the last jumping point before s. For a Poisson distribution, the probability
distribution of s — ¢ is the same as the probability distribution of the intervals between
successive jumps. Hence the probability that ¢ falls within the small interval [s', s + 05| is

given by the usual Poisson formula vds'e™(=5).

The mean of the propagation operator, when there is at least one jump, is obtained
by integrating its conditional mean, knowing that the last jump falls in the small interval
ds', weighted by the probability of the conditioning event. The integral is over all possible
values of ¢, that is from 0 to s. (Note that the probability that the KAP has its last jump
in the small interval s’ is proportional to §s’, but the conditional probability is, to leading
order, independent of ds’.) The mean of the propagation operator for the case with at least

one jump may thus be written as
(O(0, ) g‘;mps) = /o ye_”(s_5')<0(0, S)>KA,s’ ds’, (4.7)

where < . >K Ao denotes the conditional mean, evaluated with the conditional probability.

Two key properties are now used: (i) The Markov property of the KAP, which guar-
antees that, after conditioning, the “past” (0 < t < s') and the “future” (s’ <t < s) are
independent and (ii) the semi-group property O(0,s) = O(0, s')O(s’, s) (see Appendix D).
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Using (i) and (ii), and the fact that the propagation operator in the interval [¢', s] is

just the static one, we have

(O(0, s)>KA,S, = (0(0, S,)>KA,5’<OS(S — ). (4.8)
We claim that
(0(0,5)) .y = (O(0,5)) - (4.9)

Indeed, the knowledge that a jump occurs at s', imposes no constraint on previous jumping
points and previous values of K(¢). Observe that the r.h.s. is an unconditional average.

Adding the contributions from Eqs. (4.6) and (4.7), we obtain a closed convolution-type
integral equation for the mean propagation operator :

(O(0,5)), , =€ "*(Os(s)) + /OS I/e_"(s_s')<0(0, ")) 4 (Os(s — ")) ds'. (4.10)

The stationary property implies that Eq. (4.10), written here for the interval [0, s], holds
for any interval [s, so], provided the necessary changes are made.

Equation (4.10) can be solved explicitly by introducing the Laplace transforms,

0(0,p) = /000 e ”°0(0, s) ds, (4.11)

Os(p) = /0 h e P 0g(s) ds, (4.12)

where it is assumed that R(p) > 0 to ensure convergence. The notation = means that we

are introducing a definition. Equation (4.5) implies that
(Os(p) = ((PE+K) ). (4.13)

Taking the Laplace transform of Eq. (4.10) and transforming the integral [~ ds [, ... ds'
into [° ds' [ ... ds, we obtain

(0(0,p))c, = (Os(p+v)) +v(O(0,p)), ,(Os(p + 1)), (4.14)

which leads to .
(0(0,9))y, = (Os(p+ 1)) [E~ (Os(p+ )] (4.15)
We note that the two factors in Eq. (4.15) commute, the product being of the form A[E +

aA]™! with « a scalar. This can be shown by expanding the second factor in powers of A
or by using E= AA~L,

In principle, by performing an inverse Laplace transform on the r.h.s. of Eq. (4.15) we
can obtain the mean propagation operator (O(0, s))ka. Actually in our applications, only

the Laplace transform is needed.
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4.2.4 Mean values of the emergent Stokes parameters

Returning to Eq. (4.4), we see that the integral in the r.h.s. is the Laplace transform of
(O(0, 5))xa for p =0 (see Eq. (4.11)). The mean value of the Stokes vector at the surface

can thus be written as
(1(0)),, = [COE +C1(0(0, 0)>KA] U, (4.16)

where, according to Eq. (4.15),

(0(0,0)),, = (Os(v)) [E — y<os(y)>} - (4.17)
with (Os(y)> given by Eq. (4.13) with p = v.

Equation (4.16), combined with Egs. (4.17) and (4.13), yields an explicit expression for
the mean value of the Stokes vector at the surface. The sole averaging which has to be

performed is the averaging over P(B) in Eq. (4.13).

As mentioned above, this expression has first been obtained in .94, with a stochastic
magnetic field model identical to ours, even if it is not referred to as a KAP. The proof,
which is very elegant, starts from Eq. (4.4). The integral over [0, 0o] is first replaced by a
sum from 7 = 1 to oo over all the intervals [s;_1, s;]. Elementary algebra shows that each
term in the sum is of the form

[E — exp(—As;K;)| K (4.18)

7

j=t
[H exp(—Asj,lKj,l)

=2

where K is the constant value of Zeeman propagation matrix in the interval As; = s; —
sj_1. The s; are assumed to be distributed according to a Poisson law characterized by a
density 1/s. and the K; to be uncorrelated. The mean value of the Stokes vector is then
obtained by averaging over all the possible partitions of the s-axis and over the PDF of K.

The expression given in L.94 is
(IO, = CUHC { [B= ((1+ sK) )] 7 (K1) = ((1+ 5.K) 'K )]} U. (419)

Replacing s, by 1/v, it can be checked that Eq. (4.19) is identical to our result. A more
detailed proof can be found in LLO0O4.

4.2.5 The macro and micro-turbulent limits

The macro-turbulent limit corresponds to a correlation length 1/v going to infinity. In this

case the magnetic field is independent of optical depth but its value is random with a PDF
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P(B). Setting v = 0 in Eq. (4.17) we obtain for the macro-turbulent limit,
(1(0)), ... = (CE+Ci(K ™)) U. (4.20)

In the micro-turbulent limit, the correlation length 1/v goes to zero. Using

(WB+K)™) %<E _ %K> v — o0, (4.21)
one obtains
(T(0))ere = (GE+C1(K) ) U. (4.22)

The micro and macro-turbulent limits can be constructed with the standard Unno-Rachkovsky
solution (e.g. Rees 1987, Jefferies et al. 1989, LL04). It suffices to average K over P(B) in
the micro-turbulent limit and the Unno-Rachkovsky solution itself in the macro-turbulent
limit. Following L.94, we can say that the result given in Eqs. (4.16) and (4.17) is a gen-
eralization of the traditional Unno-Rachkovsky solution for random magnetic fields. We
can also remark that the macro-turbulent limit is of the same nature as a standard multi-
component model whereas the micro-turbulent limit is of the MISMA type. Of course,
these models usually incorporate many physical processes in addition to the Zeeman ef-
fect.

4.2.6 Emergent residual Stokes vector

The propagation matrix will usually contain a contribution from the background continuum
opacity which we assume here to be unpolarized. The propagation matrix is then of the
form

K = k.E + ko®, (4.23)

where k. is the continuum opacity, assumed to be independent of frequency, ky the fre-
quency integrated line opacity and @ the spectral line absorption matrix. We assume that
the continuum and line source functions are identical and given by the Planck function.
We introduce the ratio ko/k. = (3, with 8 a constant, and the continuum optical depth
dt. = k.ds which is now used as the space variable. The radiative transfer equation can
then be written as JI

o =(E+5®)(I-S). (4.24)
We assume that the Planck function is linear in 7, and write S(7.) = (Cy + C17.)U
with U = (1000)T. The assumptions of a constant 3 and a linear source function are

characteristic of a Milne-Eddington model.
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At the surface, the Stokes vector in the continuum is given by
I.(0)=(Cy+Cy)U. (4.25)

With our choice for U, only the first component of I, i.e. the intensity component I, is

non-zero.

Equation (4.16) shows that the magnetic field effects are contained in (O(0,0))ka. This

suggests to introduce

~ 1
r(0) = [E - 0O(0,0)]U = ~[I.(0) - I(0)], (4.26)

1
with O(0,0) the Laplace transform for p = 0 of the propagation operator (see Eq. (4.11)).
For simplicity, 7(0) will be referred to as the residual Stokes vector, although the usual
residual Stokes vector, also called line depression Stokes vector (Stenflo 1994, p. 244), is

defined as [I.(0) — I(0)]/1.(0). Equations (4.16) and (4.17) yield

(r(0)), = {E —{(0s(»)) [E — w{(0s(v))

= [B- 4+ 0)(0s()] [B - (0s())] U (4.27)

\
——
G

where

- 1 B -1
@) = E d . 4.2
(Os(v)) 1+1/<< Ty ) > (4.28)
The expression of <és(1/)> follows from Eq. (4.13) where we have set p = v and K = E+5®.

The mean residual Stokes vector can also be written as

(r(0)), = (1 +7)Ruacro (%@) [E + VRomacro (%@)} B U, (4.29)

where

Riacro(A®) = (AB[E + \®] '), (4.30)
with A a scalar.

In the macro-turbulent and micro-turbulent limits, Eq. (4.29) reduces to
(r(0)), = Ruaero(82)U, (4.31)

(1(0))piero = B(®) (E+ B(®)) " U. (4.32)
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The micro-turbulent limit is readily obtained by subtracting I.(0) from Eq. (4.22). The
mean value (®) has been investigated in some detail for random magnetic fields with
isotropic and anisotropic Gaussian fluctuations in Chapter 2 (see also DP72, DP79, Chap-
ter 5).

The expressions given here for the residual Stokes vector are similar to the expressions
given in Auvergne et al. (1973) for the broadening by a turbulent velocity field. The only
difference is that the line absorption coefficient is now a matrix instead of a simple scalar.
From a numerical point of view, it is more convenient to work with the residual Stokes
vector than with the Stokes vector itself because the averaging is done on quantities which

go to zero at large frequencies.

Remark

In the proof given above we have assumed for simplicity that randomness in ®, and thus
in K, comes only from the magnetic field. If randomness comes from other physical pa-
rameters and provided they are described with the same type of random process as the
magnetic field, in particular the same correlation length, all the theoretical results given
here will still hold, but the averaging over P(B) must be replaced by an averaging over
a joint PDF P(B, ay, q,...), where the ¢; are scalar or vector random parameters. This

remark holds also for the results in § 4.4 on the second-order moments.

4.3 Numerical evaluation of the mean Stokes parameters

In this section we use Eq. (4.29) to study the dependence of (r(0))kxa on the correlation
length of a random magnetic field with isotropic Gaussian fluctuations. We assume that
the velocity field is micro-turbulent. Its effects can thus be incorporated in the definition of
the profile ® and of the Doppler width (see Eq. (2.9)). This assumption allows us to clearly
identify the effects of the random magnetic field. The function P(B) is already defined in
§ 2.4. We present the numerical results in § 4.3.1. We introduce f = 1/y, (see Eq. (2.19))
which measures the strength of the turbulent fluctuations, large values corresponding to

strong turbulence and small ones to weak turbulence.

4.3.1 Numerical results: Effects of a finite correlation length

The numerical method for averaging over P(B) is described in Chapter 2, where it is

applied to the calculation of (®). Although the expressions here are somewhat more
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complicated, the same technique can be applied. The PDF P(B) in § 2.4 is defined in
a reference frame with the Z-axis along the mean field direction, henceforth referred to
as the magnetic reference frame (MRF). Thus, we need to perform the averaging in the
MRF. However the Zeeman absorption matrix ® (see Egs. (2.4) and (2.5) or equivalently
Egs. (2.10) and (2.11)) is written in the LOS reference frame. The corresponding expres-
sions of the elements of ® in the MRF are given in Appendix E. The averaging involves a
triple integration over the variables y = B/ V20, © and U. The y-integration requires some
care. It is performed using a Gauss-Legendre quadrature formula with 10 to 30 points in
a range [0, 2Ymax]. We have chosen ymax = 1 for yo < 1 and Ymax = yo for yo > 1. The
mean residual Stokes parameters are calculated in a frequency-bandwidth [—Zpax, +Zmax)
with Tmax = 4YBYmax- All the calculations reported here are performed with a damping
parameter ¢ = 0. In Chapter 2 it is shown that the elements of (®) are not very sensitive

to the value of a, unless it becomes larger than 0.1.

Equation (4.29) shows that (r(0))ka involves the parameter v and the ratio 5/(1 4+ v).
When £ is small, and a fortiori 5/(1 + v), Eq. (4.28) (or (4.30)) shows that 5®/(1 + v)
can be neglected compared to the identity matrix. Hence, for small values of 3, (*)micro =
{(TYmacro =~ B{®)U. Therefore for weak lines, the Stokes parameters depend only on P(B)
(through (®)) in the region of the line formation. For lines sensitive to the value of v, the
micro-turbulent regime is reached when 5/v < 1, i.e. when the correlation length has a line
optical depth smaller than unity. These remarks are illustrated in Fig. 4.2 which shows
L(v), the full frequency width at half-maximum of (/(0))xa (the mean value of Stokes
I), for different choices of § and v. We have assumed AzBy = 0.1 and yg=1, in order
to have for Stokes I a single well defined peak allowing for an unambiguous definition of
L(v). Figure 4.2 clearly shows that the dependence on v increases with 5 and that the
micro-turbulent regime, indicated by the fact that L(v) reaches a constant value, sets in
at roughly v ~ .

Numerical results illustrating the v dependence of (g v), the Stokes I, @ and V' com-
ponents of (r(0))ka, are shown in Figs. 4.3 to 4.9 for different values of 8 (10 and 100)
and different magnetic field parameters. To simplify the notation, without risk of confu-
sion, we have omitted the subscript “KA” and the value 7. = 0 for the components of
(r(0))ka. In all the figures 7 = Azv/20 = 1, which means that the random magnetic
field broadening is of the same order as the broadening by combined thermal and turbulent
velocities. Hence the strength of the fluctuations is always f = 1/AzBy. For comparison
we also show the Unno-Rachkovsky solution calculated with the mean field By, henceforth

referred to as the mean Unno-Rachkovsky solution and denoted UR. The relative varia-
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Figure 4.2: Variation of the full width at half maximum L(v) of the emergent Stokes I
profile with the jump frequency v for various values of the line strength . The model

parameters used are yo = Az By = 0.1, yg =1, O, = 0°, ¢ = 0° and a = 0.

tion between the micro and macro-turbulent limits are evaluated by considering the ratio
3(rx) = (|[{rx)micro — {Tx)macro|) /|{7x)micro| Where the subscript X stands for I, Q or V.

(i) Behavior of (r7). All the Figs. 4.3 to 4.9 clearly show that the profiles corresponding
to a finite value of v lie, as expected, between the micro-turbulent and macro-turbulent
limits, with the micro-turbulent profiles being at all frequencies broader than the macro-
turbulent ones, especially around the frequencies corresponding to the o-components.
When f = 10 (Figs. 4.3 to 4.7), the relative variations, measured with §(r), are be-
tween 10% and 20% at line center and also in the o-components, when the latter are well
separated. The main trend at line center is an increase of §(r;) with AzBj. The value of
f seems to be essentially irrelevant. In Fig. 4.6, where the mean field is longitudinal, (r7)

shows an unpolarized m-component created by the angular averaging of the sin? factor
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Figure 4.3: Dependence of the mean Stokes parameters on the correlation length 1/v for
a weak mean magnetic field and strong turbulence (f = 10). The model parameters are:
B8 =10, AzBy = 0.1, vg = 1. The mean field By is in the direction of LOS. The full lines
show the macro (v = 0) and micro limits. The line types are: dotted (v = 1); dashed
(v = 10); dot-dashed (v = 50). The long-dashed lines correspond to the UR solution
calculated with B.

in the m-component of the absorption coefficient (see Chapter 2). The strength of this
component is very sensitive to the angular distribution of the magnetic field fluctuations.

When S = 100 (Figs. 4.8 and 4.9), (r1) deviates strongly from the UR solution. When
By is longitudinal (Fig. 4.8), a peak appears at line center and its value is almost inde-
pendent of the correlation length. As shown by the UR solution the central component
behaves essentially as 8(¢1)/(1 + B(¢1)), with {pr) the mean value of the absorption coef-
ficient. At line center, when the magnetic field is random, (1) becomes much larger than
its deterministic counterpart calculated with By. Hence when f§ is fairly large, the value
of the central peak may approach unity (see Chapter 5). When By is in the transverse
direction, one observes drastic changes between the macro-turbulent and micro-turbulent

limits which can also be explained in terms of the behavior of (¢r).

(ii) Behavior of (rv). A striking feature (see Figs. 4.3, 4.4, 4.6, and 4.8) is the strong
deviation from the UR solution for strong and moderate turbulence (see Figs. 4.3 and
4.4 with f = 10 and f = 1) while for weak turbulence, (ry) stays very close to the UR
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Figure 4.4: Same as Fig. 4.3 but for moderate turbulence (f = 1). The model parameters
are: B = 10, AzBO = 1, YB = 1.

solution (see Figs. 4.6 and 4.8 with f = 1/3). The relative variations between the micro
and macro-turbulent limits seems to be largely independent of the value of f. They are
always smaller than 10% and in general smaller than the variation of (r;) at line center,
except for the case of Fig. 4.3 where they are both of the same order and slightly less
than 10 %. It thus seems that (ry), can be calculated with the micro-turbulent limit, with

reasonable confidence, ignoring the correlation length of the magnetic field.

(iii) Behavior of (rq). Figures 4.5, 4.7, and 4.9 show a strong deviation from the UR
solution which decreases when the strength of the turbulent fluctuations decreases. For
B = 10, at line center 6(rq) reaches 75% when f = 1 but decreases to 20% when f =1/3.
For this value of 3, one can observe that the line center is more sensitive to the correlation
length than the o-components. For 8 = 100 and although f = 1/3 only (see Fig. 4.9),
(rq) is very sensitive to the correlation length, at line center and also in the wings. At line
center, (rq) is bounded by the macro and micro-turbulent limits, but in the o-components
the behavior is not so simple because the position of the peaks moves away from the line
center when v increases. The maximum depth of the o-components stays however always
above the macro-turbulent value. Finally we remark that for weak fluctuations (f = 1/3),

(rq) will depart more from the UR solution than (rv) (compare Figs. 4.6 and 4.7).

All the figures shown in this section confirm the remark that micro-turbulence is reached
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Figure 4.5: Same as Fig. 4.4, but with the mean field B perpendicular to the direction of
the LOS.

when 8/v ~ 1.

4.4 Second-oder moments and dispersion of the Stokes parame-

ters

We now examine the fluctuations of the Stokes parameters around their mean values. For

each Stokes parameter, we consider the square of the dispersion,
07 (0) = (I7(0))ka — (L:(0))ka. (4.33)

where I; stands for I, @, U or V. To calculate these quantities, we must consider second-

order moments of the Stokes parameters, i. e. quantities of the form (7;(0);(0))xa.

Second-order moments are investigated in Brissaud & Frisch (1974) for systems of linear
stochastic equations, but only for homogeneous systems or systems with a white noise
inhomogeneous term. Here we show that explicit expressions for second-order moments
can also be obtained for inhomogeneous systems with a constant inhomogeneous term. Our
method is inspired by Brissaud & Frisch (1974).

When the source vector S(7.) varies linearly with optical depth, one can easily obtain

a vector transfer equation with a constant inhomogeneous term. It suffices to introduce
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Figure 4.6: Dependence of the mean Stokes parameters on the correlation length 1/v of
the magnetic field for a strong mean field and weak turbulence (f = 1/3). The model
parameters are: = 10, AzBy = 3, vg = 1. The mean field B is in the direction of the
LOS. The line types have the same meaning as in Fig. 4.3.

the new unknown vector

Y () = I(1.) — S(e). (4.34)

Since S is non-random, I and Y will have the same dispersion. The vector Y satisfies the

transfer equation
dy

dr,

where the inhomogeneous term C U is a constant vector. In this section, to simplify the

= (E+4®)Y - C,U =KY - (U, (4.35)

notation, we set 7. = s. The solution of Eq. (4.35) can be written as

Y(s)=C, [ / T 0(s, ) ds’] U, (4.36)

where O(s, s') has been introduced in § 4.2 as the propagation operator for Eq. (4.1).

In § 4.4.1, we use Eq. (4.36) to establish a transfer equation for the tensor product
Y (s)®Y (s) and solve it for Y (0) @ Y (0). In § 4.4.2 we establish an explicit expression for
(Y(0)®Y (0))ka by a summation method and use it in § 4.4.3 to illustrate the dependence
of the dispersion on the correlation length and strength of the magnetic field fluctuations.
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Figure 4.7: Same as Fig. 4.6, but with the mean field B perpendicular to the direction of
the LOS.

4.4.1 Transfer equation for the second-order moment of the Stokes vector

To calculate the dispersions 02(0), we need only (Y;(0)Y;(0))xa, however the latter cannot
be calculated independently of the other (Y;(0)Y;(0))xa. We therefore introduce the tensor
product

Y(s) @ Y(s) = Yi(s)Yi(s), with i,5=1,...,4. (4.37)

We associate the indices 1 to 4 to I, @, U and V, respectively. We consider Y;(s)Y}(s)
to be the components of a 16-dimension vector. For symmetry reasons, there is actually
only 10 different components. One could also consider Y;(s)Y;(s) to be elements of a 4 x 4
matrix. However there is no real advantage to work with a matrix and furthermore such a

description will not hold for third or higher moments.

It follows from Eq. (4.35) that Y (s) ® Y (s) satisfies the transfer equation

d
- Y(s)®Y(s)] —KY®Y +Y®KY -C,(URY +Y @ U). (4.38)
S
We recall that the tensor product, also called Kronecker product (Iyanaga & Kawada 1970,

p. 851), of a m x n matrix C by a r x s matrix D is a mr X ns matrix which can be written
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Figure 4.8: Dependence of the mean Stokes parameters on the correlation length 1/v of
the magnetic field for a strong line: 8 = 100. The other model parameters are Az By = 3
and yg = 1. They are the same as in Fig. 4.6 and correspond to a weak turbulence case
(f = 1/3). The mean field By is in the direction of the LOS. The line types have the same
meaning as in Fig. 4.3.

as
CHD e ClnD

C®D= Do . (4.39)
CoiD ... CpuD

A useful formula satisfied by tensor products is
(Cl ® Dl)(CQ ® DQ) = 01C2 ® D1D2, (440)

provided the matrix products can be defined. It is used here several times with one of the

matrix, say Ci, equal to the identity matrix E. In that case,

It follows from Eq. (4.41), that Eq. (4.38) can be rewritten as

dii Y(5)®Y(s)| =K(¥ oY) -, (4.42)
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Figure 4.9: Same as Fig. 4.8, but with the mean field By perpendicular to the direction of
the LOS.

where
yY=UQRQRY +Y U, (4.43)

K=K®E+ERK, (4.44)
with Y a 16-dimension vector and K a 16 X 16 matrix. We use calligraphic letters to denote

16 x 16 matrices and 16-dimension vectors (the indices run from 1 to 16).

The Green’s function (or propagation operator) G(s, s') associated to Eq. (4.42) satisfies
d

d—g(s,s') =K(s)G(s,s"), with G(s,s) =E, (4.45)
s

where £ is the 16 x 16 identity matrix. The function G(s,s') has a static version Gs(s)
corresponding to K (i.e. K) independent of s. Combining the transfer equation for O(s, s)
(identical to Eq. (4.45) with KC(s) replaced by K(s)), Eqgs. (4.44) and (4.45), one can show
that

G(s,8') = 0(s,5) @ O(s, s). (4.46)
We note that in Brissaud & Frisch (1974), G(s,s’) is referred to as the double Green’s

function.

In terms of G(s, s"), the solution of Eq. (4.42) at the surface may be written as

Y(0)® / G(0,5)Y (4.47)
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Using now Egs. (4.36), (4.41) and (4.43), we obtain

Y(0)® Y(0) = (2 { /0 TG0, 5) / T O\, ) + O'(s, )] d ds } UeU), (448)

where

O'(s,s) =E®O0(s,s'); O(s,s')=0(s,s') QE. (4.49)

Equation (4.48) is the starting point for the calculation of the mean value of Y (0) ® Y (0).
4.4.2 Averaging the second-order moments

In this section we show that the average of Y (0) ® Y (0) over all the realizations of the

KAP can be written in the form
(Y(0)®Y(0),, =CiMUU), (4.50)

where M is a 16 x 16 matrix which can be written as

M=M"+ M (4.51)

with » »
M = [5 - ,,<QS(,,)>] (Gs(1)O () [5 - V<@gr<y>>} , (4.52)
O(v) =E®Os(v), OLv)=0s(v) SE, (4.53)

and Ggs(v) the Laplace transform of the static double Green’s function. We recall that
Og(v) is the Laplace transform for p = v of the static propagation operator O(s, s') (see
Eq. (4.12)). The explicit expressions of the Laplace transforms are (see Eq. (4.13))

Os(v)= WE+K) ™", Gs(v)=wE+K)™. (4.54)

We now give a proof of Eq. (4.52) based on the summation of a series, the Nth term of the

series corresponding to all possible realizations having N jumping points.

Proof
Taking the average of Eq. (4.48), we see that

</ G(0, s / O'(s, ) ds ds>KA, (4.55)

with a similar definition for M". To simplify the notation, we drop the superscript 1 on

M! and O
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We now consider an interval [0, s'|, and examine all the realizations of the KAP. We
characterize them by the number of jumping points N in the interval [0, s']. We stress that
s' varies from s to oo, while s varies from 0 to co. In § 4.2.3 we have already introduced
the elements needed here, namely that the probability to have no jump in an interval of
length L is e™Y and that the probability to have a jump in a small interval ds; around s;
is vds;. The proof is based on the remarks that G(s, s') and O(s, ') satisfy a semi-group
property and that they can be replaced by their static values if there is no jumping points

between s and s'.

For N=0 we have no jump in [0, s'] hence no jump in [0, s] and [s, ], so we can replace
G(0,s) and O(s,s") by Gs(s) and Os(s’ — s), respectively. We can thus write

M, :</°° /00 e Gs(s)e ") Og(s' — 5) ds' ds>, (4.56)
0 s

where the exponential term is the probability that there is no jump in the intervals [0, s]
and [s,s'] and the averaging is over the random value of the vector magnetic field, i.e.
over P(B). The r.h.s. can be expressed in terms of the Laplace transforms of the static

propagation operators. We thus obtain
M() = <gs(V)(;)s(l/)>, (457)

where the average in the r.h.s. is over P(B).

For N=1, we have one jump, say at a point s;, within an interval ds;, which can lie in

either one of the intervals [0, s] or [s, s'|. We consider the two cases separately.

Case (a): 0< sy <s< ¢
First we use the semi-group property to write

G(0,5)O(s,s") = G(0,51)G(s1,5)O(s, s). (4.58)

Since there is no jump in each of the intervals [0, s1], [s1, s], [s,s'], we can replace the
propagation operators by their static value, which depend only on the random value of the
vector magnetic field B. Now we remark that with the conditioning at s;, the random
values of B to the left and to the right of s; become independent. This implies that we
can average separately over P(B) the factor Gs(s1) and the product Gs(s — s1)Os(s’ — s).
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After averaging over all the possible values of s;, we thus obtain

/ / / ve V% gs 51)> —vls= 51)6_”(51_5)<gs(s —51)Os(s" — 5)> ds' ds; ds,
(4.59)
where the product of exponential terms, multiplied by v, is the probability of having only

one jump at s; (within ds;).

The integrations over s;, s and s’ can be carried out explicitly in terms of the Laplace
transforms Gs(v) and Og(v). The integral over s is already a Laplace transform. Changing
the order of integration, the integral [~ ds [ ... ds; can be transformed into [ ds; f;o ... ds.
We thus obtain

Ml,a = I/<gs(1/)><gs(ll)@s(1/)>, (460)

where the averages are over the distribution P(B).

Case (b): 0<s<s; <5

Since s; is to the right of s, we now write
G(0,5)O(s,s") = G(0,s)O(s, s1)O(s1,5). (4.61)

Proceeding exactly as above, we obtain

My = / / / e’ e_”(sl_5)<gs(s)(’)s(81 - s)> Ve_”(sl_31)<(’)s (s" — 81)> dsy ds' ds.
0 s s

(4.62)

Transforming the integral [ ds' fj’ ... dsyinto [T dsy [ ... ds', integrating over s', then
over s; and finally over s, we obtain

My, = V<QS(U)@S(V)><@S(V)>. (4.63)

For N=2, we have three different cases: (a) two jumping points, say s; and ss, in the
interval [0, s] and zero in the interval [s,s']; (b) one jumping point s; in [0, s] and one
jumping point se in [s,s]; (¢) zero jumping points in [0, s] and two jumping points in

[s,s']. With the same kind of arguments as above, we obtain

Mo = v2<gsv>< @),
May = v*(Gs(v))(Gs ><0s )
M, = v3{Gs(v)Os(v ><os )% (4.64)

3
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We can now construct the general formula for an arbitrary number of jumps. We
denote by s_ the last jumping point before s and by s, the first jumping point after s
(s— < s < s;). The two intervals [s_, s] and [s, s;] will produce a term (Gs(v)Os(v)). All
the intervals to the right of s, will contribute with factors (Og(v)) and all the intervals
to the left of s_ with factors (Gs(v)). If the last jumping point sy is such that sy < s,
the term (Gs(v)Os(v)) comes from the intervals [s, s] and [s, co] and if the first jumping

point s; is such that s < sp, then this term comes from the intervals [0, s] and [s, s1].

Summing all the contributions from N=0 to infinity, we find the result given in Eq. (4.52)
for the matrices M' and M". The central term corresponds to the interval [s_, s, ], the
term to its right contains the contributions of all the intervals to the right of s, and the

term to its left the contributions of all the intervals between 0 and s_.

We can now write an explicit expression for 02(0). Since we have assumed that the
line and continuum source vectors are unpolarized, U = (1000)T and U = (10 ... 0)".
Hence, only the first column in the matrix M will contribute to (Y (0) ® Y'(0))ka. For
Stokes I and V' we thus have

720 = 2 {m,1) = [100.0(1,1)]' (1.65)

and
02(0) = C2 {M(16, 1) — [(C)(o, 0))xca (4, 1)} 2} , (4.66)

where the matrix (O(0,0))ka is given in Eq. (4.17) and the numbers refer to the matrix
elements. We have similar expressions for the dispersion around the mean values of Stokes
@ and U. We note also that the knowledge of the elements of M gives access to the
cross-correlations [(Z;(0)1;(0))xa — (£i(0))xa(Z;(0))kal, ¢ # j.

In the micro-turbulent and macro-turbulent limits, the expressions for the dispersion of
the Stokes parameters are simpler. In the micro-turbulent limit, the dispersion is simply
zero since all the coefficients in the transfer equation are replaced by their mean values.
One is actually dealing with a deterministic problem. In the macro-turbulent limit the

second order moments can be deduced from the UR solution which leads to
Munacro = (K T@ K ). (4.67)

One can check that Eq. (4.52) with v = 0 is consistent with this expression. The macro-
turbulent limit is interesting because it provides an upper limit for the dispersion. This

point is illustrated in the next section.
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We checked the result given in Egs. (4.50) to (4.54) by applying our summation method
to a scalar transfer equation where the propagation matrix K is replaced by an absorption
coefficient K. For this scalar problem, the second-order moment can also be calculated
with a method introduced by Bourret et al. (1973) which relies on the introduction of
new quadratic dependent variables, chosen in such a way that they satisfy a homogeneous
system of linear stochastic equations. This method, restricted to scalar problems, has
been applied by Auvergne et al. (1973) for the broadening of spectral lines by a turbulent
velocity field.

Once the problem of calculating the second-order moments of (;(0)/;(0))xa has been
reduced to the calculation of the mean value of the r.h.s. in Eq. (4.48), it is very likely
that methods somewhat different from the summation method presented here can be set
up. In particular L94 method should work, although it could be algebraically somewhat
cumbersome since it does not make direct use of the Laplace transform of the evolution

operator.
4.4.3 Numerical evaluation of the dispersion

To calculate the dispersion of the Stokes parameters we must evaluate the elements of the
matrix M. The averages over P(B) (see Eq. (4.52)) are performed with Gauss-Legendre
quadratures. The integration over the magnetic field strength can be carried out with the
same grid points as for the calculation of the mean Stokes parameters (see § 4.3.1). The
angular integrations over the polar angles © and ¥ require more refined grids. Typically
one needs around 30 points to calculate the dispersion while 10 or less are enough for
the mean values. We note also that the width z., of the frequency domain must be

significantly increased.
In the macro-turbulent limit, the calculation of the dispersion is much simpler since
77 (0)macro = (I7(0)) — (£:(0)), (4.68)
where I;(0) is the Unno-Rachkovsky solution for the Stokes parameter I;.

We note also that all the results obtained for the second-order moments of the Stokes
parameters hold for the residual Stokes parameters, provided we divide them by C? (see
Eq. (4.50)).

Figure 4.10 shows (rx) + ox, (ox > 0) for the four Stokes parameters and different
values of v (we drop the subscript - the same convention as in § 4.3.1). The magnetic field

parameters are AzBy = 1 and v = 1 as in Figs. 4.4 and 4.5 and hence correspond to a
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Figure 4.10: Mean Stokes parameters with dispersion for moderately strong fluctuations
of the magnetic field. The model parameters are: 5 = 10, AzBy = 1, vy = 1. The
direction of the mean magnetic field By is defined by 6, = 45° and ¢y = 30°. The full
lines show the mean profiles and the discontinuous lines the mean values plus and minus
the square root of the dispersion. The line types are: dotted (v = 0); dot-dashed (v = 1);
triple-dot-dashed (v = 10). In this figure (...) stands for (.. .)ka.

case of moderately strong fluctuations (f = 1). The direction of the mean field is 6y = 45°
and ¢y = 30°. Comparing with Figs. 4.4 and 4.5 where ¢y = 0° and 6, = 0° or 6, = 90°,
we see that (rq) has become much smaller, as expected, and has become almost insensitive
to the value of v (on the scale of Fig. 4.10). Of course, (ry) has also become somewhat
smaller and remains almost independent of v. For (r), the dependence on v does seem to

depend on the direction of the mean field.

In contrast with the mean values, we see that the ox are very sensitive to the value of
v. They have their largest values in the macro-turbulent limit (v = 0) and go to zero in the
micro-turbulent limit. In the macro-turbulent limit, the dispersion is quite large compared
to the mean value. For the mean Stokes profiles, we have seen that the micro-turbulent

limit is essentially reached when v ~ 3. Figure 4.10 shows that the dispersion has still
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Figure 4.11: Variation of the dispersion with the strength of the magnetic field fluctuations.
The dispersion is shown only for the macro-turbulent limit » = 0. The line strength S and
the mean magnetic field parameters are the same as in Fig. 4.10. The curves are labeled
with the value of f.

a significant value when v ~ 3. This makes the dispersion much more sensitive to the

characteristic scale of the random magnetic field.

Figure 4.11 shows the macro-turbulent limit of ox calculated with Eq. (4.68) for
AzBy = 1 (as in Fig. 4.10) and different values of f varying between 0.5 and 4. For
Stokes I, @ and U the dispersion has maxima at line center and at the frequencies cor-
responding to the inflexion points in the Stokes I profile. For Stokes V', the dispersion is
zero at line center for symmetry reason, and has its maximum at the inflexion points of
also. The minima of oq and oy correspond to the zero-crossing frequencies in the mean

Stokes profiles.

Starting from a case of weak fluctuations (f = 0.5), we observe that the dispersion
increases with f, as expected, until say f = 2. For larger values of f, we observe a

decrease of the peak value in the wings of oq, oy and oy, associated to a significant
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broadening which reflects the fact that the stronger the fluctuations of the magnetic field,
the further out from line center can they be felt. At line center og and oy keep increasing
with f, even beyond f = 2. Numerical experiments, not presented, here indicate that oq
and oy saturate to a value around 0.25 but that this phenomenon is related to the choice
of P(B). When the random magnetic field has a fixed direction and varies in strength
only, the values of oq and oy at line center will decrease after going through a maximum.
For Stokes I, the dispersion has a fairly complicated behavior, specially around the line
center. The initial increase is also followed by some kind of saturation, but again, this is
related to the choice of P(B). In the wings, the behavior is essentially the same as for the

other Stokes parameters.

4.5 Various generalizations

When some of the assumptions that were introduced to obtain explicit expressions for the
mean Stokes parameters are dropped, it may still be possible to write an integral equation
for the mean propagation operator. In some cases this equation can still be solved explicitly
by a Laplace transform method, but in general a numerical solution is required. A few

examples are given below.
4.5.1 Exponential source function

It follows from the solution of Eq. (4.1) (see Eq. (D.11)) that the mean value of the Stokes

vector at the surface can be written as

d5(s) } ds. (4.69)

()=S0 + [ (00, )} [

When S is linear in s one recovers Eq. (4.4). When S has an exponential variation e~ *° with
a a constant, (I'(0))ga can be expressed in terms of the Laplace transform of (O(0, s))xa

for p = a.

Let us consider an example presented in LL04 (p. 419) in which the continuum and line
source functions are different and both have exponential terms. The transfer equation is
now of the form

dI

= (E+p®)I - (ES.+ ®5)U. (4.70)

The line and continuum source functions S; and S, are given by

Sc(Tc) = CO + Cch + Aleial%, (471)
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Si(1e) = Co + Ci7e + Are™ e — Age™*e, (4.72)

The term A;e™*1" can describe a chromospheric rise of temperature and the term Age™*2"
allows for a drop of the line source function below the continuum source function at optical

depths 7, < 1/a. Simple algebra (see also LL04) yields for the mean Stokes vector

(T(0))xr = [SUO)E + C1(0(0, 0))ca = 01 41{O(0, a1))ca + Aa(1 4 02)(0(0, 02)xa | U,
(4.73)
where O(0, p) is defined in Eq. (4.11) and its mean value in Eq. (4.15).

When S contains an exponential, it does not seem possible to transform the original
transfer equation into a new equation with a homogeneous source term and obtain with
the method described in § 4.4 an explicit expression for the dispersion around the mean

Stokes parameters.
4.5.2 Arbitrary depth-dependence of source function and line strength

We now assume that the line and continuum source functions and the ratio 8 = ko/k.
(introduced in § 4.2.6) can vary with optical depth, but not the Zeeman absorption matrix
®. This implies that the Doppler width is taken constant. There is no hope to obtain
an exact result for the mean Stokes parameters, however an expression given in Pecker
and Schatzman (1959) for the difference I.(0) — I(0), in the case of non-polarized transfer,
could be a good starting point for their numerical calculation. For the polarized case, the

expression given in the above reference becomes
I.(0)—1(0)= [w(O)E +/ w'(s)0(0, s) ds] U. (4.74)
0

Here s is the continuum optical depth along the line of sight, w'(s) and w(0) are the

derivative and surface value of the function
w(s) = / Sc(s')efslds' — Si(s)e”?, (4.75)
and

O(s,s') = exp

_® / " B(s") ds”] . (4.76)

The derivation of Eq. (4.74) starts from the solutions of Eq. (4.70) for I.(0) and I(0). The
main steps are the following: one combines the two terms containing S, and introduces
dIf(s)/ds with I (s) = [7° Sc(s)e™ ds. An integration by parts then yields Eq. (4.74).

The mean value (O(0, s))ka still satisfies Eq. (4.10) but the static propagation operator,
as shown by Eq. (4.76), is now a function of s and s'.
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4.5.3 Depth-dependence of correlation length

In the preceding sections, it has been assumed that v, the density of the Poisson distri-
bution, is independent of the optical depth s along the LOS. If we let v vary with depth,
the Poisson process becomes a non-homogeneous Poisson process.? The probability that

no jumps occur between s and s’ is exp [— f;’ v(s") ds”}. Equation (4.10) becomes

(0(0, ))ka = (Os(s))e f )% 4 / y(s)e™ MEDE0(0, 5)) k(O (s — )
0
(4.77)
with Og(s) still given by Eq. (4.5). This integral equation can only be solved numerically.

Some other generalizations can still lead to convolution equations for the mean evolution
operator. For example, if ¥ depends on the modulus of the random magnetic field or if the
random magnetic field consists of several fields with different characteristic scales. Such
generalizations have been considered for the statistical Stark effect (Brissaud & Frisch
1971).

4.5.4 Arbitrary direction of propagation

The results given in the previous sections hold for an outward directed ray normal to the
surface of the atmosphere. They can easily be extended to the case of a ray making an angle
¥ with the vertical. It suffices to project on to the LOS the quantities which describe the
variations of the model along the normal to the atmosphere, such as the source function,

absorption coefficients, and correlation length.

For the example treated in § 4.5.1, (I(0, u))xa will be given by Eq. (4.73) with C}
changed to Cip and a; and ay changed to pay and pas, where o = cos?). For the linear
source function S; = S, = Cy + (47, treated in § 4.2.6, the usual residual Stokes vector
(I.(0,u)—I(0,p))/1.(0, ) will be given by Eq. (4.27) multiplied by Cypu/(Cy + Cyp). For
the example treated in § 4.5.2, w(s) and O(s, s") become

—s'/uds’

w(s, p) = /00 Se(s')e o Sy(s)e*/H, (4.78)

and

O(s, s', i) = exp

3 / " B(s") ‘%] | (4.79)

Here s denotes the optical depth in continuum in a direction normal to the atmosphere.

2http://en.wikipedia.org/wiki/Non-homogeneous. Poisson_process
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For the calculation of (O(s, s', i), the correlation length should also be projected along
the LOS, which means transforming 1/v into 1/uv. Thus in Eqgs. (4.27) - (4.29), v should be
changed to vu. This is also the change made in LL04 (see Eq. 9.280, p. 500), where t., the
mean length of the eddies measured in the vertical direction, becomes ¢,/ along the LOS.
As a consequence, the more inclined with respect to the vertical are the rays, the closer is
one to a macro-turbulent type of averaging. This is consistent with a picture of random
fluctuations organized in turbulent layers. Now, even in a plane parallel atmosphere, one
may want to have a more or less isotropic distribution of turbulent eddies. This can be
achieved by keeping the same value of v (i.e. same correlation length) in all directions.

4.6 Summary and concluding remarks

This chapter presents the first detailed investigation of the Zeeman effect created by a ran-
dom magnetic field with a finite correlation length. The goal of this work is to overcome
usual treatments whereby the correlation length of the magnetic field is either much smaller,
or much larger, than a photon mean free path, i.e. the micro-turbulent and macro-turbulent
limits. The random magnetic field is described by a Kubo-Anderson process which takes
constant but random values on intervals of random length distributed according to a Pois-
son distribution of density v. The random magnetic field is thus characterized by a mean
correlation length defined here as 1/v and the probability distribution function P(B) of
the random values taken by the magnetic field. The micro and macro-turbulent limits are
recovered when the correlation length goes to zero or infinity.

The Kubo-Anderson process has been associated to a Milne-Eddington atmospheric
model with a linear source function. This combination has allowed us to construct explicit
expressions that were used to study numerically the mean Stokes parameters and their
dispersion at the surface of the atmosphere. The main theoretical results concern the

construction of:

(i) a convolution-type integral equation for the mean propagation operator associated to
the Zeeman effect which can be solved explicitly for its Laplace transform;

(ii) an explicit expression for the mean Stokes parameters at the surface of the atmosphere

which corroborates a result obtained by Landi Degl’Innocenti (1994);

(iii) an explicit expression for the second-order moments of the Stokes parameters which

are needed to evaluate the dispersions and cross-correlations of Stokes parameters.
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We have also given integral equations for the mean propagation operator when one
relaxes some of the assumptions defining a Milne-Eddington model or Kubo-Anderson
process, like depth-independent, correlation length. These integral equations are not of the

convolution type and must be solved numerically.

Numerical investigations have been carried out for a PDF P(B) describing a random
magnetic field with mean value B, and isotropic Gaussian fluctuations with dispersion
V/30. We have assumed a micro-turbulent velocity with a Gaussian distribution which is
equivalent to incorporating an additional thermal broadening into the Doppler width of
the line. In agreement with the Milne-Eddington model, the ratio § = ko/k. of the line to
continuum opacity has been taken constant. For weak lines (8 order of unity or less), the
Stokes parameters are essentially given by the profiles of the absorption coefficients and
hence depend only on P(B). For stronger lines, sensitive to the correlation length of the
magnetic field, the mean Stokes parameters lie between the micro and macro-turbulent
limits. This is strictly true for Stokes I, because it is a positive quantity, and at line center
only for Stokes () and U. It is a bit more complicated for Stokes V' and the o-components
of Stokes Q and U, because the position of the peaks depend on the correlation length.
The micro-turbulent limit is reached when the correlation length is around unity in the
line optical depth unit, i.e. when /v ~ 1.

The numerical calculations have been performed for 8 = 10 (a few cases with 5 = 100
have also been considered), for different values of the mean magnetic field By, dispersion
o and correlation length 1/v. The dispersion and mean field have been combined to
construct a dimensionless parameter f = /20 /By which measures the relative strength of
the magnetic field fluctuations. The assumption that the magnetic field fluctuations are
isotropic influences some of the results but not the general trends which are summarized

here.

Concerning the mean values, we have found that :

(i) for Stokes I, the variation between the micro and macro-turbulent limits is between
10% and 20%. It grows with the strength of the mean field By but seems fairly insensitive
to the value of f. Departures from the UR solution (calculated with the mean field By)
can become quite large at line center when the o-components are well separated, but this

is partly due to the isotropy assumption.

(ii) Stokes V' shows very little dependence on the correlation length and hence, with rea-

sonable confidence, may be calculated with the micro-turbulent limit. The departures from
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the UR solution are very large, unless f is significantly smaller than unity.

(iii) for Stokes @, the line center is quite sensitive to the correlation length of the magnetic
field but only when By is in the transverse direction with respect to the LOS, or close to

it. For a given random magnetic field, the departures from the UR solution are larger for
Stokes @) than for Stokes V.

In sharp contrast with the mean Stokes parameters, dispersions around mean values
are very sensitive to the correlation length and could probably serve as a diagnostic tool to
determine the scale of the unresolved features in the solar atmosphere. Dispersions have
their maximum values in the macro-turbulent limit, go to zero in the micro-turbulent limit
and are very sensitive to the value of f. In relative value, the dispersion is smaller for
Stokes I than for the polarization components ), U and V.

In addition to the magnetic field, a whole set of other atmospheric random parameters
(velocities, temperatures, densities, ...) are needed to properly describe a distribution of
flux tubes or magnetohydrodynamical turbulence. These additional parameters should
typically be described by the same type of random processes as the magnetic field, in
particular the same correlation length. In this case all the theoretical results given here
will hold, provided P(B) is replaced by a joint PDF P(B,«ay,as,...), where «; stand
for the other random parameters. If the random parameters have different correlation
lengths, a KAP-type of modeling can still be set up. An example can be found in the
case of the stochastic Stark effect (Brissaud & Frisch 1971). There a composite KAP is
introduced to handle simultaneously the ion and electron electric fields with their quite
different characteristic lengths due to the large mass difference between the two types of
particles.
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Chapter 5

Unno-Rachkovsky solution for turbulent mag-
netic fields!

5.1 Introduction

Quantitative analysis of spectro-polarimetric data entered an active phase with the ana-
lytical solution of Unno (1956). This solution considers only the absorption/emission of
polarized radiation in a magnetized medium. The extension by Rachkovsky (1962a, 1962b)
includes magneto-optical effects due to differential shifts between orthogonal polarization
states, which appear during the propagation through the medium. Magneto-optical effects
are important when Zeeman shifts are of the order of Doppler widths and affect Stokes
parameters mainly around the line center. The analytical solution of the Stokes vector
transfer equation known as Unno-Rachkovsky (UR) solution implies a uniform magnetic
field and approximations regarding the atmospheric model known as Milne-Eddington ap-
proximations - namely that the line strength is independent of the depth in the atmosphere,
and that the line source function varies linearly with optical depth. The Milne-Eddington
approximation has provided insight into the physical processes taking place in line for-
mation. Its specific analytical character is its most powerful feature. A new area in
the analysis of polarization spectra was opened with numerical solutions of the polarized
radiative transfer equation for realistic atmospheres involving depth-dependent physical
quantities. It started with the work by Beckers (1969a, 1969b), Wittmann (1974), Landi
Degl’Innocenti (1976). See Rees (1987) for a historical review.

However the UR solutions continue to be used in astrophysics, in particular in inversion

! This chapter is based on the publication: Sampoorna, M., Frisch, H., & Nagendra, K. N. 2008, New
Astronomy, 13, 233-243
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codes aimed at the automatic reconstruction of magnetic fields and atmospheric param-
eters from large sets of polarimetric data (e.g. UNNO-FIT technique - L104, p. 634 and
references cited therein, Bellot Rubio 2006 and references cited therein). It can, as recently
shown, provide a systematic approach to evaluate the sensitivity of Stokes profiles to at-
mospheric and magnetic field parameters (Orozco Sudrez & del Toro Iniesta 2007). Let us
also mention that a widely used atlas of theoretical Stokes profiles was constructed with
the help of UR solution (Arena & Landi Degl’Innocenti 1982). An excellent description of
UR solution, extensions and practical applications, are presented in del Toro Iniesta (2003)
and Landi Degl’Innocenti & Landolfi (2004).

In this chapter we present a systematic study of the UR solution for random magnetic
fields. The UR solution, can be employed for random fields in two limiting regimes:
(i) the regime of micro-turbulence in which the characteristic scale of variation of the
random magnetic field is much smaller than a typical photon mean free-path, and (ii) the
regime of macro-turbulence where one has the opposite situation. The micro-turbulent
approach, suggested in Stenflo (1971), has been employed for e.g. in Stenflo & Lindegren
(1977), Sanchez et al. (1996). Multi-components models are special versions of the macro-
turbulent limit (see e.g. Stenflo 1994 and references cited therein). Here we assume that the
magnetic field fluctuations are described by a PDF P(B). In the micro-turbulent regime,
the coefficients of the polarized transfer equation, in particular the Zeeman absorption
matrix can be locally averaged over P(B). Dolginov & Pavlov (1972) and Domke &
Pavlov (1979) were the first to examine Zeeman line transfer for micro-turbulent magnetic
fields and proposed explicit expressions for the mean values of the coefficients of the Zeeman
absorption matrix. An up-to-date presentation of their results and some extensions is given
in Chapter 2. In the macro-turbulent regime, the magnetic field is uniform over the region
where the spectral line is formed but takes random values distributed according to P(B).
The averaging over P(B) is performed on the emergent UR solution itself.

The micro and macro-turbulent limits cannot describe situations where the mean free
path of photons is of the same order as the characteristic scale of variation of the mag-
netic field. This more general situation requires the solution of polarized radiative transfer
equations with stochastic coefficients (Chapter 4, see also Carroll & Kopf 2007). The
corresponding mean Stokes parameters always lie between the micro and macro-turbulent
limits. The latter have thus a significant interest for assessing the effects of random mag-
netic fields.

In this chapter we examine the micro and macro-turbulent limits for isotropic and



5.2. Micro-turbulence with isotropic Gaussian fluctuations 133

anisotropic Gaussian magnetic field distributions. The velocity field is assumed to be micro-
turbulent, and uncorrelated to the magnetic field. The results are compared to the UR
solution corresponding to the mean magnetic field, henceforth referred to as the mean field
solution. The comparison is carried out for lines with different line strength 8 = ko/k. (ko
the frequency averaged line absorption coefficient, k. the continuum absorption coefficient).
In a Milne-Eddington atmosphere 3 is a constant. The UR solution varies linearly with 3
when f is small or around unity, but non-linearly when g becomes large. We investigate

in detail this non-linear behavior for turbulent magnetic fields.

In § 5.2 we consider the micro-turbulent limit and in § 5.3 the macro-turbulent limit for
both the longitudinal and transverse propagation. In these sections and all the following
ones, the results are shown for a residual Stokes vector » = (r1,rq, ry,rv)", independent
of the slope of the source function (see Eq. (4.26)). In § 5.4 we compare micro and macro-
turbulence effects for an arbitrary orientation of the mean field and in § 5.5 we discuss mean
Stokes profiles calculated with isotropic and anisotropic distributions. In § 5.6 concluding
remarks are given. Appendix F describes the basic equations regarding the UR solution.

5.2 Micro-turbulence with isotropic Gaussian fluctuations

In the micro-turbulent limit, the Stokes parameters and residual Stokes vector defined in
Eq. (4.26) can be calculated with the UR solution given in Egs. (F.4) - (F.10) where all
the absorption and dispersion coefficients are replaced by their averages over the PDF
P(B) of the vector magnetic field. In this chapter we consider PDFs that are cylindrically
symmetrical about the direction of a mean field By. They are defined in a reference frame
with the Z-axis along the mean field direction (see Fig. E.1) and then transformed to the
LOS reference frame (see Fig. 2.1) with the Z-axis along the LOS (see Appendix E).

In this section we consider a random magnetic field with a mean value B, and fluctua-
tions that are Gaussian and isotropic (other angular distributions are considered in § 5.5).
The PDF may thus be written as (see also Eq. 2.29)

1
P(B)dB =—;

32 e~ Woty?) g2yoycos© y* dy sin © dO d¥, (5.1)
0

where O is the angle between the vector magnetic field B(f, ¢) and the mean magnetic
field By(fy, ¢9) and ¥ the azimuth of B in a MRF in which the Z-axis is taken along
By (see Fig. E.1). The non-dimensional quantities y and %, are defined as y = B/(v/20),
and yy = By/(V/20), with o being the rms fluctuation given by 30% = ((B — By)?).
Two important parameters of the model are AzBy and yg = A 2V/20, the Zeeman shifts
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due to the mean magnetic field and to the rms fluctuations (measured in Doppler width
units). Here Ay = ge/(dmmAvyp), with g the Landé factor and Avp the Doppler width
which includes thermal and micro-turbulent velocity broadening (see e.g. Mihalas 1978,
also Eq. (2.9)). The ratio f = 1/yo = vp/AzBy is a measure of the strength of the
fluctuations, with large and small values of f corresponding to strong and weak turbulence

respectively.

For a micro-turbulent magnetic field, the Doppler broadening is replaced by a com-
bination of thermal, velocity and magnetic broadening described by the parameter v, =
m . We shall discuss separately two limiting cases corresponding to v, > Az B, and
11 < AzBy (see also Chapter 2). The first corresponds to a weak mean field with strong
fluctuations and the second one to a strong mean field with weak fluctuations. For the
numerical calculations we have chosen v = 1, i.e. magnetic broadening equal to Doppler
broadening, and AzBy = 0.1 and AzB, = 3, to represent the weak and strong mean
field limits. The mean absorption and dispersion coefficients are calculated by numerical
averaging over the PDF. In the limiting cases of weak and strong mean field, it is possible
to obtain fairly simple analytical expressions for mean opacity and anomalous dispersion
coefficients (see Chapter 2, also DP72, DP79). These analytic expressions are used to
analyze the numerical results.

In this section we examine in detail the dependence of the mean residual Stokes profiles
on the value of line strength 3. The results are presented for 8 in the range 1 to 10*.
Very large values of 3, around 10* can be found in magnetic white dwarfs (see for e.g.
Martin & Wickramasinghe 1981, Nagendra & Peraiah 1985a, 1985b, Wickramasinghe &
Ferrario 2000). We assume that the mean magnetic field is in the longitudinal (6, = 0°) or
in a transverse direction (6, = 90°, ¢y = 0°). Because the magnetic field fluctuations are
isotropic, (rq) = (ry) = 0 when 6y = 0° and (rv) = 0 when 6, = 90°, for symmetry reason.
In addition (ry) = 0 when ¢g = 0°. The notation ( ) stands for average over P(B). All the
calculations have been performed with a line damping parameter ¢ = 0. § 5.2.1 is devoted
to the weak mean field limit, §§ 5.2.2 and 5.2.3 to the strong mean field limit.

5.2.1 Weak mean field (strong fluctuations) limit

Figure 5.1a shows (r7), and (rv) for 6, = 0° calculated with Egs. (F.11) and (F.12). When
B is small (B{pr) < 1 for all x), one simply has (rv) ~ B{pryv). For large values of g,
the shapes of (r;) and (ry) can be explained with the help of approximate expressions for
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Figure 5.1: Weak mean field limit. Dependence of (r), and (ry) on line strength g for
a =0, 8y = 0°. Panel (a): micro-turbulent limit with AzBy = 0.1, yg = 1 hence yy = 0.1
and f = 10. Panel (b): deterministic case with Az B = 0.1. Frequency z in Doppler width

units. See § 5.2.1 for discussions.

(prv). When v > Az By, we have (see Egs. (2.16), (2.41) - (2.43)),

(ra)y=h @) + o192 ) + 20 (2] | 5:2)

3 31 M M
{pv(z))~2A,Byjcos Qoi RO (2 + 272 0l (5.3)
B v mw) 3'F 7)) '

where A" (z) = z"*"/\/r. When « is not zero, the h™ functions become generalized
Voigt functions H™ (for details see Chapters 2 and 3). We remark that (¢r) is independent
of 6y and (pv(z)) of the order of AzBy. The mean values (pq(z)) and (py(z)) are of the
order of AzB2 (see Chapter 2). The numerical results presented in Fig. 5.1a can be
reproduced with an error less than 1%, when the approximations given in Egs. (5.2) and
(5.3) are combined with the expressions of (r;) and (ry) for AzBy < 1 given in Egs. (F.15)
and (F.16).
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The over all behavior of (r;y) (namely, width of (r1), and peak position of (ry)) can be
explained by simple scaling arguments. For (r1), the width of the peak (Full width at Half
Maximum FWHM) can be defined by the condition 3(pr(x.)) =~ 1 with z. the half-width.
In Eq. (5.2) the terms with argument x/y; are controlling the width of (rp), because they
are decreasing more slowly with = than the A(”)(z) term. Hence z. ~ 7;4/In3. When
|z| <z, (r1) = 1 as f — oo and when |z| > z., (r1) behaves as 5{¢1).

Equation (5.3) shows that the positions of the peaks of (rv) go like v;4/In 8 and their
height goes as y/In 5. These predicted behaviors are very close to what is observed in the
numerical results. For example the peak positions of (ry) scale as 1.5/In 3 whereas for

our choice of parameters vy, = 1.4.

Comparison between the micro and mean field solution (see Fig. 5.1b), shows that
magnetic turbulence produces a broadening of the peaks of (r;) and (ry) by a factor v,
and a decrease in amplitude of the (ry) peaks due to the factor 1/} (see Eq. (5.3)).

When 6, = 90°, the effects of a micro-turbulent magnetic field on (rq) and (ry) are the
same as for (ry), namely decrease in the amplitude of all three Zeeman components and

broadening plus shifts in the positions of the o-components away from line center.
5.2.2 Strong mean field (weak fluctuations) limit: Longitudinal case

Figure 5.2a shows (r;) and (ry) and Fig. 5.2b the corresponding curves for the mean field
By. It is clear that the profiles are quite different. We stress that the curves with =1
give a good approximation of the coefficients ¢ and ¢y and of their average values (1) and
{pv). Results presented in Fig. 5.2a can be understood using approximate (asymptotic)
expression for (¢rv). For v; < AzBy, we have (see Egs. (2.16), (2.38) - (2.40)),

I D 1,
(1) = @0 + 5 (1 +¢-1) + 5 (@1 +220), (5.4)
1, _ _
(ov) ~ 5(90+1 —¢_1), (5.5)
with

Bo~ —5hO(z); Purle) = — (1 _ i) hO) (24,), (5.6)

2y3 " 2y3

_ 1 M _
= = T h(O) bl 5-7
() 4y (yo + |va|vB> (7) 57)

and Z, = (x — ¢AzBy)/7, ¢ = £1. One notices in Eq. (5.4) the appearance of a term @
at line center which is zero for deterministic case (see Eq. (2.5) for # = 0°), and is created
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Figure 5.2: Strong mean field limit. Longitudinal mean field case. Dependence of (r7), and
(rv) on line strength g for a = 0, 6y = 0°. Panel (a) : micro-turbulent limit with Az By = 3,
vs = 1, hence yo = 3 and f = 1/3. Panel (b): deterministic case with AzB = 3. Panel
(c) : macro-turbulent limit with the same model as in panel (a). See §§ 5.2.2 and 5.3 for

discussions.

by the averaging of sin? § over the random directions of the magnetic field. Equation (5.6)
shows that the o-components have a smaller amplitude and are broader by a scaling factor
7. The terms with ¢; were not considered in the strong mean field limit expression for
(1) in Chapter 2 (see Egs. (2.40) and (2.44)). This term ¢, comes from the factor 3/(4y2y)
in Eq. (2.34). The expression given in Eq. (5.7) is an asymptotic expression for damping
parameter ¢ = 0. For ¢ = +1, it is valid for z around y,/vp and for ¢ = —1, it is valid for x
around —yo/vp. In spite of being small compared to @,, this term plays an important role
around = ~ +A; By, when f is large. Using Eqgs. (5.4) - (5.7) in Egs. (F.11) and (F.12),

we can reproduce the results presented in Fig. 5.2a to a good approximation.

When [ becomes large, the quadratic terms in the denominator of the equations for

(r;) and (ry) play an important role. For the analysis of the results, it is interesting to
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write the denominator as

1 1
dy ~ 1428 [ @y + 5(@+1 + @1)] +5? {@g + [@0 + 5(@1 +C1)| (P +@-1)+ 95+1S7?1} ;
(5.8)

retaining only the leading terms.

In the upper panel of Fig. 5.2a we see that (r;) approaches unity at line center and that

this limiting value is almost reached for 8 = 103. At line center we have the exact relation
B{1(0))
(ri(0)) = ==+
1+ B{¢1(0))

hence (r;(0)) goes to one when 3(¢;1(0)) > 1. Around the line center, {p;(z)) ~ @o(zr) ~
e ¥ /(7242 (see Eq. (5.6)). Hence, (r1(0)) ~ 1 when 8 > /m2y2. For y, = 3, this
condition yields 8 > 30, in agreement with the numerical results. It is the existence

(5.9)

of a central component ¢, which is responsible for the very large difference between the

micro-turbulent and the deterministic profiles.

The o-components of (r;(0)) are well separated as long as § < 10, and their width is
around 7;4/In 8. For larger values of /3, one notices a plateau with a value about 1/2 and
then a further increase towards one. This can be understood by considering Eq. (5.8). At

frequencies around Az By, we have @1 > @y > ¢_1, hence
_ 2
1+ B@i1+ B2 (Po + €+1/2) 1

The plateau around 1/2 is reached when 8¢ .1/2 > 1, i.e., when > 2v,+/7. Figure 5.2a
shows that this plateau is reached for 10 < B < 102, in agreement with the prediction.

(ri(AzBp)) ~ 1 (5.10)

The saturation to one will occur when the term quadratic in S becomes larger than the
linear term. This condition is satisfied when B[@o(AzBy) + ¢41(AzBy)/2] > 1. For our
choice of parameters, this yields 3 > 103. Figure 5.2a shows that (r{(AzBy)) is close to
one for 8 = 10%. In the deterministic case @, = 0, hence the o-components saturate to 1/2

as shown in Fig. 5.2b, upper panel.

The variations of (ry) with 8 are shown in lower panel of Fig. 5.2a. The o-components
tend to 1/2 when [ increases, and their width goes as v;4/In 8. When the term 3?[@, +
¢11/2]@41 becomes larger than 8@, a dip appears at frequencies z ~ +A; By. It becomes
clearly visible when 8 = 103. For frequencies beyond +Ay By, the effect of [gy + ¢41/2]
decreases, the term of order 3% becomes small compared to the term of order 3 and (ry)

goes to 1/2. Finally, (rv) goes to zero as {pyv) when the frequency is large enough to give
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Figure 5.3: Strong mean field limit. Transverse mean field case. Dependence of (rr), and
(rq) on line strength g for a = 0, 6y = 90°, ¢g = 0°. Panel (a): micro-turbulent limit
with AzBy = 3, vy = 1, hence yo = 3 and f = 1/3. Panel (b): deterministic case with
AzB = 3. Panel (¢): macro-turbulent limit with the same model as in panel (a). See
66 5.2.3 and 5.3 for discussions.

dy ~ 1. The frequency at the peak, determined by the condition S{p,) ~ 1/2 , is about
|z| ~ AzBy + v14/In B. Thus, for 3 sufficiently large, the peaks of {ry) lose their box like
structure and the position of the maximum is essentially controlled by the parameter [
and not by the Zeeman shift Ay By, unlike in the deterministic case (see Fig. 5.2b lower

panel).
5.2.3 Strong mean field (weak fluctuations) limit: Transverse case

Figure 5.3a shows (r;) and (rq) in the strong mean field (weak fluctuations) limit, for a
mean field perpendicular to the LOS, i.e. 6, = 90°. We also assume ¢q = 0°. Hence
only (¢rq) are non-zero. Figure 5.3b shows the corresponding curves calculated with the
mean field. Again we observe a large difference between micro-turbulent and deterministic

profiles.
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To analyze the numerical results presented in Fig. 5.3a, we consider approximate ex-
pression for (prq). At leading order (see Egs. (2.16), (2.38) - (2.40)),

(o) ~ L (1 - i) hO () + L (1 + i) [AO(z11) + B (z_1)], (5.11)

2 2y3 2y3

(00) = 5 (1= 5 ) 10 = o (1 5 ) [0) 480G 0] . (512

2 CAn 28
The terms ¢, play no role in this case. The terms 3/2y? and 1/2y? are small compared
to unity since yo = 3. However, when we consider the difference (p1)? — (pq)? in the
denominator of Egs. (F.13) and (F.14) for (r;) and (rq), these factors cannot be neglected.
We thus have

L hO@) + hO @)

- R0
di ~ 1428+ 52{ (WO (z)]* + 1022

2y2

#5 WO (2.0) + 10a1)] . (5.13)

When £ is sufficiently small, d; ~ 1 and we recover the mean opacity coefficients S{ir)
and [(pq) which are fairly well represented by the curves corresponding to f = 1. We
remark that the Eqgs. (5.11) and (5.12), when used in Eqs. (F.13) and (F.14) for {r) and

rq) can reproduce the numerical result in Fig. 5.3a to a very good approximation.
Q g g

With Egs. (5.11) to (5.13) we can explain why (r;) approaches unity at all frequencies

fairly rapidly when f increases. For x around the line center we can write
dy ~ 1+ ph9 () [1 + %h@)(x)} , (5.14)
Yo

and for x around the o-components

dy~1+ 2£h(°)(aj~ﬂ) [1 +

O (z)|, .
. HO )] (5.15)

2y
(the third term in the curly bracket in Eq. (5.13) can be neglected). The $?-terms, which
come from the small differences between the = and o-components of (pr) and (pq), (see
Egs. (5.11) and (5.12)) become relevant when 3/2y2 and 8/2y2~: become of order or larger
than unity. For our choice of parameters, this means that they play an important role
when § > 50. This implies that the second term in Eq. (F.13) becomes small compared
to unity because the numerator scales as 8 and the denominator as $%. As a consequence

(ry) goes to unity at line center and around the o-components.
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Roughly half-way between the m and o-components , we have the point where (¢pq) = 0.

Around this frequency, denoted z,,

_ Blor(am))
(ri(zy)) =~ 11 Bloz. ) Bloram))” (5.16)

This expression rapidly approaches unity when [ increases. Thus, when the mean field is
in the transverse direction, (r;) approaches unity at line center, in the o-components and
half-way between these two regions. This explains the shape of the (r;) profiles shown in

Fig. 5.3a, upper panel.

For (rq), the micro-turbulent profile has qualitatively the same shape as the mean field
profile (see lower panels in Fig. 5.3). There are however quantitative differences also due
to the S2-term in d;. At line center, when f is large, (rq) is much smaller than the mean
field solution. Omne observes also that the wing minima move away from line center to
frequencies such that the 3?-term in d; becomes negligible. Their positions vary roughly
as £ ~ £(AzBy + v1v/InB). The amplitude of the minima are not very sensitive to the
value of # and are approximately given by

(pq) 1—-3/2y5
~ — ~ —0.4, 5.17
2(¢1) 14+ 1/2y3 (5:17)

in fairly good agreement with the numerical results which yield (rq) ~ —0.35.

(rq) =~

5.3 Macro-turbulence with isotropic Gaussian fluctuations

We use the isotropic Gaussian distribution already used to study the micro-turbulent limit
(see Eq. (5.1)). We consider only the case of strong mean field with weak fluctuations
(v =1, AzBy = 3). We show in Figs. 5.2c and 5.3c the residual Stokes parameters for a
longitudinal and a transverse mean field respectively. When the mean field is longitudinal,
we have for symmetry reasons (rq) = 0 and (ry) = 0. It is easy to check that @ and U
average to zero when they are integrated over the azimuthal angle ¢. When the mean field
is in a transverse direction, i.e. when 6, = 90°, averaging over an isotropic distribution
yields (ry) = 0. When in addition ¢y = 0°, one also has (ry) = 0.

In the longitudinal case, as shown by Fig. 5.2¢, (r;) behaves much as in the micro-
turbulent case (see Fig. 5.2a, upper panel). A weak central component appears, which is
created by the averaging over the angular distribution of the magnetic field. It is already
visible when 8 = 1 and its value goes to unity when [ increases. In the transverse case
(see Fig. 5.3c), (r;) behaves essentially as in the deterministic case, except that the differ-
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ent components are somewhat broader and have a smaller value for the same value of

(compare upper panels of Fig. 5.3b, and 5.3c).

For (ry) (longitudinal case), the behavior is similar to the micro-turbulent limit, but
for very large values of 8 (3 > 10%), the profiles are less distorted compared to the micro-
turbulent case, and stay closer to the mean field value (see Fig. 5.2, lower panels). One
can remark also that the position, height and shape of the peaks are largely independent
of the value of 8 in a wide range of values (1 < 8 < 10%).

For (rq) (transverse case), we observe a shift of the positions of the minima away from
the line center when § increases. It is stronger than in the deterministic case, but much
weaker than in the micro-turbulent case (see Fig. 5.3, lower panels). Note also that the

frequency at which (rq) = 0 depends slightly on 5. This comes from the averaging process.

To summarize, for macro-turbulence the mean Stokes profiles of strong lines have a
behavior which is similar to the micro-turbulent limit for the longitudinal case and similar
to the mean field solution for the transverse case. For weak lines, 5 ~ 1, or less, (*)micro =
(TYmacro =~ B{®)U as shown by Eqs. (4.31) and (4.32). Weak lines are not sensitive to the

correlation length of the magnetic field.

5.4 Micro and macro-turbulent profiles for arbitrary orientation
of BO

In this section we compare micro-turbulent, macro-turbulent and mean field solution Stokes
profiles for a mean magnetic field with arbitrary orientation, and isotropic Gaussian fluc-
tuations characterized by yo = 3, and yg = 1. This model corresponds to the strong mean
field limit with weak fluctuations (f = 1/3). We know that for weak lines (8 < 1), there
are no differences between the micro and macro-turbulent limit and differences start show-
ing up for f = 10, and they become quite large when f is around 100 or more. Hence the

comparison is carried out for a spectral line with § = 100 and damping parameter a = 0.

Figure 5.4 shows the micro, macro and mean field Stokes profiles. In Fig. 5.4a we present,
(riqu,v) for 8y = 60°, ¢o = 30°. The dependence of (r;) on field inclination 6, is shown
in Fig. 5.4b. The behavior of (rqu,y) for micro-turbulent limit at = and o-components
is quite similar to that observed for longitudinal and transverse case (see lower panels of
Figs. 5.2a and 5.3a). For example appearance of a dip at £ = 3 and shifting of the o-
component peak position to a larger z are due to the dominance of the 5% terms in the
denominator of (rquyv) (see Egs. (F.4) - (F.10)).
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() Arbitrary field orientation (6,=60", ¢,=30") (b) Dependence of (r;) on 8,

..... T T

Frequency x Frequency

Figure 5.4: UR solution for mean field (solid line), micro (dotted line), and macro (dashed
line) limits. The line parameters are a = 0, and 8 = 100. Panel (a): Mean magnetic field
with parameters 6y = 60°, ¢o = 30°, Az By = 3; weak magnetic field fluctuations (yg = 1).
Panel (b): dependence of (r;) on 6. The value of 6 is indicated in each sub-panel. See

§ 5.4 for discussions.

For all the Stokes components the micro-turbulent profiles are broader than the macro-
turbulent and mean field ones, and the difference between the macro and micro-turbulent
profiles are large, except for the case #y = 0°. This phenomenon is illustrated for (r;) in
the upper panel of Fig. 5.4b. The large difference between the turbulent and mean field
profiles for large values of 5 have already been discussed in §§ 5.2 and 5.3.

For an arbitrary orientation of the mean magnetic field, the exact and approximate
expressions for the mean absorption and dispersion coefficients under strong field limit
given in Eqgs. (2.16), (2.38) - (2.40) give the numerical result presented in Fig. 5.4 (dotted
line) to a very good approximation for #y # 0°. In the case of 6 around 0°, one should
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also consider the term ¢4;.

Another parameter which may affect the difference between the micro and macro-
turbulent limits is the value of the damping parameter a. An increase in a produces a
broadening and a decrease in magnitude of all the Zeeman components of the elements of
the matrix ® and as a consequence leads to a broadening and decrease in magnitude of all
the Zeeman components of rq y,v, for turbulent as well as non-turbulent fields. For 1, the
broadening of the Zeeman components may lead to the formation of a single peak.

5.5 Anisotropic magnetic field distributions

In the preceding sections we have considered a random magnetic field with isotropic dis-
tribution. For simplicity we refer to this model as 3D turbulence. This type of angular
distribution can be considered as a reasonable approximation to magneto-hydrodynamic
turbulence. Randomness of a quite different nature can be expected in sunspot umbra
where thin flux tubes corresponding to umbral dots will probably be more or less oriented
in the same direction (Thomas & Weiss 2004). In this case, the magnetic field fluctuates
mainly in magnitude. For pure Gaussian fluctuations in field strength Eq. (5.1) reduces to
(see also Eq. (2.21))

1
P,(B)dB = 7 e dy —0o <y < +o0, (5.18)
7r

a model which we refer to for simplicity as 1D or longitudinal turbulence. For 1D turbu-
lence, the fluctuations of the magnetic field strength affect the ¢.; Zeeman components,
but not the central component ¢y. The same is true for the anomalous dispersion coeffi-

cients.

Intermediate between isotropic and longitudinal fluctuations, as far as angular distri-
bution is concerned, are fluctuations transverse to the mean field. The corresponding PDF
(see Eq. (2.51), also DP79) may be written as

1
Pr(B)dB = - e_(y2_y3)y dyd¥, yo<y<-+oo. (5.19)

This case, referred here as 2D turbulence, is typical of Alfvén waves. When the magnitude
of the mean field is zero, this distribution can describe a magnetic canopy since the random

magnetic field remains in a plane perpendicular to the direction (6y, ¢o).

We show in Fig. 5.5 the mean Stokes parameters for 1D, 2D and 3D turbulence in the
micro-turbulent limit for a line with 5 = 100 and the same magnetic field model as in the
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Effects of Different Magnetic PDF
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Figure 5.5: Effects of different models of magnetic turbulence under micro turbulent limit.

The solutions displayed are: deterministic mean field (solid line); 1D turbulence (dotted

line); 2D turbulence (dashed line); 3D turbulence (dot-dashed line). The magnetic field

parameters used are the same as in Fig. 5.4. See § 5.5 for discussions.

preceding section (¢o = 30°, §y = 60°, AzBy = 3, 7 = 1). The mean absorption and
dispersion coefficients can be written explicitly in terms of the usual Voigt and Faraday-
Voigt functions for 1D turbulence (see Egs. (2.16) and (2.22)). For 2D turbulence they
also have explicit expressions but for a = 0 only (see Egs. (2.16), (2.55) - (2.60) and also
DP79). Other numerical aspects of the calculation are presented in Chapter 4.

The upper left panel of Fig. 5.5 shows that amplitude of (r;) is fairly sensitive to the
anisotropy of the distribution function. At line center, micro-turbulence always produces
an increase in amplitude due to the broadening of the o-components and to the averaging
over the magnetic field directions, the latter mechanism being effective in the 2D and 3D
cases only. Line center enhancement is present, for any value of y (see e.g. dotted lines in
Fig. 5.4b). The magnitude of the o-components is larger for 2D and 3D turbulence when
compared to the mean field and 1D case because of the important role played by the 3?

terms.
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For the polarization components, turbulence always broadens the Zeeman components
and reduces their magnitude. For 1D turbulence, the m-component in (rqy) is reduced,
and the o-component in (rq u,v) are broadened compared to the mean field profiles. For
(rq) and (ry), 2D and 3D turbulence reduce the 7 and o-component rather efficiently. For
(rv), one can observe the same effect as for the o-components of (rq y) . The mean profiles
for 2D and 3D turbulence are very similar, except for the width of the o-components which
are smaller for 2D than for 3D or 1D turbulence because the fluctuations are perpendicular
to the mean field.

We also investigated the case of macro-turbulence. Compared to micro-turbulence, the

averaged profiles stay closer to the mean field solution (see e.g. dashed lines in Fig. 5.4b).

5.6 Summary and concluding remarks

In this chapter we take the example of a normal Zeeman triplet to explore the effects
of a random magnetic field with mean value B on polarized line formation. The Unno-
Rachkovsky solution which provides an explicit expression for the Stokes parameters at the
surface of a Milne-Eddington atmosphere is used to calculate the mean Stokes parameters
for random magnetic fields with scales of variations that are much smaller, or much larger
than the mean free path of photons. These micro and macro-turbulent limits provide
bounds for more general random magnetic fields with finite scales of variation. Thanks to
the Unno-Rachkovsky (UR) solution, we could explore a broad range of magnetic field and
spectral line parameters. For the spectral line, we varied the line strength 5 measured as

the ratio of the line to continuum opacity.

For the random magnetic field B, we have assumed Gaussian fluctuations about B,
given by a distribution function P(B). Isotropic fluctuations and anisotropic ones (parallel
and perpendicular to the mean field) are considered. The distribution is characterized by
two Zeeman shifts: Az By due to the mean field and vy due to the rms fluctuations. The
ratio f = vg/AzBj provides a measure of the strength of the turbulent fluctuations. Most

of the results concern a strong field or weak fluctuations limit (AzBy = 3, f = 1/3).

In the micro-turbulent limit (§ 5.2), using explicit approximate expressions for the
mean coefficients, we could follow in detail the variations of the Stokes profiles shapes
as [ increases and explain various saturation stages. These expressions along with the
UR solution can predict Stokes profile that matches with the numerical result to a good

approximation. For (r;) we have shown how fluctuations in the strength and direction of
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the magnetic field can produce an enhancement of the m-component which can lead, when

B is large, to drastic changes in the profile shape as compared to the mean field solution.

In the macro-turbulent regime (see § 5.3) the UR solution is averaged over P(B). Hence
it is harder to perform a precise quantitative analysis of the mean profiles. Numerical
calculations show that the macro-turbulent profiles have the same type of behavior as the

micro-turbulent ones, but on the whole stay closer to mean field solutions.

Differences between the micro and macro-turbulent limits (see § 5.4) are sensitive to
the values of the damping parameter a and the line strength 3. Non-existent for weak
lines, say 8 = 1 or less, they become significant for (r;) when 5 = 10, but stay marginal

for (rq,u,v). They become really important only when j is around 100.

The sensitivity of the mean profiles to the angular distribution of the magnetic field
is examined in § 5.5 for a line with 8 = 100 and @ = 0 and weak fluctuations (f = 1/3,
AzBy = 3). Micro-turbulent profiles are very sensitive to the choice of PDF P(B). The
macro-turbulent profiles are however less sensitive than the micro-turbulent ones. It is a

general feature of macro-turbulence in the case of weak fluctuations except for 6y = 0°.

All the numerical results presented in this work have been obtained with a Gaussian
distribution function. There is evidence for Voigt type distribution functions or stretched
exponentials for the magnetic field strength (see e.g. Stenflo & Holzreuter 2003a, Stein &
Nordlund 2006). We consider the effect of such distribution functions on the mean residual
Stokes profiles in Chapter 6.



148 Chapter 5. Unno-Rachkovsky solution for turbulent magnetic fields




Chapter 6

Studies with empirical probability distribu-

tion functions!?

6.1 Introduction

Magneto-convection on the Sun has a size spectrum that spans several orders of magnitudes
and hence develops turbulent elements or eddies the sizes of which are much smaller than
the spatial resolution of current spectro-polarimeters (about 0.2 arcsec or 150 km at the
photospheric level). Thus the Stokes profiles that we observe are always averages - the
averaging being over space, time, and along the line-of-sight. This suggests that it may be
sufficient to characterize the magnetic field responsible for spectral line polarization by a
probability distribution function (PDF). Attempts have been made to deduce such PDFs
from observational data by inversion methods (c.f. Dominguez Cerdena et al. 2006). Here
we consider the forward method, namely the calculation of the mean Stokes parameters
for a given PDF. Our primary goal is to compare Stokes profiles calculated with different
types of PDFs. We have used PDFs determined from observations (Stenflo & Holzreuter
2002, 2003a, 2003b) and from numerical simulations of magneto-convection (Vogler et al.
2005, Stein & Nordlund 2006, and the papers cited therein). The observational PDFs
have been deduced from magnetograms and describe the vertical magnetic field in the
solar photosphere. For simplicity we neglect any depth-dependence of the PDF's inside the

atmosphere.

In the solar photosphere the mean free path of optical photons is in the range 50-
100 km, corresponding approximately to the middle part of the turbulent spectrum. The

! This chapter is based on the paper which is under revision: Sampoorna, M., Nagendra, K. N., Frisch,
H., & Stenflo, J. O. 2008, A& A, under review
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calculation of mean Stokes parameters for this spatial range, sometimes referred to as
meso-turbulence, has been considered in Chapter 4 (see also Landi Degl’Innocenti 1994,
Carroll & Staude 2003b, 2005a, 2005b, 2006, Carroll & Kopf 2007). The mean Stokes
parameters for meso-turbulence are always bounded by the micro and macro-turbulent
limits. The concept of micro-turbulence is associated to optically thin magnetic eddies

while macro-turbulence corresponds to optically thick ones.

In the micro-turbulent limit the Zeeman absorption matrix (containing both absorptive
and magneto-optical effects) can be averaged over the PDF and the line transfer equation
solved with the averaged absorption matrix. Distributions of optically thin elements and
transfer equations with mean coefficients were first considered by Stenflo (1971, and ref-
erences cited therein). One of the effects of micro-turbulent magnetic field is to produce
line broadening. The earliest observational attempt to search for magnetic fields by this
broadening mechanism dates back to Unno (1959). Stenflo & Lindegren (1977) performed
a statistical analysis of 402 unblended FeT lines in the optical region and found an upper
limit of 100 G for the rms magnetic field fluctuations responsible for the line broadening.
Along the same lines, Sdnchez Almeida et al. (1996) introduced the MISMA model (MI-
cro Structured Magnetic Atmospheres) consisting of spatially intermittent optically thin

structures.

In the macro-turbulent limit, the emergent spectrum may be formed within a single
magnetic structure. The averaging over different realizations of the vector magnetic field is
now performed on the emergent solution of the transfer equation. Multi-component models
representing optically thick unresolved structures were introduced by Stenflo (1971, 1973,
1994), and Stenflo et al. (1984). The special case of a two-component model forms the
basis of the line ratio technique (Stenflo 1973).

For our present investigation of the effects of various types of PDF, we consider both the
micro and macro-turbulent limits. The case of Gaussian PDFs was studied in Chapters 2, 4,
and 5 (see also Dolginov & Pavlov 1972, Domke & Pavlov 1979). In this chapter we use more
realistic types of PDFs, namely Voigt type and stretched exponential type distributions for
the strength of a magnetic field with a fixed direction. We also consider axially symmetric
magnetic fields of constant strength, but with random directions distributed according to a
power law. Finally we introduce a heuristic PDF, which combines distributions in strength
and direction. The angular distribution is described by a power law and the strength

distribution by either a Voigt function or a stretched exponential.

The PDFs that we are adopting can be used in a general numerical solution of the
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polarized line transfer equations. However in this chapter, we restrict ourselves to the
Unno-Rachkovsky solution (see Unno 1956, Rachkovsky 1962a, 1962b). We believe that
the approximation of a Milne-Eddington (ME) atmosphere is adequate for exploratory
work on the sensitivity of Stokes profiles to different magnetic field PDFs. In the micro-
turbulent limit we average the Zeeman absorption matrix over the PDF before applying the
Unno-Rachkovsky solution. In the macro-turbulent limit we average the Unno-Rachkovsky
solution over the magnetic field PDF. In these two limits, it is possible within the frame-
work of the ME model to introduce fluctuations of the atmospheric parameters (velocity,
temperature, density), the correlations between them and also with the magnetic field.
Adequate joint PDFs would have to be introduced for this purpose. Correlations between
velocity fields and magnetic fields will produce asymmetric profiles (see eg. Figs. 9.19 and
9.20 in Landi Degl’Innocenti & Landolfi 2004, hereafter LL.04). Here we analyze only pure

magnetic fields effects.

In §§ 6.2-6.5 we present mean Stokes profiles for a Zeeman triplet computed with
different kinds of PDF's, for micro and macro-turbulence. We also consider the dispersion
of the Stokes profiles around their mean values. In § 6.6 we generalize our averaging

procedures to the anomalous general Zeeman pattern. Conclusions are presented in § 6.7.

6.2 Magnetic field strength distribution: Voigt PDF

Recently Stenflo & Holzreuter (2002, 2003a, 2003b) have found from an analysis of high
resolution La Palma and MDI solar magnetograms that the PDF for the line-of-sight (LOS)
component of the magnetic field is nearly independent of the spatial scale and can be well
represented by a simple function which has a Gaussian core and Lorentzian type wings.
The Gaussian core is centered around zero field. The PDF wings are generally significantly
different for the positive and negative polarities. Stenflo & Holzreuter (2002, 2003a) have
proposed a PDF for the LOS field strength that can be represented by a Voigt function
depending on a magnetic damping parameter ag and a magnetic width Ag. The parameter
Apg is a measure of the rms fluctuations of the LOS component of the field. It represents
the width of the Gaussian core, while the parameter ap describes the damping of the
Lorentzian wings. These two parameters are not based on any theory but only define a

convenient and compact analytical fit function.

If one chooses Agp = 6 G and ag = 1.5, it surprisingly well describes the empirical
PDF for the LOS magnetic field strength derived from magnetograms. A symmetric Voigt

function however has zero net flux, whereas in real magnetograms the magnetic flux is
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generally unbalanced locally (although the global ensembles should in general be balanced).
Such situations can be well represented by a Voigt PDF that has a symmetric Gaussian

core, but with different damping parameters ag for the positive and negative polarities.

We examine in § 6.2.1 the effects of a symmetric Voigt PDF on the mean Stokes profiles.
Because of the symmetry around zero, the mean magnetic field is zero. In § 6.2.2 we
consider asymmetric PDFs with Gaussian core and Lorentzian wings. The corresponding
mean fields and mean Stokes V parameters are now different from zero.

6.2.1 Symmetric Voigt PDF

In terms of the parameters ag and Apg, the Voigt PDFs considered in this section have the

functional form

( B ) ap +00 e~ (B1/AR)? dB, (6 1)

A—BaCLB :m " [(B—Bl)/AB]2+GZB AB.

Here B is the magnetic field component along a given direction. We introduce the non-

dimensional parameters

B By

= A—B; U= A—B; 7B = AzAp, (6-2)

Y

where the quantity Ay is defined in Eq. (2.8). 7p represents the rms fluctuations Ap
converted to Zeeman shift in Doppler width units. Equation (6.1) then takes the form

2

P _ap [T e 6.3
Al N e e 63)

For a magnetic damping parameter ag = 0, this Voigt PDF reduces to a 1D Gaussian

distribution with zero mean field as considered in Chapter 2.

The average Zeeman absorption matrix (®) is given by

(®) = /_ “am)n (A%, aB> Z—i. (6.4)

o0

This integral can be calculated analytically because it involves the convolution of Voigt or
Faraday-Voigt functions with a Voigt PDF. Explicit expressions for these convolutions are
given in Eq. (5.65) of LL04 (p. 171). For the average absorption coefficients, they yield

(1) = Ag — 5A45(3cos’0 —1);  (pv) cos 0,
Yu

iy
{pq) = Ay sin® f cos 2¢; (o) = (pq) tan 24, (6.5)
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where
B 1 g=+1 1
Ay = = —H(z4,ay), ¢q=0,%1,
3 =1 Yq
_ 1 1 o
A = 2 CI_H(%a aq);
=i1
- 1 g=+1 1
Ay = 1 (2 —3¢*)—H(Z,a,), q=0,+1. (6.6)
g=—1 q

The non-dimensional quantities v,, Z,, and @, in Eqgs. (6.6) are
Yo =A\/14+ 7%, ¢=0,+£1, (6.7)

2
P Chl L) (6.5)
Yq Yq

In Eq. (6.8), x = (vp — v)/Avp is the frequency measured from the line center in units

and

of the Doppler width Avp, while a is the damping parameter. In the set of Egs. (6.5)
and (6.6), (6, ¢) define the orientation of the random magnetic field with respect to the
LOS and H(z,,a,) is the Voigt function. Because 7, and a, only depend on ¢?, we have
A; = 0 and hence (py) = 0. For the magneto-optical coefficients (xquv) one has similar
expressions, but with Faraday-Voigt functions F(z,, a,).

It is important to note that in practical computations with Eq. (6.4) one should re-
strict the integration to the range [—Bmax, +Bmax|, Where B, is approximately 1500 G.
Small-scale photospheric fields with strengths larger than about 1500 G would not be ex-
pected to occur, since stronger fields cannot be contained by the ambient gas pressure that
prevails in the photosphere. As mentioned above, high resolution La Palma magnetogram
data can be represented well with a Voigt like PDF with a magnetic width A = 6G.
Using this as the standard magnetic width, the limits of integration in non-dimensional
units are [—Ymax, +Umax] = [—250,+250]. We have verified that for such a large value
of the cut-off, the average absorption matrix (obtained by numerical averaging) does not
differ significantly from the corresponding analytical result (see Eq. (6.5)) derived with
[—Ymaxs +Ymax] = [—00, +00]. We have also verified numerically that the part of the PDF
that affects the mean absorption coefficient is from y ~ —50 to y ~ +50. Thus Eq. (6.5)
may indeed be used to analyze the numerical results, to a good approximation. To per-
form the y integral numerically we use a Gauss-Legendre quadrature with approximately

300 quadrature points, otherwise one would get oscillations in the wings of the emergent
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Figure 6.1: Effect of the magnetic damping parameter ap on the mean residual Stokes
parameters (r qu). The average is taken over the Voigt type PDF with zero mean field
defined in Eq. (6.1), assuming micro-turbulent limit. Different line types correspond to
different values of the magnetic damping parameter: ap = 0 (solid), 0.1 (dotted), 1.5
(dashed), and 2 (dash-dotted). Notice the increase of polarization throughout the line

profile, with an increase in ap.

solutions. It has been shown that the maximum frequency band width should be chosen

for consistency to satisfy the condition Zpax = 4YpYmax (see Chapter 2).

We have calculated the averaged emergent residual Stokes parameters (r;qu) for the
Voigt type PDF defined in Eq. (6.1), in the micro- and macro-turbulent limits. The random
field has a fixed orientation with respect to the LOS defined by the polar angles § = 60°
and ¢ = 30°. The emergent residual Stokes parameters rx with the symbol X denoting
I, Q, U, or V are defined in Eq. (4.26). The model used has damping parameter a = 0, line
strength parameter 8 = ky/k. = 10 (ratio of line to the continuous absorption coefficient).
We also assume that the spectral line has a wavelength around 5000 A , a Landé factor of
2 and a Doppler width of 1.5kms™!. For this typical line, 1/Az = 1.07 x 10*> G. Hence
the value of g corresponding to rms magnetic field fluctuations Ag = 6 G is yg = 0.0056.
This means that we will be dealing here with very small Zeeman shifts. As a result the
(r) profiles in all the figures in this chapter remain insensitive to the parameters of the
PDFs.

The results presented in Fig. 6.1 correspond to the micro-turbulent limit. They are
calculated with vg = 0.0056 and @ = 0. The magnetic damping parameter ag is taken
as a free parameter. Because of the symmetry of the PDF (py) = 0 and hence (ry) = 0.



6.2. Magnetic field strength distribution: Voigt PDF 155

1.0 T T T T T 0.05 T T T T T 0.05 T T T T T
-0.00
0.8 B 0.00
-0.051
o1 1-0.05} 1-0.10¢1
0.4} 1 -0.15¢}
-0.10¢1 1
02| ] -0.20
-0.25¢1
—-0.1514 12 1 ’ 2
O’O 1 1 1 1 1 101 ><1 TQ|> 1 1 —0,30 101 ><1 T'U’[) 1 1
-6-4-2 0 2 4 6 -6-4-2 0 2 4 6 -6-4-2 0 2 4 6
Frequency x Frequency x Frequency x

Figure 6.2: Comparison of lines formed for micro-turbulent (solid line) and macro-turbulent

(dotted line) limits. The model parameters are the same as in Fig. 6.1, but with ag = 1.5.

The (rg) profile is insensitive to the value of ap for the reason given above. The (rqu)
can be understood from Egs. (6.5) — (6.8). Since vy < 1, we have 7, ~ 1, z, ~ z and
a1 ~ ypap <K 1 (ap is zero or of the order of unity). For ag # 0, we can expand H (x4, a;) in
powers of @, (see Mihalas 1978, p. 280). We find Ay ~ —(1/7)ypag[22D(z)—1], where D(z)
is the Dawson function of real argument. This expression explains the order of magnitude
of (rq,u) and the increase with ap, i.e. with the broadening of the magnetic field PDF.
For ag = 0, an expansion of A, for small vp yields Ay ~ (1/4y/7)7%(1 — 22?) exp (—2?).
The (rqu) are thus of the order of 107°.

In Fig. 6.2 we compare the mean residual Stokes vector corresponding to the micro-
turbulent (solid line), and macro-turbulent (dotted line) limits. The model is the same
as in Fig. 6.1, but with a fixed magnetic damping parameter ag = 1.5. As the value
of g is very small, the (r;) profile for both the cases are nearly identical. Significant
differences are observed in the wing peaks of (rqu), the polarization being much larger in

the micro-turbulent limit than the macro-turbulent limit.
6.2.2 Asymmetric Voigt PDF

Asymmetric Voigt PDF's can be constructed by choosing different values of the magnetic
damping parameter ap for different parts of the PDF while the Gaussian core is kept sym-
metrical. Figure 6.3a shows examples of asymmetric PDFs. The three lines are constructed

as follows:
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Figure 6.3: (a) Asymmetric Voigt PDFs defined in § 6.2. A multiplication of the non-
dimensional unit y by Ap yields the magnetic field strength in Gauss. According to Stenflo
& Holzreuter (2002) Ap = 6 G in the solar atmosphere. The PDF's are shown in log-scale
to resolve the wing region and in linear scale to resolve the core region. (b) The asymmetry
d(y) for the PDFs shown in panel (a). In both panels, solid line: y, = 3.4; dotted line:
Yo = 2.9; dashed line: yo = 4.5.

e solid line: For y < —1, ag = 0.5; for y > —1, agp = 2.5
e dotted line: Fory < —1, ag = 0.5; for -1 <y < +1,ag=1.5;fory >1,a =2.5
e dashed line: Fory < —1,ag =0.1; for -1 <y < +4+1,ap =1.5;fory > 1, agp = 2.9

All of them have been normalized to unity and more or less resemble the PDF for the La
Palma magnetogram in Fig. 2 of Stenflo & Holzreuter (2002).

The asymmetry in Py(y,ag) can be measured by the difference §(y) = Py(y > 0) —
Py (y < 0) shown in Fig. 6.3b. The mean magnetic field is the average of y over §(y). Here
we denote it by yo. The values corresponding to the examples in Fig. 6.3a are: (solid line)
Yo = 3.4; (dotted line) yo = 2.9; (dashed line) yo = 4.5.

Figure 6.4 shows the mean residual emergent solutions for the three PDF's in Fig. 6.3a
in the micro-turbulent limit. The other model parameters are the same as in Figs. 6.1 and
6.2. The (rq,u) profiles show a very small sensitivity to the asymmetry of the PDFs and
the (r;) profiles remain insensitive to the PDF asymmetry for reasons explained above. For
all three PDFs (ry) peaks around x &~ 1.5. The amplitude of the peaks increases with the
mean field. For the two first cases of asymmetry (solid and dotted lines in Fig. 6.3), the
values of (ry) do not differ significantly as the y, have similar values.
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Figure 6.4: (r;q,u,v) computed with the asymmetric Voigt PDFs in Fig. 6.3a. The relation
between line type and PDF is the same as in Fig. 6.3a, namely, solid line: yq = 3.4; dotted
line: yo = 2.9; dashed line: yo = 4.5.

We have computed also the mean Stokes profiles for the macro-turbulent limit using
the same three asymmetric PDFs. For (r;qu), the differences between the micro- and
macro-turbulent limit solutions are essentially similar to those shown in Fig. 6.2. For
(rv) the differences are minimal. This confirms our previous conclusion (Chapter 4) that
(rv) shows little dependence on the correlation length and may be calculated using the
micro-turbulent limit with reasonable confidence.

In a random magnetic field, the Stokes profiles fluctuate around their mean values.
The order of magnitude of the fluctuations is given by the dispersion (square root of the
variance) ox, (X =1, @, U, V). For the reduced Stokes profiles,

ox = (rx) = (r<)*, (6.9)

where the average ( ) is over all the realizations of the random field. In the micro-turbulent
limit, ox is zero since rx is equal to its mean value. The dispersion has its maximum value

in the macro-turbulent limit. Then ( ) stands for the average over the Unno-Rachkovsky
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Figure 6.5: Dispersion around the mean (r; gy v) in the macro-turbulent limit. The calcu-
lations have been performed with the asymmetric Voigt PDF corresponding to the mean

field yo = 3.4 (see Fig. 6.3). Notice the fairly large dispersion for (rquv)-

solution. Examples of the variation of ox with the characteristic scale of the magnetic
field can be found in Chapter 4. Details on the numerical work required to calculate the

dispersion in the macro-turbulent limit can be found also in the same chapter.

It is interesting to consider the dispersion ox for a given value of the mean field ¥y, and
to compare it with the spread introduced in (rx) by varying y, (see Fig. 6.4). In Fig. 6.5
we show (rx) + ox, with X = I, Q, U, V for yo = 3.4. The other values of y, (2.9 and
4.5) yield very similar results. The dispersion is very small for (r;) but for (rq uv) much
larger than the spread introduced by different choice of yy. One should not forget that the
values shown in Fig. 6.5 are upper bounds.
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6.3 Magnetic field strength distribution: Stretched exponential
PDF

Numerical simulations of magneto-convection near the solar surface by Stein & Nordlund
(2006) show that the magnetic field is intermittent with a stretched exponential distribu-
tion. We will now consider the effect of such a distribution function on the emergent mean
residual Stokes profiles. The functional form of a stretched exponential (abbreviated “se”)

may be written as ?
Py (y)dy=C e v dy. (6.10)

Here y is the magnetic field strength, in non-dimensional units, defined as in Eq. (6.2). We
let y vary from —ymax t0 +¥Ymax. The frequency shifts due to the Zeeman effect (measured
in Doppler width units) are +yyp where g is defined in Eq. (6.2). As in the case of
Voigt PDF's, we choose ymax = 250, Ag = 6 G and v = 0.0056. The quantity k is a
parameter that can range between 0 and 1 and is referred to as the stretching parameter.
C is the normalization constant that is determined numerically by normalization. For
Ymax = 00, C' = k/[2T'(1/k)], where I'(1/k) is the Gamma function. We find numerically
that for ymax = 250, we have C' = k/[2I'(1/k)]. The part of the PDF that affects the mean
absorption coefficient is from y ~ —50 to y &~ +50, as above. For accurate evaluation of

the y integral we use Gauss-Legendre quadrature with approximately 300 points.

In Fig. 6.6 we show stretched exponentials and a Voigt PDF with a damping parameter
apg = 1.5 as suggested by the solar data. The stretched exponentials for £ < 0.5 decrease
slower than the Voigt PDF, while for £ > 0.5 they decrease faster. It is clear that the
transition at keqy = 0.5 depends on the value ap. Stenflo & Holzreuter (2002) mention
that Voigt PDFs cannot fit the PDF's derived by magneto-convection simulations. The
main problem is the core region, which is much more peaked with stretched exponentials

than a Gaussian.

In Fig. 6.7 we compare the mean residual Stokes vector for micro-turbulent limit com-
puted with the stretched exponential PDFs and the Voigt PDF shown in Fig. 6.6. The
Voigt PDF produces the largest degree of linear polarization (c.f. (rq) and (ry)). As the
stretching parameter & increases, the profiles (rq u) decrease at all frequencies because of
the disappearance of the strong field tails of Py (y) (see Fig. 6.6). The (r;) profile as before

remains insensitive to the different PDFs.

We find that for a stretched exponential the dispersion and the differences between

2http://en.wikipedia.org/wiki/Stretched exponential
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Figure 6.6: Stretched exponentials and Voigt PDFs. The non-dimensional y-scale is related
to the B-scale through a multiplying factor Ag equal to 6 G according to Stenflo &
Holzreuter (2002). The solid line corresponds to f(y) = Py(y,ap = 1.5), while the dotted,
dashed and dash-dotted lines correspond respectively to stretched exponentials f(y) =
Pi(y) with the stretching parameter k£ = 0.5, 0.6, and 0.8, respectively. The inset figure

shows a magnified view of the core region in linear scale.

the micro- and macro-turbulent limit solutions are small, much smaller than for the Voigt
PDF case, unless the stretching parameter k is chosen to be small (< 0.5). Dispersion and
differences between the micro- and macro-turbulent limits are zero when the magnetic field
has a fixed value and orientation. They will remain small as long as the magnetic field
PDF shows no extended tails. They will appear with Voigt PDF's or when £ is small.

Asymmetric PDFs with non-zero mean field can be constructed with stretched exponen-
tials. It suffices to choose different k values for positive and negative polarities. Figure 6.8a

shows three examples constructed as follows:

e solid line: Fory < -1,k =0.8;for -1 <y < +1,k=0.7;fory > 1,k =0.6
e dotted line: Fory < —1, k=0.9; for -1 <y < +1,k=0.7;fory > 1, k=0.5
e dashed line: Fory < —1, k=0.8; for -1 <y <+1,k=0.6;fory>1, k=0.4

All these profiles have been normalized to unity. The asymmetries 6(y) = Pi(y > 0) —
P,(y < 0) are shown in Fig. 6.8b. The values of the mean field y, are: solid line (y, = 1),
dotted line (yo = 3.2), dashed line (yo = 11.6).



6.3. Magnetic field strength distribution: Stretched exponential PDF 161

1.0 T T T T T 0.05 T T T T T 0.05 T T T T T
-0.00
0.8 B 0.00
-0.051
o1 1-0.05} 1-0.10¢1
0.4} -0.15¢}
-0.10¢1 1
02| -0.20
-0.25¢1 1
-0.15¢ 2 1 d 2
O’O 1 1 1 1 1 11 Ol ><1<TDI> —0,30 1 1 1 Ol ><1<Ir.q>
-6-4-2 0 2 4 6 -6-4-2 0 2 4 6 -6-4-2 0 2 4 6
Frequency x Frequency x Frequency x

Figure 6.7: Mean Stokes profiles (r1qu) for micro-turbulent limit computed using three
stretched exponential PDFs with different values of £ and one Voigt PDF. The model
parameters are the same as in Fig. 6.2. Line types: solid (Voigt with ap = 1.5), dotted
(k = 0.5), dashed (k = 0.6), and dash-dotted (k = 0.8).

We have calculated the mean residual Stokes profiles for these three PDFs in the regime
of micro- and macro-turbulent limits. Now (ry) is not zero. Figure 6.9 shows the results
of our calculations for the micro-turbulent limit and one case of macro-turbulent limit
corresponding to yo = 11.6. When 3, = 1 and yy, = 3.2 there are no significant differences
between the micro- and macro-turbulent limit solutions because of the rapid drop of the
PDF tails.

In the micro-turbulent limit, we observe a clear increase in the peak amplitudes of
(rq,u,v) when the mean field y, increases. The positions of the peaks are however essentially
insensitive to the mean field value. The (r) profiles show no splitting and remain insensitive
to the changes in the asymmetries. The differences between the micro- and macro-turbulent
limits that appear when y, = 11.6 are due to the extended tail of the PDF for positive
polarities. They are significant for Stokes ) and U but remain small for Stokes V. The
relative insensitivity of Stokes V' to the scale of the magnetic field fluctuations seems pretty
general. We have already observed it for Voigt and Gaussian PDF's (see § 6.2.2).

We have calculated the dispersion around the mean Stokes parameters (for the macro-
turbulent limit). In Fig. 6.10, we show the dependence of oy on the value of yo. For
Yo = 11.6, it can become as large as the dispersion for a Voigt PDF shown in Fig. 6.5. The

dependence of o1y on ¥ is similar to that of oy, and hence we do not present them here.
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Figure 6.8: (a) Asymmetric stretched exponential PDFs defined in § 6.3. (b) The asym-
metry 6(y) of Py (y) for the PDFs shown in panel (a). In panels (a) and (b) the line types
are solid line: y, = 1, dotted line: gy, = 3.2, dashed line: yy = 11.6. To convert to the
field strength scale, multiply ¥ by Ag = 6G.

6.4 Magnetic field angular distribution: Power law PDF

A large fraction of the solar atmosphere is filled with mixed polarity fields, and the inter-
granular lanes contain fields directed upward or downward. To represent this scenario, we
consider magnetic fields that have a fixed value of the strength B but random orientations.
For such a random field, the following angular distribution has been suggested by Stenflo
(1987) :

+1
Paan) = LD fugle, 1 <y < 41, (6.11)

Here, up = cosvp, with ¥g the field orientation with respect to the vertical direction,
chosen as the normal to the atmosphere. The abbreviation “pl” stands for “power law”.
In Stenflo (1987) the same expression as above is given without modulus on pg, but it is
actually Eq. (6.11) which is meant.

The power law index p can take any value. The p = 0 case corresponds to an isotropic
distribution. As p increases the distribution becomes more and more peaked in the vertical
direction (see Fig. 6.11). One can verify that the power law P,(up) is normalized to unity

ie.,
2T +1
[ Ratin) dundon=1. (6.12)
0 —1

where ¢p is the azimuth of the random field. In Eq. (6.11) P, (up) is expressed in the at-
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Figure 6.9: Mean Stokes profiles (r1q u,v) computed using asymmetric stretched exponen-

tial PDFs. The solid, dotted and dashed lines are micro-turbulent limit calculations, the

line types referring to the corresponding PDFs in Fig. 6.8a. The heavy dot-dashed line is

a macro-turbulent limit calculation for yo = 11.6.

mospheric reference frame (ARF). Therefore the Zeeman absorption matrix usually formu-
lated in the LOS frame needs to be transformed to the ARF. The required transformation
is given by (c.f. Varshalovich et al. 1988):

sin 6 cos ¢ costcosp cos¥siny —sind sin g cos ¢
sin # sin ¢ = —sin Ccos 0 sindpsinpp |,(6.13)
cos sincosy sinvsing cosv cosVp

where (¥, ¢) defines the orientation of the LOS with respect to the ARF, (0, ¢) the field
orientation with respect to the LOS, and (95, ¢p) the field orientation with respect to the
ARF.

The average Zeeman absorption matrix (®) is given by

@ = [ don [ B(B) Palun) dun (6.14)
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Figure 6.10: Dispersion oy in the macro-turbulent limit for the model of Fig. 6.9. Different
line types are solid line: yy = 1, dotted line: yy = 3.2, dashed line: y, = 11.6.

Using the transformation formula of Eq. (6.13), it can be shown that

(1) = Ag — %AQP i 3(3,112 - 1), (6.15)
(pQ) = Ax (1~ 1), (6.16)

where p = cos?). The coefficients A, are given by

L=
Ay = 3 Z H(zqa), ¢g=0,%1
qg=-1
K
Ay = 7> (2-3¢)H(zg0), q=0,%1, (6.17)
g=-1

where z, = © — ¢AzB. We note that (¢rq) depend on the orientation ¢ of the LOS but
are independent of azimuth ¢. When we use the transformation formula (6.13), we obtain
terms proportional to cos(¢ — ¢g), sin(p — ¢p), cos2(¢ — @), or sin2(p — ¢p), which
vanish when averaged over ¢p. As a result {py) = 0. Further, {(py) = 0 for symmetry
reasons. As for the anomalous dispersion coefficients, the only non-zero coefficient is (xq)-
It has the same expression as (¢q) with the Voigt function replaced by the Faraday-Voigt
function. From Egs. (6.15) and (6.16) we see that when p = 0 (isotropic turbulence case),

or when p = cos¥ = 1 (disk center observation), (¢q) = 0.
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Figure 6.11: Power law PDFs as a function of the cosine of the random field orientation
Up (defined with respect to the vertical). The line types correspond to p = 0 (solid), 2
(dotted), 4 (dashed), 6 (dash-dotted), 8 (dash-triple-dotted), and 10 (long-dashed). As p
increases the PDF becomes more and more peaked in the forward and backward directions.

The mean profiles (r; o) have been calculated in the micro- and macro-turbulent limits.
The average absorption matrix elements given by Egs. (6.15) and (6.16) have been used for
the micro-turbulent limit. The model parameters are magnetic field strength AzB = 0.1,
line strength 8 = 10, damping parameter a = 0. The index p of the power law PDF is

taken as a free parameter.

Figure 6.12 shows (ryq) for the micro-turbulent limit at the limb (4 = 0.1). The results
are fairly simple to explain. Since the magnetic field is weak (AzB = 0.1), z;, ~ z. As a
consequence A is very small. This implies (p1) =~ H(z,a) (see Eq. (6.15)). Hence (¢y) is
independent of p. The small value of A, also implies {(pq) < (¢r1) and thus (rq) < (ry).
As already mentioned, (¢q) = 0 when p = 0, hence (rq) is also zero. As p gets larger, the
factor p/(p+3) in Eq. (6.16) tends to unity. Therefore (¢q) first increases with p and then
saturates. A similar behavior is exhibited by (rq). The saturation is reached for p ~ 100

as can be observed in Fig. 6.12.

The mean profiles (r1 q) for the macro-turbulent limit do not differ significantly from the
micro-turbulent limit solutions because the absolute value of the magnetic field along the
LOS is bounded by the condition AzB = 0.1. The dispersion around the mean value (for
the macro-turbulent limit) decreases with an increase in the value of p. This was expected
because as p increases the field becomes more and more unidirectional and confined to the

two values £0.1.
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Figure 6.12: Residual mean Stokes profiles (r;q) at u = 0.1 (limb observation) for the
micro-turbulent limit and the angular power law PDF defined in Eq. (6.11). Line types:
p =0 (solid), 5 (dotted), 10 (dashed), 100 (dot-dashed), 500 (dash-triple-dotted), and 1000
(long dashed). In this case (ryy) = 0.

6.5 PDPFs to represent the random vector magnetic fields

For a complete description of turbulent vector magnetic fields one needs a PDF that com-
bines the strength and angular distributions. The strength distributions have been de-
termined empirically (Stenflo & Holzreuter 2002, 2003a, 2003b) and by simulation (Stein
& Nordlund 2006). Little is known from observations about the angular distribution. A
very recent analysis of Hinode data suggests a predominance of very inclined hG fields
in the internetwork (Orozco Sudrez et al. 2007, Lites et al. 2007, 2008). From physical
considerations one can argue that the angular distribution should be strongly field-strength
dependent. For the strongest fields the distribution should be peaked around the vertical
direction, as the strong fields would tend to have an intermittent flux tube morphology,
and the powerful buoyancy forces would push the flux tubes to stand upright (like the
stems of lotus flowers that are anchored to the bottom of the lake but float on top). The
weakest fields on the other hand would be passively moved and bent by the turbulent fluid
motions and get so tangled up that their distribution would be nearly isotropic. The tran-
sition between the isotropic and peaked distributions would probably be gradual (possibly
around 50 G).
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Based on this scenario we propose here PDFs, that are combinations of two PDF's, one
for the angular distribution and one for the field strength distribution. For the angular
part we use the power law distribution introduced in § 6.4, while for the field strength part

we consider either a Voigt function (see § 6.2) or a stretched exponential (see § 6.3).
6.5.1 Stretched exponential x Power law PDF

The functional form of the vector magnetic PDF when we combine a stretched exponential

with a power law distribution may be written as

P(y, ps, o) dup dop dy = Pe(y)Po(ps) dus dep dy, (6.18)

where the power law is given by Eq. (6.11), but now used only for the range [0 < ug < 1].
If we choose the symmetric stretched exponential introduced in Eq. (6.10) we can write

P(y, up, vp) dup dop dy = ST/ 2m e U dy dup dep. (6.19)

Here y varies in the range [—Ymax, +¥Umax), 45 in the range [0,1], and ¢p in the range
[0, 27]. The angular and strength distributions are coupled by letting the power law index
p depend on y. We have chosen p = |y|/y; with y; = B;/Ap, where B; represents the field
strength around which the transition between isotropic and peaked distribution occurs.
We refer to y; as the transition field strength. We note that y; = oo corresponds to fully
isotropic distribution for all field strengths. Gauss-Legendre quadrature is used to perform
the integration over y, 95 and ¢g. For the y integration we use 300 quadrature points, and

for the ¥p and ¢p integrations we use 30 and 10 points, respectively.

The average Zeeman absorption matrix (®) is obtained by averaging ®(B) over the

PDF defined in Eq. (6.19). The integration over ug and ¢p can be performed analytically

to obtain .
(1) = (Ao) — 5 () (31° 1), (6.20)
(pq) = (A2) (1 — p?). (6.21)
After averaging, (pu) = 0 and (pv) = 0. The mean coefficients in the above equations are
given by
(o) = / " gl e (6.22)
0) = 5T/ 7 oly)e Y, .
2P(1L/K) J—ypnae
ke yl ‘
Ay) = —— Ay(y)e ¥ d 6.23
4= i ) . a0 (6:29)
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Figure 6.13: (r;v) in the micro-turbulent limit computed using the composite PDF given
in Eq. (6.18) with asymmetric stretched exponential PDFs shown in Fig. 6.8a. Disk center
observation (u = 1). Line types refer to y; = oo (solid), y; = 50 (dotted), y; = 10 (dashed),
and y; = 5 (dash-dotted). Panels (a) and (b) correspond to a mean field yo = 1, panel (c)
to yo = 3.2 and panel (d) to yo = 11.6

where Ag(y) and As(y) are given by Eq. (6.17) with z, = 2 — ¢ypy and ypy = AzB (see
in Eq. (2.8) the definition of Az). Notice that (A;) = 0 and hence (pq) = 0, for y, = oco.

We can also use in Eq. (6.18) asymmetric stretched exponentials. In that case {pv) is
not zero nor is (ry). We have calculated the mean profiles in the micro- and macro-
turbulent limits for the distributions shown in Fig. 6.8a. The model parameters are
(a, 8, v8) = (0, 10, 0.0056), LOS perpendicular to the atmosphere (z = 1). For this
LOS, (rq,u) = 0 due to symmetry. Figure 6.13 shows (r;) and (ry) in the micro-turbulent
limit. As already observed (see Fig. 6.9), (r) is insensitive to the asymmetry of Py (y)
because of the very weak value of vyg. Figures 6.13b,c,d show that the magnitude of {ry)
increases with the value of the mean field y, as in Fig. 6.9. As y; increases, (rv) profiles
approach the isotropic case (solid lines in Figs. 6.13b,c,d). As the asymmetry increases we

need larger and larger values of y; to uniformly approach the isotropic limit.
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The (ry) profiles for the macro-turbulent limit differ from micro-turbulent limit solu-
tions for yo = 11.6 only, and the differences remain small (as between the thin dashed and
thick dot-dashed lines in Fig. 6.9).

We have calculated the dispersion oy around (ry) for several values of the mean field
Yo and of the transition field strength y;. For a given value of y,, the dispersion increases in
magnitude with y, as shown in Fig. 6.10. For a given value of yy, there is an increase in oy
as the angular distribution becomes more and more anisotropic (decreasing y;). Actually
the increase of oy follows that of (rv) (see Fig. 6.13d) and the ratio oy/|{rv)| remains
essentially independent of y;. We stress again that the amplitude of oy will decrease with

decreasing sizes of the magnetic structures.
6.5.2 Voigt x Power law PDF

Next we consider a composite PDF constructed with a Voigt PDF instead of an stretched
exponential. We can use symmetric or asymmetric PDFs. With the symmetric PDF
defined in Eq. (6.1), we have

(p+1

5 )Pv(y,aB) ph dy dpg dog. (6.24)

P(y, up, vB) dydup dpg =

The power law index is chosen as p = |y|/y; as in § 6.5.1. The range of variations of y, ug,
and ¢p and the numerical integration scheme are also the same as in § 6.5.1. The mean
coefficients are also given by Egs. (6.20) — (6.23), but with [k/20(1/k)]e"¥" replaced by
Py(y,ap).

We have calculated the mean residual Stokes parameters for the asymmetric PDF with
mean field yo = 4.5 (dashed line in Fig. 6.3a) for the micro- and macro-turbulent limits.
The model parameters are (a, 5,vg) = (0,10, 0.0056), the LOS nearly parallel to the limb
(u = 0.1). Figure 6.14 shows the solutions for micro-turbulent limit. The different line
types correspond to different values of the transition field strength 7;. As discussed earlier
(rq) is essentially insensitive to the asymmetry of the Voigt PDF and to the variation of y;.
When y; — oo, the mean coefficient (pq) — 0 since (A3) — 0 (see Eq. (6.23)), and hence
(rq) — 0. As y; decreases, the PDF becomes more and more peaked and hence (rq) as
well as (ry) increase in magnitude. For symmetry reason, as in § 6.5.1, {py) = 0. However
some amount of (ry) is created due to the presence of magneto-optical effects. Therefore
(ry) is very small with a behavior similar to (rq). The differences between the micro- and
macro-turbulent limit solutions are similar to the one noted in Fig. 6.2 for (r; qu) and in
Fig. 6.9 for (rv).



170 Chapter 6. Studies with empirical probability distribution functions

1'O [ T T T T T ] [ T T Fl:
L ] 0.0 LN
L . J A3
0.8} - N 4% i
—0.1}F v o -
0.6 - (. i
! i i 17!
.4 r ] ]
O-41 —o0.2f by b 1
3 [ W/ ‘.\l'
0.2 F [ vl \..,
[ —0.3 > V V ]
0.0 F 10 . ><<7"Q>
OO X e 7
L . a0y N
[ ook e
—0.2r ST T -
] [
|
i [ b
—0.4r h § I -
L N [ a L
- \ ] - g oy
—0.1r [ . I 17! 1l
- V, ] —o.8[ i i )
[ 2 : 1 - 5 L '
0210 ,><<”',va> . . ] 10°x¢ry) .
-6 —4 —2 O 2 4 6 -6 —4 -2 O 2 4 6
Frequency x Frequency x

Figure 6.14: (r;quv) micro-turbulent profiles for limb observation (4 = 0.1). Composite
PDF with asymmetric Voigt function corresponding to a mean field yo = 4.5 (dashed line of
Fig. 6.3). The line types correspond to y; = oo (solid), y; = 50 (dotted), y; = 10 (dashed),
and y; = 5 (dash-dotted).

6.6 Turbulent line formation for anomalous Zeeman splitting

For a general Zeeman pattern, the elements of the absorption matrix have contribu-
tions from each individual Zeeman component. The relative strengths of these various
components is thus needed to calculate the absorption matrix. Under local thermo-
dynamic equilibrium (LTE) the line strengths are proportional to the matrix elements
[(1sjm |D|I's' i’ m')|?, where D is the dipole operator, and are given by the quantities
(see Stenflo 1994, p. 107-111)

SQ(Mh Mu)
ZMI,Mu Sq(Mla Mu)
where M;,, are the magnetic quantum numbers of the lower and upper levels respectively,

and ¢ = M;— M,. The unnormalized strengths Sq (M,, M,) are listed in Table 6.1 of Stenflo
(1994).

Sq(Ml, Mu) =

g=0, +1, (6.25)
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The Zeeman splitting of the individual components can be written in compact form as

Ty =2 — [q9y — Mi(9, — q1)] A B,

where g,; are the Landé factors of the upper and lower level respectively, and A/, =
e/(4rmAvp). The elements of the Zeeman absorption matrix formally remain the same,

but the normalized profiles ¢, and f, are now given by (see also § 2.6)
@y = Sy(M, M,) H(zg,a), and f, = S,(M;,M,)F(z,,a), (6.26)
M, My

respectively, subject to the constraint M; = M, +¢q. The equations required for computing
transition strengths for Zeeman multiplets and their absorption coefficients are also pre-
sented in del Toro Iniesta (2003, p. 136-145). The shapes of the Zeeman absorption matrix

elements for the multiplet case are also shown in this reference.

Equations (6.26) are valid for a deterministic magnetic field. To use the same equations
for a random field, we just need to replace A, B by 743y, where y is defined in Eq. (6.2),
and v, = A, Ap.

Figure 6.15 shows (r,q,u,v) for a *Py /o — *F3/, transition. For this particular transition
there are two m components and four o components. Keeping the same kind of spectral
line as in the preceding sections (wavelength 5000 A, Doppler width 1.5kms!), we find
vs = vB/2 = 0.0028. Our model parameters are now: (a, 3, vg5) = (0, 10, 0.0028). For
the magnetic field, we assume a fixed orientation (0, ¢) = (60°, 30°) and random strength.
We use an asymmetric Voigt PDF and an asymmetric stretched exponential. They yield
mean profiles (rq u,v) with similar shapes. As always (r7) remains insensitive to the choice
of the PDF. (rqu) are larger for the asymmetric Voigt PDF (solid lines), than for the
asymmetric stretched exponential (dotted lines) for nearly the same values of the mean
magnetic fields (3.4 and 3.2, respectively). This is because (rq,u) are sensitive to the type
of PDF used, as already shown in Fig. 6.7 (for symmetric PDFs). (ry) is generated purely
by the asymmetry in the PDF, and hence it is more sensitive to the value of the mean field
Yo than to the exact shape of the PDF. For this figure we have chosen nearly the same
mean value yq for both PDFs, with the consequence that the solid and dotted curves for
(rv) do not differ.

We also have calculated mean Stokes profiles for macro-turbulent limit. The only
difference appears to be that the micro-turbulent limit produce (rqu) of slightly larger
magnitude than the macro-turbulent ones.
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Figure 6.15: Effect of turbulence on a Zeeman multiplet. Two types of PDFs are used.
Solid lines: asymmetric Voigt with mean field yy = 3.4 presented as solid line in Fig. 6.3a.
Dotted lines: asymmetric stretched exponential with mean field yo = 3.2 presented as
dotted line in Fig. 6.8a.

6.7 Concluding remarks

We have presented mean Stokes profiles formed in media with spatially unresolved magnetic
structures. We have considered the cases of micro- and macro-turbulent limits which
involve the computation of mean absorption matrices or mean emergent Stokes profiles,
respectively. We have also calculated the dispersion around the mean Stokes profiles in the
macro-turbulent limit (it is zero in the micro-turbulent limit). The dispersion provides an
upper bound for the order of magnitude of the fluctuations of the Stokes profiles around
their mean values. To perform such averaging we use a probability distribution function
(PDF) that describes the fluctuations of the ambient field. A Gaussian PDF with isotropic
or anisotropic fluctuations has been considered in detail in Chapter 2. Here we have
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experimented with other types of PDFs and show the difference between the emergent
Stokes profiles computed from them. We consider very weak fluctuations of the magnetic
field: The Zeeman shift from the magnetic field rms fluctuations in Doppler width units,
denoted here g, equals 0.0056. As a consequence the (ry) profiles are insensitive to the
shape of the magnetic field PDF. In contrast, the other mean Stokes profiles and the
dispersion are quite sensitive to the PDF shapes. For stronger fluctuations (say v5 = 1),
(ry) would also get significantly modified.

In § 6.2 we consider a Voigt type PDF for the magnetic field strength derived from
observations by Stenflo & Holzreuter (2002, 2003a, 2003b). The Voigt PDF is characterized
by two parameters, the magnetic width Ag and the magnetic damping parameter ag. For
ap = 0, we recover the results of the 1D Gaussian distribution considered in Chapter 2.
The effect of a non-zero ap on the average Stokes profiles (rqy) is to enhance core and
wing polarization. We have introduced asymmetric Voigt PDFs which provide a non-zero
net magnetic flux, thereby generating an (ry) profile. They are constructed by taking
different magnetic damping parameters for the opposite polarities of the random field.

Stretched exponentials for the magnetic field strength derived from magneto-convection
simulations by Stein & Nordlund (2006) are considered in § 6.3. These PDFs are charac-
terized by a single parameter, the stretching parameter k, which takes values between 0
and 1. A decrease of the stretching parameter £ enhances the contribution from strong
fields and thus induces an increase in the values of (rq ) (see Fig. 6.7). In this case also
we construct asymmetric PDFs by using different values of the stretching parameter k& for

the opposite polarities of the magnetic field.

In § 6.4 we have examined an angular power law distribution proposed by Stenflo (1987).
The only parameter for this PDF is the power law index p. For p = 0, the distribution is
isotropic. As p increases the random field becomes more and more oriented in both the

forward and backward directions. Because of the axial symmetry, (ry) = 0 for this PDF.

For a complete description of the turbulent vector magnetic field one needs PDFs which
describe both the angular and the strength distribution of the magnetic field vector. In
§ 6.5 we have constructed empirical PDFs of this kind by combining a power law for the
angular distribution with a Voigt function or stretched exponential for the field strength.
The PDF's for the angular and strength distributions are coupled by letting the power law
index explicitly depend on the field strength. We have introduced a cut-off in the magnetic
field strength below which the random magnetic field is essentially isotropic and above

which it is dominantly vertical. Construction and application of these composite PDFs
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represent the main result of the present chapter. They could be used to represent the
conditions prevailing in the solar photosphere. Finally, in § 6.6, we show how to generalize

the averaging technique to the case of anomalous Zeeman splitting patterns.

This chapter highlights the need to consider fluctuations in the field orientation besides
the field strength. We have experimented with a few composite PDF of this type. However,
we would like observations to provide us with empirical PDF's not only for the field strength,
but also for the angular distribution, but unfortunately such empirical angular PDFs are

not yet available.

We compute the mean Stokes profiles for a given line-of-sight using a PDF that is
independent of depth. In reality the mean Stokes profiles are the result of space and/or time
averages. Further, we have not considered realistic temperature and density stratifications,
and we also ignore the velocity turbulence (except for the micro-turbulent line broadening
included in the Doppler width). For these reasons our mean Stokes profiles are not yet
suited for model fitting of observed Stokes profiles.

Another aspect that we need to keep in mind is the relation between the complete PDF
used in our pure theoretical profiles, and the sampling that occurs in an actual observation.
In our computations we use ‘complete’ PDF's which cover the entire range in field strength
and orientation. In contrast, high spatial resolution observations may only sample different
fractions of a PDF in terms of strength and orientation because magnetic structures have
finite sizes. A complete PDF would be obtained (asymptotically) if we add samples of many
resolution elements, or if we deliberately perform a low spatial resolution measurement.
Thus the observed high spatial resolution Stokes profiles represent fluctuations about a
mean profile. These fluctuations will in general be of the order of the dispersion around
the mean profile. The dispersion is zero in the limit of infinitely thin magnetic structures

and in this limit the sampling is necessarily complete.

Stenflo & Holzreuter (2003a) suggest that the magnetic pattern is fractal with a high
degree of self-similarity over several orders of magnitude. If this coexistence of weak and
strong fields continues far below the current spatial resolution limit, then the PDF sampling
will be more complete than in the non-fractal case, and the sampling of the PDF may be

substantial even for very high spatial resolution observations.
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Chapter 7

Classical theory of Hanle-Zeeman redistribu-

tion matrix!

7.1 Introduction

The discovery of the extremely rich structuring of the Second Solar Spectrum (Stenflo &
Keller 1996, 1997) opened the window to a new, previously unexplored territory with great
diagnostic potential. This linearly polarized spectrum, which is formed by coherent scat-
tering processes, has been mapped with high spectral resolution from the UV at 3160 A to
the red at 6995 A (Gandorfer 2000, 2002, 2005), providing us with a wealth of new infor-
mation both about the Sun and about the physics of spectral line formation in magnetized
stellar atmospheres. The Second Solar Spectrum is modified by magnetic fields through
the Hanle and Zeeman effects. The Hanle effect represents the magnetic modification of
the scattering polarization (c.f. § 1.3.3). It is a coherency phenomenon and responds to
weak fields, when the Zeeman splitting is comparable to the small damping width of line
transitions. The usual Zeeman effect polarization (c.f. § 1.3.1), on the other hand, is pro-
duced by stronger fields, when the Zeeman splitting gets comparable to the much larger
Doppler width of the line. A further difference between the two effects is that the Hanle
effect is sensitive to spatially unresolved turbulent fields with zero net magnetic flux, while
the Zeeman effect is blind to such fields (due to its different symmetry properties). The

two effects therefore nicely complement each other (see Stenflo 1994).

Many of the strongest and most conspicuous lines in the Second Solar Spectrum are

strong lines that are formed rather high, often in the chromosphere above the tempera-

!This chapter is based on the publication: Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007a,
AplJ, 663, 625-642
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ture minimum. From standard, unpolarized and non-magnetic line-formation theory such
lines are known to be formed under conditions that are very far from local thermodynamic
equilibrium. They are characterized by broad damping wings surrounding a Doppler core.
Doppler shifts in combination with collisions cause photons that are absorbed at a given
frequency to be redistributed in frequency across the line profile in a complex way dur-
ing the scattering process. Two idealized, limiting cases to describe this redistribution
are “frequency coherence” and “complete redistribution” (CRD), but the general theory
that properly combines these two limiting cases goes under the name “partial frequency
redistribution” (PRD). Strong lines can only be properly modeled when PRD is taken into

account.

The complexity of the redistribution problem escalates when we include polarization
and magnetic fields, since the previously unpolarized scalar ‘redistribution function’ be-
comes a 4 x 4 ‘redistribution matrix’ that describes how the Stokes 4-vector is redistributed
in both frequency and angle. In the absence of magnetic fields the frequency redistribution
factorizes out from the polarization properties, which can be described by a frequency-
independent 4 x 4 ‘phase matrix’. Such non-magnetic but polarized PRD has been applied
to describe the polarized line profile of Canr K and Ca1 4227 A (Saliba 1985, Faurobert-
Scholl 1992) and later to model other strong lines in the Second Solar Spectrum (Fluri
et al. 2003a, Holzreuter et al. 2005, 2006, Fluri et al. 2006, Holzreuter & Stenflo 2007a,
2007b), like Na1 D5 5890 A, and other important lines such as Sr11 4078 A, and Cr1 3594 A.

To exploit these strong lines for magnetic-field diagnostics we need however to go one
step further, namely to develop the theory for PRD in the presence of magnetic fields of
‘arbitrary strengths’. This is the aim of the present chapter. In the presence of magnetic
fields we can no longer factorize the polarization and frequency redistribution problem,
instead they get deeply intertwined. This naturally increases the complexity of the problem,

but this complexity also has a rich structure with many symmetries.

The general concepts of theory of PRD were first developed for the scalar problem
of non-polarized scattering (see Mihalas 1978). The theory of PRD from a classical per-
spective was originally introduced by Zanstra (1941a, 1941b), who addressed the issue of
collisions on non-magnetic frequency redistribution in resonance lines. Stenflo (1994, 1996,
1998) has developed a modern approach to the classical oscillator theory and applied it to
atomic line transitions. His method can handle light scattering on atomic energy levels in
the presence of arbitrary magnetic fields and various kinds of collisions (treated approx-

imately). This classical framework was further extended by Bommier & Stenflo (1999,
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hereafter called BS99) to handle PRD effects in the presence of arbitrary magnetic fields
and collisions. Recently, Lin et al. (1998) have proposed a classical theory of the Hanle
effect (similar to that of Stenflo 1994), to explain the polarization of He 1 10830 A line
observed in a solar filament. This classical theory has been extended by Lin & Casini
(2000) to derive the polarization properties of the coronal forbidden emission lines, which

arise from magnetic dipole (M1) transitions.

The quantum mechanical framework for the problem of atomic line scattering was
developed by Weisskopf (1933), Wooley (1938), Henyey (1940), Hummer (1962), Lamb
& ter Haar (1971), House (1971), Omont et al. (1972, 1973), Heinzel (1981), Cooper et
al. (1982), Landi Degl'Innocenti (1983a, 1984), Domke & Hubeny (1988), Streater et al.
(1988), Landi Degl’Innocenti et al. (1997), Bommier (1997a, 1997b, 1999, 2003), Casini &
Manso Sainz (2005). See the reviews by Hubeny (1985), Nagendra (2003a) for a historical
development of the PRD formulations, and Trujillo Bueno (2003a), Uitenbroek (2003) for
applications in Astrophysical line formation theory, and Nagendra et al. (2002, 2003, and
papers cited therein), and Fluri et al. (2003b) for powerful numerical methods of solving
the relevant line transfer problem of varying complexity.

The theory developed in BS99 solved the time-dependent oscillator equation in com-
bination with a classical model for collisions (see Stenflo 1994, ch. 10). This gives self-
consistent and non-perturbative expressions for the polarized PRD redistribution matrix,
in the presence of magnetic fields of arbitrary strength and direction in the atomic frame.
The explicit form of the redistribution matrix in the laboratory frame (LF) was not given.
BS99 hints at the way to arrive at such expressions, which are needed, when the generalized

Hanle-Zeeman redistribution matrix is to be used in a radiative line transfer code.

When we here use the term “Hanle-Zeeman”, we mean the full field strength regime,
from zero field to completely split lines. This general case contains many sub-regimes,
which only become distinct from each other if one makes idealizations, to deal with each
separately. We do not do any such idealizations here, so in this general case, the sub-regimes
partially overlap or gradually flow into each other. The Hanle effect has three sub-regimes:
(i) Very weak fields, when the field dependence can be disregarded, and the scattering
behaves like the non-magnetic case. (ii) Weak to intermediate fields, when the scattering
polarization depends on both the strength and direction of the field. This is what is most
often referred to as the “Hanle regime”. (iii) Saturated Hanle regime, when the fields are
so strong that the scattering polarization becomes insensitive to the field strength, but

still depends on the field direction. This saturated Hanle regime is what applies to the
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coronal forbidden lines. The saturation occurs when the Zeeman splitting becomes much
larger than the damping width. Even in this saturated regime the Zeeman splitting can
remain much smaller than the Doppler width, as it does in the case of the coronal forbidden
lines. When the Zeeman splitting is no longer too small in comparison with the Doppler
width, then ordinary Zeeman effect polarization starts to show up. The field strengths
for which this occurs depend on the relative prominence of scattering polarization and
the polarimetric sensitivity of the instrument. While the Hanle and Zeeman effects show
relative dominance in different regimes, they fundamentally overlap over the whole field

strength regime.

In this chapter we derive an explicit form of the Hanle-Zeeman redistribution matrix in
the LF, for the special case of a normal Zeeman triplet, in a coordinate system in which the
polar Z-axis is oriented along the magnetic field (see Fig. 7.1). This choice of geometry does
not limit the applicability of the theory, since the redistribution matrix for an arbitrary field
direction can be obtained by first choosing a system with the Z-axis along the magnetic
field, and then applying Mueller rotation matrices to obtain the redistribution matrix for
any other system with an arbitrary orientation of its Z-axis (see Appendix K).

In § 7.2, starting from the atomic frame expression for the ensemble averaged coherency
matrix (c.f. § 1.2.2) given in BS99, we derive the corresponding expression in the LF.
In § 7.3 we present the analytical form of the Hanle-Zeeman redistribution matrix. The
magnetic redistribution basis functions that we encounter in § 7.2 (see also Bommier 1997b)
are numerically studied in § 7.4, because the total scattering probability essentially depends
on their angular and frequency dependence. The scattered Stokes vector can be interpreted
using the properties of these basis functions. The extension of the classical theory presented
in §§ 7.2 and 7.3, to treat atomic and molecular scattering for any combination of quantum

numbers is discussed in § 7.5. Concluding remarks are given in § 7.6.

7.2 Coherency matrix

The time dependent solution r,(t,&’), of the oscillator equation (c.f. Eq. (1.16)), which
describes the motion of a particle with charge —e and mass m in a central Coulomb

potential, subject to an external magnetic field B and an external oscillating electric field
E', is given by (see Eqgs. (16) - (18) of BS99)

Tq(ta 51) = Tq,stat(ta 6’) + er,trans(ta gl) eid’ (71)
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where
1 e—27ri§'t

t, &)=~ - ) 7.2
st ) = 7 & — (vo — qgu, — iy/4) (72)
represents the stationary solution, and
. 1 e—27ri(u0—qguL—i'y/47r)t
rq,trans(ta f) = (73)

T & — (v — qgui, — i/47)’

represents the transitory solution for a free, damped oscillator. C' and § represent the
amplitude and phase of the oscillator. &' is the frequency of the incident radiation in
the atomic frame. vy, v are the frame independent line center frequency and Larmor
frequency, respectively. ¢ is the Landé factor (which is unity in classical theory, however

we retain it for the sake of comparison with quantum theory).

The spectral properties of the scattered radiation are obtained by taking the Fourier

transform of r,(¢, ), defined as

+oo )
7 (€ €) = / rolt, €) € dt, (7.4)

o

where ¢ is the frequency of the scattered radiation in the atomic frame. The ensemble
average of bilinear products, also called the coherency matrix, is denoted by (qu;,) and
contains all the frequency information, including the PRD effects that correlate the incident
and scattered frequencies with each other. The ensemble average is performed to include

the random phase shifts that arise due to random phase destroying collisions.
7.2.1 Redistribution in the atomic frame

The expression for the ensemble averaged coherency matrix (qu;,) is given in BS99, in the
atomic frame (see Egs. (27), (35) and (39) of BS99) as

(Fqfg) ~ Acosfy g ¢fas CI)Z;% (€)6(6 — &) + Beos By—g cos agg €Pa-d T aa)
xcbg;% (ENDH(¢), (7.5)

aq'
where 3,_y and oy are Hanle angles defined as

—q¢')2mgv
tan B, g = %, (7.6)

(g — ¢ )2mguy,

Y+7/2 (717

tanog_q =
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with v being a sum of radiative and inelastic collisional damping constants and ~. the elastic
collisional damping rate. ¢, ¢’ take values 0, 1. The effect of Hanle angle 8, , vanishes
in the line core due to cancellation between contributions from stationary and transitory
solutions. Thereby only the Hanle angle o,—, remains operative in the line core, and causes
depolarization via the cosay,_g factor, and rotation of the plane of polarization through
the e« factor. In the line wings the Hanle effect from both a,, , and 3, , vanishes as
shown in Stenflo (1998).

The generalized profile function is defined as

1

(I)Z;% (&)= 9 [q>7+'yc (Vq -&)+ q>fy+fyc (Vq’ - &), (7.8)

with the profile function given by

1/mi
O (v, — €)= : : 7.9
(v =) v — qgvr — & —i(y + ) /An (79)
where v, = vy — ggrvr,.. We can rewrite Eq. (7.9) as
1 0y —i(vo — g9 — &
P (vg — &) = o ) (7.10)

82+ (o — g9 — €)%
where d,, = (77 + 7.) /4.

A and B in Eq. (7.5) are branching ratios between stationary and transitory solutions,
determined by probability arguments and normalization. The stationary solution is the
source of frequency-coherent scattering. The branching ratio A for frequency-coherent
process is (see Eq. (40) of BS99)

I'r

A=— R 7.11
'R +I1+T1g (7.11)

where 'y is radiative rate, while I'1 and 'y are inelastic and elastic collision rates, respec-

tively.

The transitory solution is the source of CRD. Thus branching ratio B represents the
fraction of the scattering processes for which the atom is subject to elastic collisions that
destroy the frequency-coherence but not the atomic polarization (the 2K-multipole). Hence
B is given by (see Eq. (41) of BS99)

'y — D) g

B=
IR +I1+ g g +T1+ DE)’

(7.12)
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where D) is the rate of destruction of the 2K-multipole, with K = 0, 1,2 (note that
D©® = 0). We note that I'g +T'; = v, I'g = 7., and DX) = ~,/2 in the classical theory
(see Egs. (31)-(33) of BS99).

Substituting Eq. (7.8) into Eq. (7.5), we obtain

1
(%f;) ~ ACOSﬁq q’e Pa-a 5[(1);4-7 ( 6) (f f) 'y—|—'y ( 6) (f f)]
+B cos By cos gy €Pa-a T )411[(I>I~y+%( = )Py (v =€)

+(I)7+7c( = )P (Vg — ) + (I>7+%( - ). (g =€)
+077, (g — )2, (vy — &) (7.13)

Clearly, terms in the square brackets represent the well known type II (in first square
bracket) and III (in second square bracket) atomic frame redistribution functions of Hum-
mer (1962). However, the essential difference is that we now have magnetically shifted fre-
quencies (for both incoming and outgoing photons), and the profile functions are complex
Lorentzian’s. The complex profile functions automatically take into account the magneto-
optical effects (imaginary part) and the absorption or emission effects (real part). The
radiative transfer equation is always formulated in the LF. Therefore the redistribution
matrices that appear in the scattering integral should refer to the LF. Hence there is a

need to transform them from the atomic frame to the LF.
7.2.2 Redistribution in the laboratory frame: Doppler effect

The effect of the Doppler shifts (introduced by the motion of scattering atoms relative to
the fixed LF) is taken into account by convolving the atomic frame redistribution function
with a velocity distribution of the scattering atoms, which is conventionally assumed to
be Maxwellian (see Mihalas 1978, Eq. (13.13), p. 417). Thus when going from the atomic
frame to the LF, we first have to replace £ and & by their Doppler shifted values, related
through

E=v—1y(v-n)/e,

&=V -y -n)/e, (7.14)

where v is the velocity vector, and c is the speed of light. v and v/ are outgoing and
incoming frequencies relative to the LF, and n and n’ are the directions of the outgoing
and incoming radiation. We introduce the dimensionless quantities

Vo — v qqu, O
= D ovg=a— ot a= 7.15
o AI/D ’ Ya o AI/D ’ 4 AI/D ’ ( )
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which are respectively, the emission frequency, magnetic shift, and damping parameter.
Avp is the Doppler width.

From Eq. (7.13) it is clear that each term in the square bracket can be independently
transformed to the LF. Following Mihalas (1978, ch. 13), one can easily obtain (after some

algebra) the ensemble averaged coherency matrix in the LF as
. 1 ,
(FTy) ~ Acosfgg elﬂq—q’i[Rfl(x, n; z', n'; B) + RY*(z, n; 2', n'; B)] + Bcos By—y

. ]_ I *
i(B,_grta, o) [ P99 ol ol q"q el !
X €OS (tq—qr €'Pa-d T4 4[RHI(:E, n; 2, n'; B) + R{; Y(z, n; o', n'; B)

+Rf1qll*(a;, n; 2', n'; B) + Rf{fl*(a}, n; ', n'; B)], (7.16)
where
Rl (z, n; o' n"B)—i1 exp{ — - : H Y+ % d
e Y 25in(0/2) 2c0s(0/2)” cos(0/2) )’
(7.17)
and
, 1 Foo » [a—i(v), —u) vy —ucos® a
a9 - /. B) = —u® | 7 "Nt T/ q
B (@, s @', 5 B) WQSin@/_Oodue [a2+(v;—u)2]%< sin © ’sin@>'
(7.18)

The symbol Rﬂfq(x, n; ©', n'; B) stands for complex conjugation only on the incoming
profile (i.e., on the complex Lorentzian in Eq. (7.18) - the term in the square bracket), while
the symbol R}’I’f’*(:r, n; ', n'; B) stands for complex conjugation on both the incoming
and outgoing profiles’. In Egs. (7.17) and (7.18), © is the scattering angle (the angle
between incident and scattered ray - see Fig. 7.1), and we have introduced the complex

function
H(z,a) = H(x,a) —iF(x,a), (7.19)

with the Voigt and Faraday-Voigt functions defined as®

a [T e Vdy
H = — - - I
w=2 [ o

1 [T (z—y)eVdy
Fiz,0)= /_ =t (7.20)

2Note: a prime on v means incoming radiation, while the absence of a prime on v means outgoing

radiation. This convention does not hold for indices q and ¢'.
3In part I of the thesis we worked with Voigt and Faraday-Voigt functions that are normalized to

unity and zero respectively. In part II of the thesis we use unnormalized H(z,a) and F(z,a) functions in
conformity with the standard convention in scattering theory. The normalizations are taken care later in
the redistribution functions.
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From Egs. (7.17) and (7.18) we can construct the real valued mathematical basis func-
tions, which we call the magnetic redistribution functions (hereafter magnetic RF). They

are given by

1 z—a 1° Vg + v, a
q "9 B = = | \g a d 21
RII,H(x, 7', ©; B) Tsin © exp{ [2 sin(@/?):| } <2 cos(©/2)’ COS(@/?)) , (7:21)

1 z—qz 17 vg + 0] a
q ' - B) = = F a i .22
R p(z, o', ©; B) Y exp{ [2 sin(@/Q):| } (2 cos(©/2)’ cos(@/2)) - (7:22)

for redistribution of type II, which depends only on ¢ and

' 1 too 2 [ a ] vy —ucos® a
R ' ©; B) = due™ | 5——— |H |-
HLHH(x’ «, ©; B) 72 sin © /Oo we [ a? + (v, —u)?] ( sin®  sin @> ’
(7.23)
) 1 oo 2 [ a 1. vy —ucos® a
qq "9 B)= due ™ |———— |2
Rijy pr(2, 7', ©; B) 72 sin © /_oo e La? + (v, — u)?] ( sin® ' sin® )’
(7.24)
, 1 too o[ (W —wu) ] vy —ucos® a
RIE ''0; B)= due™ | —21—"—|H |-
III,FH(xa z', ©; B) 2sin© /_Oo ue | a? + (U; —u)? ( sin®  sin @) ’
(7.25)
and
) 1 +oo ) (v — u) vy —ucos® a
RY ', ©; B) = due™ |51~ _|p (2
m,rr (2, ¢, ©; B) ) /Oo ue [a2 + (v, — U)Q] ( sin® sin@) ’
(7.26)

for redistribution of type III, which depends on both ¢ and ¢. We note that R?LH and
R?IOLHH (dropping the arguments for brevity), are nothing but the well known Ry and Ry
scalar redistribution functions of Hummer (1962) in the LF. It will be shown in § 7.4, that
the overall behavior of the magnetic RF is similar to the non-magnetic RF of Hummer,
except for changes caused by Zeeman frequency shifts (appearance of several magnetic
components: (2 x 3) in Ry type scattering; (4 x 9) in Ry type scattering).

For notational simplification, we now introduce the following auxiliary functions (which

are linear combination of magnetic RF introduced above),
11 1 q 7
hoy = B) (RII,H + RII,H) ’ (7.27)

1 /
(2' = 5 (R?I,F - R?I,F) ) (7-28)
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for type II functions. For type III functions, we define a complex h-function :
m _ 111 . 111
R = R (i) +19 (hil ). (7.29)
where the real (R) and imaginary () parts are defined through

§R(hgql’> =1 (R?I{I un T RIII un T RIII mr R, HH) (7.30)

%(hgql'> = (Rglf] Fa T RHI FH RquI, FH — R?Iql, FH) ) (7-31)
which are expressed in terms of HH and FH type of basis functions respectively. An

analogous expression can be written for the complex f-function:

fut = R(s) +i5(), (7.32)
where the real and imaginary parts are now defined through
]_ - ! /
§R( ;(I;) = 4 (R?I?, HF — R?Ig, HF T R?IqI, HF — R?Iql, HF) ) (7-33)
1 ) ] 7
S(/) = 7 (BT we — RO on = RE o+ B r ) (7.34)

We note that qq,, (hfllql,), g]} are non-zero only when g # ¢'. The auxiliary quantities

defined above satisfy the following symmetry relations:

II II .
Bl = B!

qdq

fH/ — _fI,I . hIH hHI* fH} — _fHI*- (735)

qq qq qq qq > qq qq

Using Egs. (7.27) - (7.34), we can rewrite Eq. (7.16) as

(Fofa) ~ AcosBy_q €Pame (b +1ifay) + B cos By_q cos ag_q € Pama T2a-a)

{R() o) = o) - w()] ] (739

7.3 Analytical form of the Hanle-Zeeman redistribution matrix

For clarity and compactness we have derived analytical expression for the Hanle-Zeeman
redistribution matrix for the simpler case of a normal Zeeman triplet (/ =0 — 1 — 0
scattering transition), and for a coordinate system in which the polar axis is along the

magnetic field. Fig. 7.1 shows the corresponding scattering geometry. The incident ray
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Figure 7.1: The geometry showing the scattering process in a coordinate system where the
polar Z-axis is oriented along the magnetic field. (¢, ¢') refer to the incident ray, (0, @) to

the scattered ray. © is the scattering angle.

makes an angle 6’ and azimuth ¢’ with respect to field direction, while outgoing ray makes
an angle # and azimuth ¢. It is however possible to compute the redistribution matrix
for arbitrary orientations of vector magnetic fields by using transformation matrices (see
Appendix K).

The Mueller scattering matrix M that describes scattering of the Stokes vector is readily
obtained from the coherency matrix (see Eq. (10) of BS99), using the expression (c.f.
Eqs. (1.11) and (1.12))

M=TWwew)T !, (7.37)

where w is the Jones scattering matrix. Explicit expressions of (w ® w*) and the purely

mathematical transformation matrices T and T~! are given in Eqs. (1.12) and (1.13).

The elements of the Jones scattering matrix are given by (see Eq. (8) of BS99)

re(t, W) L.
We g ~ Z {qT] £q a'g, (7.38)

q 4,0

where E; , is the amplitude of the g™ spherical component of incoming monochromatic
plane wave, and 27 are geometrical factors for the outgoing () and incoming () radia-
tion, respectively. These geometrical factors are given by
1 _ _gin6: 1 _ M 4ig. 2 _ Q. 2__L +ig
g =—sinf; e =F 5€ eg=0; el = e? (7.39)

V2
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for the outgoing radiation, with g = cos@ (see Stenflo 1994, p. 57). For the incoming
radiation we simply replace (0, ¢) by (€', ¢'), in the above equations.

The tensor product (w ® w*), requires the construction of bilinear products wa gw}y 4,

given by

&b (7.40)

q

IS

qq'

q ~q

rt, @)y, w'>] Yo

eX%e% ¢
El EI*
q,0

Next we replace the term in the square bracket by the ensemble average (qu;‘,>, in order
to take into account the collisions (see § 7.2). Thus Eq. (7.40) becomes

WapWhy g = Y (Fyfn) eX™ed ehel ™. (7.41)
qq'
Therefore the Mueller matrix M can be calculated using Eqgs. (7.36), (7.37), (7.39), and

(7.41). The Hanle-Zeeman redistribution matrix is then given by

g M, (7.42)

where 3/2 is the normalization constant (see Eq. (8.38) of Stenflo 1994).

R(z, n; o', n'; B) =

We can now write the final expression for the Hanle-Zeeman grand redistribution matrix

as
R(z, n; 2', n'; B) = R"(z, n; 2/, n'; B) + R" (2, n; 2/, n'; B), (7.43)

where
R'(z, n; 2, n/; B) = AMy, (7.44)
R"™(z, n; 2/, n'; B) = BMy, (7.45)

with

My = 2 cé%CS%—%(cﬁ%—cHll)Ci ;(01111 M )CY + ', C% + s S 2sin0
x sin ¢/ [(001 +co 1)01 (co1 — co-1)CL + (501 — 5%)11)51 + (=501 — 50-1)SE ] (7.46)

with a similar expression for My, when all ¢! and s coefficients (see Egs. (G.1) and
(G.2)) are replaced by the ¢ and s coefficients (see Egs. (G.3) and (G.4)), respectively.
Various auxiliary coefficients and matrices appearing in Eq. (7.46) are given in Appendix G.
Notice that Eq. (7.46) has a form similar to Eq. (49) of Stenflo (1998). Also note that
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the 3/2 factor of Eq. (7.42) has already been included in the definition of My and My
in Eq. (7.46). The Hanle-Zeeman PRD grand redistribution matrix is strongly angle-
dependent, and needs special care in numerical evaluation. This matrix appears inside
the scattering integral of the line radiative transfer equation. A sufficiently general form
of this matrix is presented in Eq. (7.43), which takes care of the radiative and collisional

contributions in a neatly factorized manner (see Nagendra 1994, Nagendra et al. 1999).

7.4 A study of magnetic redistribution functions

The magnetic RF defined in Egs. (7.21) — (7.26) form the basis for the frequency dependence
of magnetic redistribution matrices, which are expressed as a combination of different types
of “angular phase matrices” (C and S), and the ¢ and s coefficients. A good knowledge
about the nature of these basis functions would be useful to understand the physics of
Hanle-Zeeman scattering. We will now explore the magnetic RF in some detail. In § 7.4.1
we discuss the dependence of RF on the scattering angle and incoming frequency for a
fixed value of the field strength. The field strength dependence is considered in § 7.4.2.

7.4.1 Dependence of the magnetic redistribution functions on scattering angle

and incoming frequency

We will here consider the magnetic RF of Hummer’s type II and III for three scattering
angles © = 30°, 90°, and 150° and incoming frequencies 2’ = 0, 2, and 4. The damping
parameter is chosen to be a = 1073, and the field strength is chosen such that vg =
gv,/Avp = 1. We introduce the notion of ‘frequency—coherence’ (z ~ z') and ‘magnetic—

coherence’ (z ~ vg), in order to interpret the results.

RF of type II

The magnetic RF of Hummer’s type II are shown in Fig. 7.2. The solid lines refer to
incoming frequency z’ = 0, the dotted lines to 2’ = 2 and the dashed lines to ' = 4. All
the thin lines correspond to magnetic quantum number ¢ = —1, medium lines to ¢ = 0, and
thick lines to ¢ = +1. The ¢ = 0 case represents the non-magnetic scalar RF of Hummer
(1962).

The function Rf; y(z, 2', ©; B) is shown in Fig. 7.2a. For forward (© = 0) scattering,
the function R}ILH exhibits exact frequency—coherence (z = z') at all the absorption fre-

quencies ', while for backward scattering (© = 7), the function peaks at x = —z' (see
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Figure 7.2: The magnetic RF of Hummer’s type II. (a) R i and (b) R p for different
values of the scattering angle. The redistribution function R?LF can take negative values.
The different line types are labeled with a pair of parameters (g, z'). In all the three panels
of (a), the thin dotted (—1,2) and thick dashed (+1,4) lines are multiplied by 2 x 10?,
the thin dashed (—1,4) and medium dashed (0, 4) lines are multiplied by 2 x 10%, and the
medium dotted (0,2) line by 20, to be able to present them in the same panel. In (b) all
the dashed lines of the © = 30° case are multiplied by a factor of 2, and of the © = 150°
case by 5, in order to show the details clearly. The thin dotted line (—1,2) and medium
dotted line (0, 2) of the ® = 150° case in (b) are multiplied by 2. See § 7.4.1 for discussions.
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e.g. Henyey 1940, Cannon 1985, Wallace & Yelle 1989). This strong coherence is retained
for small scattering angles. This can be clearly seen for © = 30°. For |z — qug| < 3, the
peak position of the RF varies approximately as Zmax = 2’ cos © + 2qup sin® ©/2 (see also
Wallace & Yelle 1989, for the non-magnetic R%,H case). In the non-magnetic R?LH case,
it is well known that for arbitrary scattering angles the frequency—coherence behaves in a
very unique way, namely with the appearance of a double peak in the transition frequencies
(2 < 2’ < 4) — one coherent peak at x ~ z', with the frequency position of the second
non-coherent peak depending strongly on scattering angle © (see Fig. 7.4 of Cannon 1985).
This behavior is also preserved by the RF for ¢ = +1. For example, (¢,z') = (—1,2) (thin
solid line) and (+1,4) (thick dashed line) show this double peak profile for both © = 90°
and 150° scattering angles. Also the RF becomes narrow as the scattering angle changes
from 90° to 150° or 30°, which implies a lack of diffusion in frequency space in each scat-
tering event. We note that for the © = 90° case the (+1,0) (thick solid line) and (+1, 2)
(thick dotted line) coincide. Broad coherent emission profiles are observed about = ~ ' for
all the components ¢ = 0, £1, when (a) the incoming frequencies (z') are large (z' > 3),
and (b) the scattering angles are large (© > 90°) (see the thin, medium, and thick dashed
lines for © = 90° and 150° scattering). In addition the ¢ = +1 case, as already described,
produces double peaks. The ¢ = +1 case would show broad peaks about z ~ z', without
a non-coherent component, if we chose still larger values for the incoming frequency z’'.

In Fig. 7.2b we show the function R n(z, 2', ©; B). For (g,2") = (0,0) (medium solid
line), regardless of the scattering angle, R?LF exhibits an emission component similar to the
anti-symmetric Faraday-Voigt function. The magnitude of this function increases as we go
from © = 30° to 150°. For © = 30° and 90° scattering, the magnetic components (—1,0)
(thin solid lines) are entirely positive and (41, 0) (thick solid lines) entirely negative. The
magnetic components (+1,0) are highly coherent and nearly symmetric, peaking about
x = 0 in the ©® = 30° case. For © = 90° scattering they peak slightly away from line
center and are much broader compared to the corresponding small angle scattering case.
In the © = 30° case all the components ¢ = 0, =1, show highly coherent symmetric peaks
at x = 2’ for both the incoming frequencies =’ = 2 and 4. Corresponding cases for © = 90°
show broad and slightly asymmetric peaks about = ~ z'. The profiles corresponding to
© = 150° and 2’ = 0,2 show a complex behavior for scattering via all the magnetic
substates (¢ = 0,£1). All the three magnetic components for ' = 4 (dashed lines) show
broad emission profiles peaking at about z ~ 4. We further note that as the scattering
angle decreases, RfLF become increasingly coherent, except for the (0,0) case, where it is
non-coherent.
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In type IT magnetic RF two competing processes are at work. They are, the frequency—
coherent effect (controlled by the Gaussian of Eqgs. (7.21) and (7.22)), and the magnetic—
coherent effect for Rf; i (controlled by the Voigt function of Eq. (7.21)), and sign reversal
property for Rfl, ¢ (controlled by Faraday-Voigt function of Eq. (7.22)). For small scattering
angles (© < 30°), it is the frequency—coherent effect that dominates (see Fig. 7.2 — top
two panels). As the scattering angle increases, which of these two effects dominate is
determined by values of z’, ¢ and vp (see Fig. 7.2; see also Fig. 7.7), taken together.

RF of type 1II

The magnetic redistribution functions of Hummer’s type III are shown in Figs. 7.3 - 7.6, for
the same set of parameters as in Fig. 7.2. Unlike the case of the magnetic RF of Hummer’s
type II, the type III functions depend on the pair of magnetic quantum numbers (g, ¢)
simultaneously. They in fact refer to the interference between the upper level magnetic
sub-states. Thus there are 9 combinations of (g, ¢’), which are distinguished as different
line types of different line thickness. The thin lines refer to the (g, ¢') pairs as follows:
solid (—1, —1); dotted (0, —1); dashed (+1,—1). Medium thickness lines refer as follows:
solid (—1,0); dotted (0,0); dashed (41,0). Thick lines refer as follows: solid (—1,+1);
dotted (0,+1); dashed (41, +1). Note that the HH type profiles with (g, ¢') = (0,0) are

nothing but the well known Hummer’s non-magnetic RF of type IIIL

Basis Functions of type HH

In Fig. 7.3 we show R?Iqll, au(z, ', ©; B) as a function of outgoing frequency z. All profiles
shown for the 2’ = 4 case (see Fig. 7.3c) are 3 orders of magnitude smaller than those shown
in Fig. 7.3a. R%qll, un 1s always positive. Unlike the RF of Hummer’s type II, which shows
perfect coherence for © = 0°, the RF of Hummer’s type III is completely non-coherent,
CRD like (for © = 90°) and does not show coherence even for © = 0°. For the © = 90° case,
the set of thin (¢, —1) and the set of thick (g,+1) line profiles are shifted symmetrically
about x = 0 and peak at the shifted frequencies z = £1. The (g,0) components (the set
of medium lines) are unshifted and peak at z = 0. This behavior can be easily understood
from Eq. (7.23), which for © = 90° reduces to

4 1
RIE au(, o', 90° B) = — H(v}, a)H vy, a), (7.47

i.e., it behaves like CRD (complete non-coherence). For ' = 0 in particular the functional
values of H(v',; = —1,a) and H(v' ; = +1, a) are the same, because the Voigt function is a

symmetric function. As a result the function R%qll, un (2, &', 90°; B) = const x H(vy,a) for
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Figure 7.3: Magnetic RF of Hummer’s type III. The basis function of type HH is shown.
The model parameters are the same as in Fig. 7.2. In (a), in the panel for © = 90°, all
the dashed lines are multiplied by a factor of 2, since they would otherwise overlap exactly
on the solid lines. The different line types are labeled with (¢, ¢’) as described in the text.
The set of panels exhibit the angular dependence for a given value of z’. The pair (g, ¢q’)
describes either self-interaction (¢ = ¢') or m-state interference (¢ # ¢'). In all three panels

of (b) the solid lines are multiplied by 10® and the dotted lines by 10. See § 7.4.1 for
discussions.
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g = +1 and 2’ = 0. This implies that all solid lines (—1, ¢') coincide with the corresponding
dashed lines (+1, ¢'). However, to make all the dashed lines visible in Fig. 7.3a, they have
been multiplied by 2. The triplet-like structure centered around x = 0 is conserved by the
dotted lines (0, ¢') for ' = 0 and all the scattering angles (see Fig. 7.3a). A similar behavior
is exhibited by the set of lines for (41, ¢') (dashed lines) and (—1, ¢’) (solid lines) magnetic
substates also, except that they are centered around frequencies x = £1 for © = 30° and
150° scattering. For the ' = 0 case (see Fig. 7.3a), all the magnetic components of HH
type RF show narrow profiles for © = 30° and 150° scattering as compared with the 90°
scattering case.

From Eqgs. (7.23) - (7.26) one can easily verify that the following reflection symmetry
about x = 0 is obeyed by the RF':

R?I(III,XH(—.’L‘, 7, m—0; B) = RfI}’q)’(H(x, 7', ©; B), (7.48)
Rfﬁ’,XF(—x, 7, m—0; B) = —Rfiq)’(F(x, 7', ©; B), (7.49)

where the symbol X stands for H or F. The above expressions are generalizations of the
original non-magnetic symmetry relations described in Cannon (1985) to cover the mag-
netic scattering case. This reflection symmetry represents a combined symmetry involving
both frequencies and angles. In Fig. 7.3 the panels for © = 30° and 150° clearly show this
reflection symmetry for ' =0, 2, and 4 and X = H in Eq. (7.48).

Basis Functions of types HF, FH, and FF

Figure 7.4 shows RfIqI" ar(z, @', ©; B) as a function of scattering angle © (= 30°, 90°, and
150°) and scattered frequency z, for three incoming frequencies (2’ = 0, 2, and 4). Rflqll’ P
obviously assumes both positive and negative values. The reflection symmetry of R?Iqll’ HF
given in Eq. (7.49) with X = H can be clearly seen in Fig. 7.4 for © = 30° and 150°.
All the magnetic components for the © = 90° scattering case show a similar behavior for
' =0, 2, and 4: all thin lines (¢, —1) have a positive peak around z = 0 (and a negative
peak around z = —2); all medium lines (g, 0) peak at |z| = 1; all thick lines (¢, +1) exhibit
a positive peak at z = 2 (and a negative peak at x = 0). Such a behavior can be understood
from Eq. (7.24), which for © = 90° reduces to

’ 1
RquI HF(mv xla 900; B) = - H(Uclp a’)F(UQ'a CL). (750)
’ ™

From Eq. (7.50) we note that R}II‘II’, ar(x, &', 90°; B) has a zero crossing at z = ¢'vp, regard-
less of the value of ¢ (see Fig. 7.4). In Fig. 7.4a, the dashed lines for © = 90° have been
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Figure 7.4: Magnetic RF of Hummer’s type III. The basis function of type HF (absorption

and dispersion) is shown. This function can have negative values and exhibit the typical

behavior of the F' function (zero crossing at certain x values, with very slowly decreasing

wings for large x). The model parameters are the same as in Fig. 7.3. In (b) the solid lines
in all three panels are multiplied by 103, while all the dotted lines for the © = 30° and
150° cases are multiplied by 10, and for the © = 90° case by 15. See § 7.4.1 for discussions.
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multiplied by 2, as they would otherwise superimpose on the corresponding solid lines (see
the discussion following Eq. (7.47)). The magnetic components (+1,¢’) (the dashed lines)
for ' = 4 and © = 30° (150°) show double negative (positive) peaks.

The function R?Iqll, ru(z, ', ©; B) is shown in Fig. 7.5 for the same set of parameters
as in Fig. 7.4. Like Rflql" ur, the function R%ql’, ry takes both positive and negative values.
For © = 90° the nature of all the components of RF can be understood in terms of the
Eq. (7.25), which for this particular case simplifies to

R (e, 2!, 90°; B) = %F(v(’], 0)H vy, a). (7.51)
From Eq. (7.51) we note that Rfﬁ:FH(:r, z', 90°; B) vanishes when 2’ = qug, since then
F(vy; = 0,a) is zero. Thus all dotted lines (0, ¢') are zero (see Fig. 7.5a). At line center ' =
0, the function F'(v'; = 1,a) assumes a positive fixed value, while F/(v,; = —1,a) takes a
negative fixed value. Therefore all the solid lines (—1,¢') in Fig. 7.5a are modified Voigt
functions H(vy,a), while the dashed lines (+1,¢') are modified inverted Voigt functions
—H (vy,a). The peak positions of both the solid (—1,¢’) and dashed (+1,¢’) lines are
given by © = ¢, since we have chosen vg = 1. The behavior of R?{II’,FH(IIJ, z', 90°; B)
for ' = 2, and 4 can also be easily explained in terms of Eq. (7.51). We note that in
Figs. 7.5b and 7.5¢, the function R;II'II” ru (@, ', 90°; B) is entirely positive, since F'(2—gq, a)
and F(4—gq, a) are positive for all q. For 2’ = —2 or 2’ = —4, F(—2—gq,a) and F(—4—gq, a)
are negative, which leads to inverted profiles compared to the ones shown in Figs. 7.5b and
7.5c for the © = 90° case. The reflection symmetry of R%ql’, ru as given in Eq. (7.48) with
X = F can be seen in Fig. 7.5 for © = 30° and 150°. In Fig. 7.5c for the wing frequency
x' = 4, the © = 30° and 150° redistribution profiles show behavior similar to that exhibited
by © = 90°, with a very slight difference in magnitude (angular isotropy of the scattering
probability).

The function Rf yp.(z, 2/, ©; B) given in Eq. (7.26) is plotted in Fig. 7.6. Like the
HF and FH type redistribution, Rfﬁ: rp also has both positive and negative values. To
understand the © = 90° case, we can write Eq. (7.26) for this particular case as

, 1
RquI FF(x: .’L”, 900; B) = F(U;aa)F(UQ’,a)' (752)

’ 0
From Eq. (7.52) we note that R;’I‘II’, rp(z, 2', 90°; B) vanishes when 2’ = qup (see Fig. 7.6a),
like the FH type RF, and has a zero crossing at x = ¢'vg (see Fig. 7.6), like the HF type
RF. In Fig. 7.6a for 90° scattering the dotted lines (0, ¢’) are zero, the solid lines (—1,¢’)
are modified Faraday-Voigt functions F'(vy, a), while the dashed lines (+1, ¢') are modified
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Figure 7.5: Magnetic RF of Hummer’s type III. The basis function of type FH is shown.
Note that the nature of the FH function is very different from that of HF (displayed in
Fig. 7.4). The function is rather confined to the line core, in contrast to the HF type
function, which exhibits very broad wings. The model parameters are the same as in
Fig. 7.3. See § 7.4.1 for discussions.
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Figure 7.6: Magnetic RF of Hummer’s type III. The basis function of type FF is shown.
Note the very slow decrease of the function (high level of non-coherence) even in comparison
with the HF or FH type functions. The model parameters are the same as in Fig. 7.3. See
§ 7.4.1 for details.
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inverted Faraday-Voigt functions —F'(vy, a), for the same reason as noted below Eq. (7.51).
The behavior of RfIqI’, rp(2, 2/, 90°; B) for 2’ = 2, and 4 (see Figs. 7.6b and 7.6¢) can also
be easily understood through Eq. (7.52). The reflection symmetry of R%qll’ Fp aS given in
Eq. (7.49) with X = F is clearly seen in Fig. 7.6 for the scattering angles © = 30° and 150°.
Again, when ' = 4 and © = 30° or 150°, R?Iqll, pr exhibits a similar behavior as R?qu, PH

(nearly isotropic angular scattering).

The HF redistribution function is not always similar to the FH type, except for 90°
scattering, and in particular, when ¢ = ¢' (self-interference of m-states). The FH type
redistribution is similar to FF for © = 90° scattering, except for the shape of the re-
distribution function, which for FH resembles a modified Voigt and for FF a modified
Faraday-Voigt function. Same arguments hold good for mutual comparison of HH and HF

type functions.

7.4.2 Dependence of the magnetic redistribution functions on field strength

To study the dependence of the magnetic RF on vg (field strength), we chose a scattering
geometry that produces maximum linear polarization, namely 90° scattering, assuming a
photon with incoming frequency ' = 3. The damping parameter is chosen as a = 1073.
The field strength parameter v is varied as follows: v = 0.0008 (solid line), 0.004 (dotted
line), 0.02 (dashed line), 0.1 (dash-dotted line), 0.5 (dash-triple-dotted line), 2.5 (long-
dashed line), and 5 (thick dotted line). This range for vp covers the weakest fields through
intermediate to quite strong fields, with reference to the Doppler width of an optical line
(see Stenflo 1998).

Type II RF

Figure 7.7 shows the R}, ; and Ry,  functions of Egs. (7.21) and (7.22). We first discuss
Rf| y (see Fig. 7.7a). The ¢ = 0 case is non-magnetic and hence all the lines merge, showing
a typical double peaked behavior as discussed with regard to Fig.7.2a. This double peaked
behavior is retained for weak magnetic fields (vp < 0.1) for both ¢ = +1. The peak
amplitudes at (¢, z)=(—1, 0/3) diminish as the field strength increases. For vg > 0.1, the
g = —1 profiles exhibit a single peak at © ~ x’ ~ 3, which is typical non-magnetic coherence
in the case of Rf; ;. In contrast the ¢ = +1 profiles exhibit magnetic-coherence (v =~
vp), and the magnitude of RfLH increases with increasing vpg, since magnetic—coherence
dominates as compared with the ¢ = —1 case, for which frequency—coherence dominates.

We have found that for small angles (© < 30°) the highly frequency—coherent behavior of
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Figure 7.7: Effect of field strength on the Hanle-Zeeman redistribution. The magnetic
RF of Hummer’s type IT is shown. (a) R (7, 2/, ©; B) and (b) Rf; p(z, 7', ©; B) for
different values of the field strength, parameterized through vg. The model parameters
and line types are given in § 7.4.2. We note that all lines for ¢ = —1,0 of Bf; ; (in (a)) are
multiplied by a factor of 10°. For ¢ = +1, the solid to the dash-dotted lines (four of the
lines) are multiplied by 10°, the dash-triple dotted line by 10%, the long-dashed line by 20,
and the thick dotted line by 102, to be able to have them displayed in the same panel. See
§ 7.4.2 for discussions.
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Rf; y is preserved, even if the field strength is as high as vp = 5. For large angle scattering
(© > 30°), the peak positions of R}, ; depend on z', ¢ and vp as noted in § 7.4.1. For
example, when ' = 6 and vg = 2.5, it is the frequency—coherence that dominates and

magnetic—coherent peak appears just as a bump (illustration not shown for brevity).

Figure 7.7b shows RfLF. For the ¢ = 0 case we have a single positive peak at z ~ z' ~ 3,
as in this case the (non-magnetic) frequency—coherent part (the Gaussian) completely
dominates and erases the negative part of Faraday-Voigt function (see Eq. (7.22)). This
dominance of frequency—coherence over the dispersive effects remains valid for ¢ = —1, but
the peak amplitude decreases with increasing vg. For ¢ = +1 this behavior is observed
only for weak fields (vp < 0.5). For fields with vg = 2.5 the profile shows both positive and
negative peaks, as dispersive effects slowly start dominating over the frequency—coherence.
For vg = 5 the dispersive effects completely dominate over frequency—coherence effects,
resulting in an entirely negative peak at r ~ 2z’ ~ 3. For 2’ = 3, the ©®© = 30° and
© = 150° cases (not illustrated here) largely resemble the © = 90° case, differing only in
the magnitude of R p.

RF of type III, HH

In Fig. 7.8 we show RquII,HH(iEa ¢’ = 3,0 = 90° B) for the same values of the field
strength parameter as in Fig. 7.7. The behavior of RI"I"II au(z, 3, 90°; B) can be easily un-
derstood through Eq. (7.47). For the case (¢, ¢')=(g, 0) the function Rfﬁy (@, 3,90°; B) =
(1/m)H (3 — qup,a)H (z,a). Thus the shape of R%OL qp is given by H(z,a), irrespective of
the value of vg. The effect of vp is only to scale H(x,a) up or down, as can be seen from
Fig. 7.8b, where the peak amplitude decreases with increasing vg for ¢ = —1, while for
g = +1 the peak amplitude increases with vp, reaching a maximum for vg = 2.5 (since
then H(3—qup, a) becomes H(0.5,a)), and then decreases for vg > 2.5. In other words, for
the (¢, ¢ )=(+1,0) case the largest peak amplitude corresponds to the case when z’' = vp.

For the case (—1, ¢') (the top panels of Figs. 7.8a-c) the function RI_Hl,q}’IH(x, 3,90°% B) =
(1/m)H(34+vp,a)H(x—q'vg,a). Thus RI_HI,"}’IH peaks at x = ¢'vg. However, as vp increases,
the peak amplitude decreases, since the scaling factor H(3 + vp, a) decreases with vg. In
the case of (0,¢') (the middle panels of Figs. 7.8a-c) the function R%qll, au(®, 3,90° B) =
(1/m)H(3,a)H(x—q'vp, a). Again the peak position is governed by H(z —q'vg, a), but now
the scaling factor is independent of vg. Therefore the peak amplitude of the ¢ = —1 and
¢ = +1 lines and the different vp lines are identical. In the case of (4+1,¢') (the bottom
panels of Figs. 7.8a-c) the function Rf;iq;m(x, 3,90° B) = (1/m)H(3—vp,a)H(z—q'vp,a).
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Figure 7.8: Effect of field strength on the magnetic redistribution function Rfﬁ: - The
different line types and model parameters are the same as in Fig. 7.7. All the lines in the
two top panels of Figs. 7.8a-c are multiplied by 10*. In the bottom panels, the solid to the
dash-dotted lines (four lines) are multiplied by 2 x 103, the dash-triple-dotted line by 400,
and the thick dotted line by 20. See § 7.4.2 for details.
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The shape and peak position are governed by H(z — q'vg,a), while the scaling factor

increases until vg = 3 and then decreases for vg > 3.

For scattering angles © = 30° and © = 150° (not illustrated here), RquI’,HH shows
basically the similar type of behavior as for © = 90°, except that the shape of R?IOL H 18
rather similar to (—1,0) (medium solid line in Fig. 7.3b), and the peak positions and shapes
of the other components are now determined not only by vg but also by the scattering
angle ©.

RF of type III, HF

The function R?Iqll, ur (2, ', 90°; B) is given by Eq. (7.50). Clearly the dependence of RfIqII, HE
on vg will be the same as that of Rflqll, i, €xcept that the shape of Rflqll, gr 1s now determined
by the dispersion profile F(z — q'vg,a) instead of the absorption profile H(z — ¢'vp,a).

Therefore we do not present these profiles here.
RF of type III, FF

The redistribution functions Rflqll, rp(z, o =3, © = 90° B) for the same range of the field
strength parameter vg as in Figs. 7.7 and 7.8 are shown in Fig. 7.9. The form of the
FF type RF for © = 90° is given in Eq. (7.52). Clearly the shape and peak position are
determined by the function F(x — ¢'vg,a). For ¢’ = 0 it follows from Eq. (7.52) that
RfIOLFF(m, 3,90° B) = (1/7)F(3 — qup,a)F(x,a). Hence the shape is basically governed
by F(z,a), which is scaled up or down by F(3 — qug,a). For ¢ = —1 the scaling factor
F(3 4+ vp,a) is positive and decreases as vp increases. Therefore the peak amplitude of
Rﬁll’OFF decreases with increasing vp. In contrast, for ¢ = 41, the scaling factor F'(3—vg, a)
is positive as long as vg < 3 and becomes negative for vg > 3. Thus, as clearly shown
in Fig. 7.9, Ry}{% reverses sign for vg = 5. Further, since F(3 — vp,a) increases with vp
until vp < 3 and then starts decreasing for vg > 3, the function Rf}ll’OFF also exhibits the

same behavior.

The zero crossing of RfIqI’,FF(:U, 3,90° B) is at x = ¢'vp, as noted below Eq. (7.52).
When (q,¢)=(—1,q") (the top panels of Figs. 7.9a-c) we have RI}II,QI;F(:J:, 3,90° B) =
(1/7)F (3 + vg,a)F(z — q'vg,a). As already noted, F(3 + vg, a) decreases with v and
hence RI}II,QI;F also decreases with vg. For (0, ¢') the scaling factor is independent of vg (as it
equals F'(3,a)). Thus all the lines in the middle panels of Figs. 7.9a-c have the same value
for their peak amplitude. For (+1,¢') the same behavior as noted for (+1,0) is observed
(see bottom panels of Figs. 7.9a-c).
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Figure 7.9: Effect of field strength on the magnetic redistribution function R?Iqll, rp- The
different line types and model parameters are the same as in Fig. 7.7. In all the panels the
zero crossing occurs at © = ¢'vg. See § 7.4.2 for discussions.
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The above discussion on the dependence of R?Iqll, rr ON vp is also qualitatively valid for

scattering angles other than © = 90°.
RF of type III, FH

The dependence of R}II‘II’,FH on field strength for 90° scattering is basically the same as
that discussed for R?Iqll, rp»> the only difference being the shape and peak position of Rfﬁ: FHY
which are determined by H(x — ¢'vg,a) (see Eq. (7.51)). Hence we do not illustrate these

functions here.

7.5 Extension to the general quantum mechanical scattering case

Our treatment so far has been limited to the special case of a J =0 — 1 — 0 scattering
transition, since this case can be dealt with in terms of classical time-dependent oscillator
theory and is sufficiently simple to allow a comprehensive and explicit analytical treat-
ment of the full and general polarized redistribution problem in the presence of arbitrary
magnetic fields. With this foundation we can now address the issue of how to extend our
polarized PRD theory for the restricted case of triplet to more general case of atomic and
molecular transitions involving arbitrary quantum numbers. Here we indicate how such an
extension is possible and conceptually already understood, although it is outside the scope

of this chapter to present this extension in explicit form.

The extension proceeds in a phenomenological way, on the direct analogy between the
Kramers-Heisenberg scattering amplitude in quantum mechanics and the Jones matrix for
classical scattering. The Jones scattering matrix for the classical case can be written (see
Eq. (8.116) of Stenflo 1994) as

Wap ~ Z _ged* el (7.53)
q

while the Kramers-Heisenberg version for general combinations of quantum numbers (see
Eq. (1) in Stenflo 1998) is

3 (fI7 - ealb) (BI7 - €5]a) (7.54)

We -
g Whf —w —1/2

b
where 7 is the position operator (which is proportional to the dipole moment operator),
€, are the linear unit polarization vectors for the outgoing and incoming radiation, re-
spectively, a represents the set of quantum numbers (including the magnetic substates) for

the initial state, b the corresponding set for the intermediate state, and f for the final state.
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wps is the resonant frequency for a transition between the magnetic substates with upper
magnetic quantum number m;, and lower magnetic quantum number my. Equation (7.54)

may be rewritten as
Wap ~ Z taty Py €2l (7.55)

Here

qg=my—my; ¢ =mg—my, (7.56)

and ¢, and % are, respectively, the two transition amplitudes (including sign) for the
transitions between the intermediate state b and the initial and final states a and f, given
by the matrix elements in Eq. (7.54). ®_, is the normalized profile function that has the
same form as the one in Eq. (7.54) with wys given by (wo — ggwy) in the classical case.
In the quantum case —q gwy, is replaced by (gymy — ggmy)wy, where wy, is the Larmor

frequency and g s are the Landé factors of the intermediate and final states.

When comparing the classical Eq. (7.53) with the quantum Eq. (7.55) we see that they
are the same, with two differences: (1) The transition amplitudes ¢ between the magnetic
substates involved in the scattering transition appear as weights. They are not needed in
the classical or J = 0 — 1 — 0 case, since in this case the three amplitudes involved are

identical. (2) In one of the geometric € factors a ¢’ appears instead of a q.

These two differences between the classical and quantum case however do not influence
the frequency redistribution for an individual m state scattering transition. The product
of the transition amplitudes provides a global, frequency-independent scaling factor for the
strength of the scattering transition. The frequency-independent € factors represent pure
geometric projections, and also have nothing to do with the frequency redistribution prob-
lem. All the frequency redistribution physics is contained in the only frequency dependent
factor, namely ®_,, the profile function, which is the same in the classical and quantum

case.

Now it needs to be remembered that the profile function given in the usual version
(Eq. (7.54)) of the Kramers-Heisenberg dispersion formula, refers to the atomic frame
without Doppler motions or collisions. This is the frequency—coherent case. The whole
problem of frequency redistribution arises exclusively due to the presence of collisions in
the atomic frame, and in addition due to Doppler shifts in the observer’s frame, and
to the circumstance that the Doppler and collisional redistributions get coupled in an
intricate way. Once we have specified the collisional redistribution in the atomic frame, the

transformation to the observer’s frame, while being mathematically complicated, merely
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involves the introduction of Doppler redistribution, which has nothing to do with the
question of whether the atomic-frame redistribution has been treated with quantum or

classical physics.

The whole question of redistribution therefore boils down to the question on how to
treat the collisional redistribution in the general quantum mechanical case. The way that
we did it in the classical case was to solve the time-dependent equation for an oscillating
electron. When the oscillator equation was decomposed in complex spherical vectors, it
decoupled into independent component equations, one for each ¢. The solution could then
be expressed with two terms, one for the static and one for the transitory solution in
the atomic frame. The frequency—coherent part Rj; of the redistribution has its source in
the stationary solution, while the complete redistribution part Ry has its source in the

transitory solution.

In the classical collision theory of Stenflo (1994) and BS99 the effect of elastic collisions
is to destroy the phase coherence by truncating the damped oscillation of the transitory
solution (the stationary solution is not affected by the collisions, since it is driven by the
incident electromagnetic field). This leads to both collisional broadening and to collisional

depolarization (D)), with a depolarization rate that is half the broadening rate (7).

An immediate and natural phenomenological extension of the classical collision theory
to general quantum transitions is to treat each radiative emission transition between mag-
netic substates m; and my, which represents a given value of ¢ in the quantum Eq. (7.55),
as a damped oscillation that gets truncated by collisions. The subsequent Fourier trans-
formation of this truncated oscillation then leads to the broadening and depolarization in
exactly the same way as in the classical case. Therefore, when considering the scattering
transitions for each individual combination of m states separately, the classical frequency

redistribution theory can be carried over to be used directly.

In this way we have fully defined how the present theory can be generalized to any
quantum scattering transitions. Although the classical and quantum cases behave the
same for transitions between the individual m states, the two cases will differ considerably
when the individual m state transitions are added together due to the different transi-
tion strengths and due to the different m, — m; combinations in the geometric factors.
These differences will be enhanced and convolved when the bilinear products between the
Jones matrix elements are formed (see Eq. (8) of Stenflo 1998), which contain the various

interference terms that describe the Hanle effect.
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A further extension can be done to the case when the ground state acquires atomic
polarization due to optical pumping. This is done by attaching the weight py,, 1, to the
bilinear products wa g wy, 5 before summing over all the initial m states m, and my. Here
Pmqm,, 18 a density matrix element of the initial state. When m, equals m,, then p de-
scribes the m state population, when they are different it describes the m state coherences.

p has to be found by solving the statistical equilibrium problem.

Although a full generalization of our polarized redistribution theory for arbitrary mag-
netic fields is thus rather straightforward, it does not easily lend itself to a comprehen-
sive presentation in such an explicit analytical form, as we could do here for the special
J =0 — 1 — 0 case. The various magnetic redistribution basis functions with their
intrinsic symmetries that we have described for the special case, continue to be ingredi-
ents in any general quantum redistribution theory, although these basis functions will be
combined and weighted differently from case to case, depending on the particular com-
bination of quantum numbers. Nevertheless, the present work provides insight into the

mathematical structure of the general case while elucidating the underlying physics.

7.6 Concluding remarks

The discovery of the wealth of structures in the Second Solar Spectrum has created an
urgent need for new theoretical tools, which were not available before, since there had not
been a concrete demand for them. Still the theory is severely lagging behind the observa-
tional developments. The full Second Solar Spectrum has been mapped with high spectral
resolution and polarimetric sensitivity from 3100 — 7000 A. The spatial and temporal vari-
ations of the scattering polarization in selected portions of the Second Solar Spectrum are
being explored in various magnetic regions on the Sun, and narrow-band filter systems
are being introduced to map the Hanle-Zeeman effect in different spectral lines (Feller et
al. 2006). Many of these lines are strong chromospheric lines with both Doppler core and
damping wings, and they offer great promise for diagnosing the magnetic field in the solar
chromosphere via the Hanle effect. This promise can only be fulfilled if we have the right
tools for a quantitative analysis of the observations. For chromospheric lines these tools
need to account for partial frequency redistribution (PRD) of polarized radiation in the
presence of magnetic fields of arbitrary strength and orientation. In the present chapter
we have developed this theory in the form of the Hanle-Zeeman redistribution matrix, and

we have explored its mathematical structure in detail.

Our PRD theory is based on a classical approach, via the solution of the time-dependent
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classical oscillator equation. This might seem as a limited approach, and that a correct
treatment should instead be in terms of quantum physics. However, as we will show
explicitly in Chapter 8, our classical approach produces a Hanle-Zeeman redistribution
matrix that is identical to that obtained with a perturbative quantum field theory for
aJ =0 — 1 — 0 scattering transition. All the mathematical functions that we have
described in the present chapter, including all their intricate relations and symmetries,
are obtained exactly via QED. This equivalence is far from obvious and instead rather
miraculous, hinting at a deeper meaning, since the two formalisms are vastly different. Here
we have used the classical approach, since it is (in our opinion) much more transparent

and lends itself to a more intuitive understanding of the physics involved.

Several chromospheric spectral lines are of the type J = 0 — 1 — 0, that we have
treated here. Examples are the well-studied Ca1 4227 A line and the Cr1 3594 A line,
which is found (for still unknown reasons) to be the most polarizing line in the whole
spectrum (from 3100 — 7000 A) (Stenflo 2006). Most other lines have different quantum
number structures, which means that the present PRD theory needs to be extended to
cover these other cases. In the preceding section we have outlined how a straightforward
extension can be done, and how the mathematical framework of the present chapter can
be used as an ingredient of such a generalized theory. Since the theory can be discussed
in a comprehensive way for the special J =0 — 1 — 0 case, we have limited our explicit

treatment to this particular case, while showing how it may be generalized.

While we now have a well formulated and understood theory for the general Hanle-
Zeeman redistribution matrix, its practical implementation within a polarized radiative-
transfer framework will be a major challenge, in particular the development of numerical
computer codes that can solve the polarized transfer problem with PRD for realistic mag-

netized atmospheres. The present chapter lays a foundation for progress toward this goal.
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Chapter 8

Equivalence of classical and quantum redistri-

bution matrix!

8.1 Introduction

Information about magnetic fields on the Sun and stars can be obtained through spectro-
polarimetric observations interpreted with polarized radiative transfer theory. A key com-
ponent of this theory is the proper treatment of the scattering process, which leads to a
complex coupling described through redistribution of the radiation in frequency, angle, and
polarization. A general formulation of this scattering theory is not yet available, although
it is urgently needed for all magnetic field diagnostics that make use of spectral lines for
which scattering plays a role. In this part II of the thesis we aim at laying a foundation for
this theory, which is centered around the Hanle-Zeeman redistribution matrix that is valid
for the general case of partial frequency redistribution (PRD) in the presence of magnetic
fields of arbitrary strength and direction. The term “Hanle-Zeeman” indicates that all field
strengths are covered, from the weak (in the “Hanle regime”) to intermediate and strong

(“Zeeman regime”) fields.

A quantum electrodynamic (QED) theory of Hanle-Zeeman redistribution matrices is
developed in Bommier (1997a, 1997b, hereafter VB97a and VB97b respectively). The for-
mulation presented in VB97a and VB97b includes the effects of PRD in line scattering for a
two-level atom. In VB97b the laboratory frame (LF) expressions for the angle-dependent,
as well as angle-averaged PRD matrices are already presented (see also Bommier 1999,
2003). The theory begins with a perturbative development for the atom-radiation interac-

!This chapter is based on the publication: Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007b,
AplJ, 670, 1485-1503
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tion. The PRD effects (introduced through the well known Ry and Ry LF redistribution
functions of Hummer) appear in the fourth order. The perturbation development is then
extended to infinite orders, leading to a series which when summed, converges to a result
that agrees with the classical non-perturbative theory (Bommier & Stenflo 1999). The
perturbation development of the atom-radiation interaction can be restricted to the sec-
ond order in the case of complete frequency redistribution (CRD). Landi Degl’Innocenti
& co-workers (see the book by Landi Degl’Innocenti & Landolfi 2004, and references cited
therein) have developed such a CRD theory. Recently a quantum mechanical approach
to derive the Hanle-Zeeman phase matrix only for ‘frequency coherent scattering in the
LF’, in the presence of a uniform magnetic field and quadrupolar electric fields, has been
presented in Yee Yee Oo et al. (2007, see also Yee Yee Oo 2004).

A classical theory of PRD in line scattering for the Hanle-Zeeman effect has been
formulated by Bommier & Stenflo (1999, hereafter BS99). This non-perturbative theory,
which is based on a time-dependent classical oscillator, describes the scattering process in
a transparent way. The classical theory for Hanle-Zeeman scattering developed by Stenflo
(1998) considered only coherent scattering in the LF. In BS99 the redistribution matrices
were derived in the atomic rest frame. The corresponding LF redistribution matrices have
been derived in Chapter 7. The historical developments and the modern perspectives on
the theory of PRD in light scattering on atoms, in the presence of magnetic fields, have

also been presented in Chapter 7. Therefore we do not repeat them here.

In the present chapter we establish the equivalence between the classical and QED
redistribution matrices for the Zeeman triplet case. This equivalence is far from obvious,
since the formalisms of the two theories are vastly different.

We start from the atomic frame expressions given in VB97b and derive the correspond-
ing LF expressions in § 8.2. The equivalence between the classical and QED redistribution
matrices for the triplet case is established in § 8.3. In § 8.4 we numerically validate both
the classical (see Chapter 7) and the QED expressions derived in § 8.2, by comparing them
with the redistribution scattering diagrams (which we call hereafter PRD diagrams) pre-
sented in VB97b. In § 8.5 we present Stokes I and the fractional polarization Q/I, U/I,
and V/I profiles for a singly scattered beam, which is incident on an atom immersed in
a magnetic field of arbitrary strength. The dependence of polarization on field strength,
and the influence of elastic collisions on the frequency redistribution are examined. The

chapter ends with a brief summary with concluding remarks in § 8.6.
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8.2 Quantum electrodynamic redistribution matrix in the lab

frame

In order to establish the equivalence between classical and QED redistribution theories,
we give an explicit analytic form of the LF QED redistribution matrices in terms of the
magnetic redistribution functions introduced in Chapter 7. We start from Egs. (49) and
(52) of VB97b for R™ and R type matrices, respectively. For the simpler case of a triplet
(J =0— J" =1), with an infinitely sharp lower level, the total redistribution matrix can

be written as
RZ](ga n; 51’ ,n’l; B) = Rg(&, n; é‘/’ nl; B) + Rgl(ga n; gla nl; B)a (81)

where the (i, j)th element of the R type matrix is given by

P 1" /]
Rij(&, n; &, n's B) = ~— —1)975 (i, n) T2 (5, 0’
e ms € ) K;Qrﬁmrmwm@( )T (i,m) T (5, ')
x3(€ — &) wli @ (1,06, (82)

while the (7, 7)th element of the R™ type matrix is given by

g 'y — D&)
Fr +T14+ DE) +iwgpQTr + 1+ ' + iwLgsQ

II1 el /. —
Rij(gvnaé-anaB) - Z

KK'K"Q

(=175 (4, n) T2 (5, m') @ (1, 5 €) @™ (7, ' €). (8.3)

In the above expressions gy is the Landé factor of the upper level J', I'g is the radiative
deexcitation rate, I'; the inelastic collisional deexcitation rate, and I'g the elastic collisional

(). The index K takes values

rate, which is related to the 2K -multipole destruction rate D
0, 1, and 2, while ) varies in the range —K < () < +K. The irreducible spherical tensors
for polarimetry 7¢(i,m) have been given by Landi Degl’Innocenti (1984, Appendix 1,
Eq. (A6)). The generalized profile functions @g’K’(J, J',€) have been defined in Landi
Degl’Innocenti et al. (1991a). The incoming and outgoing radiation frequencies in the
atomic rest frame are given by & and &, respectively. The Larmor frequency wy, = 27uy,.
The quantity w(JI,(J” appearing in Eq. (8.2) is (=1)X" for the triplet case.? To simplify the
notation we denote g, by g as in Chapter 7.

#We note that below Eq. (24) of VB97b it is incorrectly stated that wf"J = 1 for a normal Zeeman
triplet.
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Figure 8.1: Magnetic reference frame (MRF) with magnetic field vector B along the Z'-
axis. The incoming ray n' is characterized by (¢',¢',~'), while the outgoing ray n by
(0, #,7). The symbols 1 and 2 are unit vectors in a plane perpendicular to n, and 3 and

4 are corresponding unit vectors defined for n'.

8.2.1 R type redistribution matrix in the lab frame

We derive analytical expressions for the LF R type redistribution matrix, starting from
Eq. (8.2). The irreducible tensors 7;(i,n) take a particularly simple form in a coordinate
system in which the magnetic field is oriented along the polar axis Z’. It is preferable
to work in such a coordinate system. We refer to it as magnetic reference frame (MRF).
Figure 8.1 shows the scattering geometry in MRF. The incoming ray m' is characterized
by polar angles ' and ¢’ with respect to MRF. Further to define the positive Stokes @
direction, we introduce two real unit vectors 3 and 4 in the plane perpendicular to n’,
in such a way that 3 forms an angle 7' with the meridian plane that contains n' and the
Z'-axis (see Landi Degl’Innocenti 1983a). Similarly the outgoing ray m is characterized
by (0, #,7). Following Landi Degl’Innocenti & Landolfi (2004, hereafter LL04) we choose
v =" = 0, which means that the positive Stokes ) direction for both the incoming and
scattered radiation coincide with the meridian plane of the MRF. Thus in the MRF the
irreducible tensors are given by (see LL04, p. 208)

T5(,m) = Y 5 ()Diq(R), (8.4)

where the elements ¢% (i) are given in Table 5.5 of LL04, D are rotation matrices and
R = (0,—6,—¢). The 75(i,n) in the MRF are also listed in LLO04 (p. 211).

The generalized profile function at frequency £ of a line connecting the lower level J = 0
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to the upper level J' =1 is given by (see Landi Degl’Innocenti et al. 1991a)

5" (0,1;6) = —1)MEMHQ /K +1)(2K' + 1 Lok
Q" (0,1;¢) MZA;( ) V(2K +1)( +)(_M 0 M,)

X ( —34 ]\14’ IC{) ) %[fﬁ(VlM'oo — &)+ ¢"(vimoo —€)]. (8.5)

The profile function ¢(v1p00 — £) is given by (see Eq. (2) of VB97b)

1y Fi(vy — &4+ guM)

PWrao0 =€) = T 02+ (vo — &+ gy M)?’

(8.6)

where 14 is the line center frequency, and 6,, = (I'g + ['1 + I'g)/47. The frequency redis-
tribution part appearing in Eq. (8.2) is still in the atomic rest frame (see Egs. (8.5) and
(8.6)). It can be transformed to the LF as described in § 3.3 of VB97b (or as described in
§ 7.2.2). In the LF we define the following:

Vg — vV qgu M
e

AI/D ' M= AVD ’ (87)

Tr=

where v is the scattered frequency in the LF and Avp the Doppler width. The damping

parameter a is defined as
. 1 'R +11+T1g

T Ar Avp
Thus the function 6(§—¢')¢(v1a00—¢) in the atomic frame transforms to Ry % (z, 7', ©; B)+

iRI_I?F(:r, z', ©; B) in the LF, where O is the scattering angle between the incident and scat-

(8.8)

tered ray (see Fig. 8.2). The magnetic redistribution functions Rf;; and Rf;p (dropping
the arguments for brevity) are defined in Eqgs. (7.21) and (7.22), with ¢ = —M taking
values 0, £1. We denote the quantity §(§ — f’)@g”’K’(O, 1;¢&'), after transforming it to the
LF, as @g:ﬁKl (z,2',0; B), which we refer to as ‘composite redistribution functions’ because
they are linear combination of magnetic redistribution basis functions. Thus, the R type

redistribution matrix in the LF may be written as

A

", 1, . K" K",K’ .
TQF”(_DQTQK (i, m) T—K;?(]’n,) wS’J)(I)Q,II (z,2',0; B).

11 ) ) _

R(z, n; o', n'; B) = Z
KIKHQ
(8.9)
The composite redistribution function of type II, namely @g,’ﬁK’ (dropping the arguments
for brevity), are listed in Appendix H. In the above equation (see also Eqgs. (88) and (89)

of VBI7D),

I'r " gwry,

A=— R . opr_ I ar,, 8.10
'R +T1+T'g 'R +T1+Tg i ( )
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Figure 8.2: The geometry showing the scattering process in a coordinate system where the
magnetic field makes an angle ¥g with respect to the polar Z-axis taken as perpendicular
to the planar slab atmosphere, and has an azimuth of ¢g. We refer to this coordinate
system as the atmospheric reference frame (ARF). (¥, ¢') refer to the incident ray, and
(9, ¢) to the scattered ray in ARF. © is the scattering angle. (¢, ¢') refer to the incident
ray, and (6, ¢) to the scattered ray in the MRF shown in Fig. 8.1.

where the Hanle ' parameter is written as 'y = gwp /T'r. To establish correspondence

with the classical theory, we can now define the so called Hanle angles
tan 8y =I'";  tan By = 21", (8.11)

which characterize the Hanle effect in the case of pure R! type redistribution.

Using the set of Eqs. (H.1)-(H.3), and expressions for 75 (i, n) as given in LLO04 (p. 211)
with a choice v = 4" = 0, one can calculate all the elements of the R type redistribu-
tion matrix, by performing the summations in Eq. (8.9). After elaborate algebra we find
that the analytical expressions for the R type redistribution obtained from the quantum

electrodynamic and classical theories are identical.
8.2.2 R!" type redistribution matrix in the lab frame

The analytical expressions for the LF R are derived starting from Eq. (8.3). The deriva-
tion is carried out in the MRF (see Fig. 8.1) for simplicity. Again the positive Stokes @
direction is defined by v = v = 0. In Eq. (8.3) the product of two generalized profile
functions appears. The generalized profile functions are calculated using Eq. (8.5). They
are then transformed to the LF, as described in § 3.3 of VB97b (or as described in § 7.2.2).
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We denote the product of two generalized profile functions @g’K” (0, 1; 5)@5’1(’(0, 1;¢"),

after transforming them to the LF, as CIJS:II(H”’K’ (z,2',0; B). This function is expressed in

terms of the magnetic redistribution basis functions defined in Eqgs. (7.23) - (7.26). For

example @ (V100 — &)P(Vinoo — €') in the atomic rest frame transforms to
Ryt — Rifet + i(Rﬁﬁﬁ%’ + Rﬁﬁaﬁ’)

in the LF, and ¢(vipr00 — &)™ (V100 — &) transforms to
Ryl iy + Rl e + i(RH?,H%’ - RH;{F%;) :

where Rglqll,xy with X and Y denoting the H and/ or F are defined in Eqgs. (7.23) - (7.26).
Thus, the R type redistribution matrix in the LF may be written as

B(K) n !
111 - I, _ _ 1\QTK" (- K o1
KKIKHQ
x@r " (2,4, 0; B). (8.12)

The composite redistribution functions of type III, namely @gﬁ”’w (dropping the argu-
ments), are listed in Appendix H. In Eq. (8.12)

BE) — I'x T — DY (K) gL

= . D) = = 8.13
Tp+Ti+DE T+ Ty + g I iT,y oo " Lso (813)

where

r
(K) R
T T IR+ I + DE) (8.14)

In this case, we obtain another set of Hanle angles

tan agK) =1 tan agK) = o1, (8.15)
which give rise to Hanle rotation and depolarization in the case of pure R™ type redistri-

bution.

Using Eqgs. (H.7) - (H.29) for @g:fg”K’ and the expressions for 75(i,n) of LLO04 (given
in p. 211, with v = 4/ = 0), one can calculate all the elements of the R™ type redistribu-
tion matrix by performing the summations in Eq. (8.12). After tedious algebra, the final

expression for the R type Hanle-Zeeman redistribution matrix can be written as

R™ = BOM + BOMY + BOM®P), (8.16)
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where
1 1
My = Z{(hh)5%+08+(hh)éﬁ”Doi+(hh)1£+D1+0+§ (hh)i* + (hh)i; | D,

1
3 |G — () |DE 4+ (DG + (DR + (D

+(hh)IEIDI_1}, (8.17)
3 . _
My = g{ (hh)i{ Dy, = ()DL + 5 [(hh)%”+(hh)m+]Df1
1 3
+3 [(hh)?l” (hh)?l{] Dfl} + 7 sinfsin ¢’ [CPHIFP + VTR
+C§; )HIF( ) + CELI)IIIFELI) + Sgl)HISgl) _ Sgl)IHSgl) _ 34(11)11184(11):|, (818)
1 1
M = {2l - (DG — (il Dg + i+ (hh)iﬂ?] D},
L1 o . .
3| — nyiEt | D - Dy, — (DR + (D,
1 M—1y— 3| m o Q2 3 . g | (2HIR(1)
+§(hh)1—1D1—1 +7l6- CL + 51,87 Zsm@sm& ¢y’ Fi

te (2)HIF(1) 2 )IIIF:()’) CgQ)HIFS) _ SgQ)IHSgl) IIIS(I (2)IHS( )] (8.19)

11T

The expressions for ¢!, and s},

that appear in Eq. (8.19) are given in Egs. (G.3) and
(G.4), also with oy appearing there now replaced by ozg). The various auxiliary coefficients
and matrices appearing in Eqs. (8.17) - (8.19) are listed in Appendix I.

The analytic expression for R™ (Egs. (8.16) - (8.19)) derived from QED is very different
from the corresponding classical theory expression (see Eq. (7.46) with II replaced by
IIT). The reason is that the branching ratios (that are phenomenologically imported from
quantum theory) are not properly incorporated in the classical theory. The multipole index
K on B%) was wrongly identified as |¢ — ¢'| in Stenflo (1994, p. 213). In Chapter 7, the
B®)s are assumed to be indistinguishable (see Eq. (7.12)). In other words in Chapter 7 we
have used D(® = DM = D@ This is not correct, since D is not equal to D®) or D)
and in fact it is close to zero (since it relates to the inelastic collision rate, which is much
smaller than the elastic collision rate that governs D) and D®). This fact, that D) is
non-zero only for K = 1,2 and is always close to zero for K = 0, is also clearly stated in
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BS99. However the index K is missing on symbol B in BS99 (see their Eq. (41)), where
it should read B¥). Thus, one has to distinguish between B(®), B and B®. Therefore
in Chapter 7, Eq. (7.45) and the first statement following Eq. (7.46), are valid only in the
very restricted case of D = D) = D = 0, namely complete neglect of the depolarizing

(K)

elastic collisions. In section 8.3 we show the correct way of including B'"*’s in the classical

theory and then establish the equivalence between the classical and quantum theories.

8.3 Equivalence of the classical and quantum expressions for R

In order to establish the equivalence between the classical and quantum expressions for
the redistribution matrix, particularly in the case of R type redistribution, we need to

(K) into the classical theory. The only way to do this

properly include the branching ratios B
is to expand the redistribution matrix R as a sum of its multipole components R (see
eg. Eq. (5.137) of LL04 for the weak field case). Then we can properly assign the correct
depolarization factor with D) (and thereby branching ratios B)) to the corresponding
R components. This expansion of R in terms of multipole components is for a J = 0
to 1 transition a matter of pure geometry. Therefore the multipole expansion can be seen
simply as an extension of the classical theory, not a take-over or borrowing from quantum
mechanics. It is only the actual expressions for the branching ratios B for the various

multipoles that are phenomenologically imported from quantum mechanics.

The way to achieve the multipole expansion is to introduce the irreducible spherical
tensors )¢ as described in the book by Landi Degl’Innocenti & Landolfi (2004), into the
classical formalism of Stenflo (1994, hereafter S94) for the weak field Hanle case, and BS99
(see also Chapter 7) for the intermediate field Hanle-Zeeman case. In Appendix J we
take the example of weak field, and describe the procedure to include irreducible spherical
tensors into the classical theory of S94.

We can extend the procedure described in Appendix J to the classical theory of BS99
(see also Chapter 7) for the Hanle-Zeeman case. Substituting Eq. (J.1) in Egs. (7) and (8)
of BS99, we get

By 30 T () ey ), B, (8.20)

pq 2.0

where 7,(,£') is the time-dependent solution of the classical oscillator (see Egs. (7.1) -
(7.3)), and E; ; is the amplitude of the gth spherical component of the incoming monochro-

matic plane wave. Now the elements of the coherency matrix may be written in the atomic
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frame as

Z e (&m, & m! B)IY, (8.21)

where

IS (ené.m,B) = Z[”“’5)7"3’“’5)}(eu<n>):;<ey<n>)qr(ep(n'»q(ea(n'));/. (8.22)

! 1%
qq’ Eq,OEqI ,0

Following BS99 and Chapter 7, we replace the term in the square bracket by (7,7 ), and
using the reducible tensor £, defined in Eq. (J.6), we may re-write Eq. (8.22) as

R Y.
,ul/ pa(g n ‘S n B) 2 Z<Tq’rq’>gqsq’ (/’La v, n)gqs’q(o-a P, nl)' (823)

qq’

The expression for (7,77) in the atomic and laboratory frames are given in Egs. (7.5) and

(7.36) respectively.

Following the procedure described in Appendix J, we may obtain an expression for the
Hanle-Zeeman redistribution matrix in terms of irreducible spherical tensors. The total
redistribution matrix is then given by Eq. (8.1), with the type IT and III redistribution in

the atomic frame given respectively by

R, mi € w5 B) = Y- Acosfoe(—1)° [13"Gm)] [T250m)]
K'K"Q

XE:\/(QK’+1)(2K"+1)(1 g K")(l, b )5(6—6’)4%;%(6’)], (8.24)
7 ¢ ¢ -Q/J\¢ —q¢ @

R?I(g n; ¢ n'; B) Z B cos g cos agelPatee)(—1)@ [TQK”(z n)r[[lg(j,n')r

KI KIIQ

XE:\/(QK’+1)(2K"+1)<1 ! K)(ql bK )@”*”C(&')@’q’;%(f)

. (8.25
g —¢ —-Q -q Q (8.25)

where A and B are branching ratios (see Egs. (7.11) and (7.12)). The classical Hanle angles
Bq and ag with Q) = ¢ — ¢’ appearing in the above equations are defined in Egs. (7.6) and
(7.7). Also the generalized profile function @g;?% (€) is defined in Egs. (7.8) - (7.10). To
avoid ambiguity we call <I>7+7C (&) the classical generalized profile function.
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8.3.1 The type III redistribution

We first consider the redistribution of type III in order to show the equivalence between
the classical and QED expressions (of VB97b). To achieve this we need to carry out the
multipole expansion of the classical generalized profile function. This is done as explained
below.

Comparing Egs. (7.10) and (8.6), we see that M = —¢, and

(I)”H—% (Vq - ‘S) = ¢*(V1—q00 - 5) (8.26)

The above equation gives the relation between the profile functions defined in BS99 and
VB97b. Using Egs. (7.8) and (8.26), we may re-write the term in the bottom square bracket
of Eq. (8.25), as

1 1 K" 1 1 K
, 2K+ 1)(2K"+ 1
g VI 1KY )<q —q —Q)(q’ —q Q)
X% [(/5(1/1—(;'00 — &)+ ¢* (11—q00 — 'f)] % [(/5(1/1—(;'00 — &)+ ¢*(V1—qo0 — 5')}- (8.27)

Now replacing —g by M and —¢' by M’, as well as @ by —Q (since @ = ¢ — ¢'), in the
above equation we obtain

1 1 K" 1 1 K’
X% [¢(V1M'00 — &) + ¢*(Vimoo — f)] % [¢(V1M'00 — &) + ¢*(vimoo — 5')}; (8.28)

where we have made use of properties of 3-5 symbols that involve sign changes and per-

mutations.

The Eq. (22) of VB97b, for the particular case of a triplet (0 — 1 — 0 transition) may

be written as

. | K o , - 1 1 K"
;% (0,1;€)@g (0,1,5)—%;/(% + DK +1)<—M M Q )

[6(vinrr00 — €') + ¢* (Vinroo — €')]-

(8.29)

DO | =

X ( —i\l ]\14, g ) %[d)(VlM’OO — f) + ¢*(V1MOO - 6)]

Comparing Eq. (8.28) with the r.h.s. of Eq. (8.29), we see that they are the same. Hence
Eq. (8.25) may be re-written as (remembering that we have to change @ to —@, see the
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sentence following Eq. (8.27)),

i o O
Rg'l(f’ n; ', n'; B) = Z B cos B cos ag ) (ﬂQJr )

KIKIIQ

<(~1) [T 6.m)] |78 ()] @55 (0, 1,0)85% (0,1:). (8.30)

Thus the multipole index K now properly gets assigned to the classical branching ratio B.
Note that the multipole index K is included in the classical Hanle angle o also, following
the identification done in BS99, namely D) = T'y/2 for K = 1,2. This identification
ensures that the classical Hanle angles o for the emission process also depend on the
multipole index K, unlike in BS99 and Chapter 7. Using Eq. (J.22), we may re-write
Eq. (8.30) in terms of irreducible tensors of LL04 (dropping the ‘L’ on irreducible tensor)

as
1 (K) " !
Rg.l(f, n; &, n'; B) = Z B¥) cos Bg cos aézK)eﬂ(ﬁQmQ )(—I)Q% (i,n)[%(]', n')
KIKIIQ
x @ "(0,1;6)85 (0, 1; ). (8.31)

The above equation is the same as Eq. (8.3), which thereby establishes the equivalence
between the classical and quantum expressions in the case of type III redistribution.
In Eq. (8.3), the Hanle angles are implicitly contained inside the branching ratios (see
Egs. (8.10), (8.11), (8.13), (8.14), and (8.15)).

8.3.2 The type II redistribution

We now consider the redistribution of type II in order to show the equivalence between the
classical and QED expressions in the atomic frame. Using Eq. (8.26), we may re-write the
term in the bottom square bracket of Eq. (8.24), as

1 1 K" 1 1 K
] 2K'+1)(2K"+ 1
X6(€ —£&")5 [d(r1—goo — &) + ¢* (V1—qo0 — £')] (8.32)

Again in the above equation, we replace —q by M, —¢' by M’ as well as @ by —Q (since
@ = q—¢'), and use the properties of 3-j symbols (see LL04, p. 38). The resulting equation
is then compared with the r.h.s. of Eq. (8.5), so that we may re-write Eq. (8.32) as

wii (e — €el (0, 1;¢). (8.33)
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We note that the factor (—1)+M'+@ appearing in Eq. (8.5) is unity, since @ = M — M’
(and M, M’ are always integers for the triplet case). As mentioned before, w(J{fIH) = (-1)K"
in the triplet case. Thus we may re-write Eq. (8.24) in terms of the irreducible tensors of

LLO04 (dropping the ‘L’ on irreducible tensor, and remembering that ) should be changed
to —Q) as

RI(¢ n; &, n'sB) = ) Acosfoe P (=1)9T5" (i,n) TG (j, )
KIKIIQ
xwgf,f?(s(g — ey (0,1;¢"). (8.34)

The above equation is exactly the same as Eq. (8.2), which thereby establishes the equiv-
alence between the classical and quantum expressions in the case of type II redistribution.
Once again it is necessary to remember that in Eq. (8.2) the Hanle angles are implicitly
built into the branching ratios (see Egs. (8.10) and (8.11)).

8.4 Numerical evidence for the equivalence of classical and quan-
tum R

In the previous sections we established the analytical correspondence between the classical
and QED expressions. In the present section we demonstrate numerically the equivalence
by making PRD diagrams which are similar to those presented in VB97b. For this purpose
we use the same input parameters as in VB97b. Note that the explicit expressions for
the redistribution matrix derived in Chapter 7 (from classical theory) as well as in the
present chapter (from QED theory of VB97b) refer to scattering in the MRF (see Fig. 8.1).
However for comparison with observations, the Stokes profiles need to be presented in an
atmospheric reference frame (see Fig. 8.2). In the present chapter the single scattered
Stokes profiles are computed for an arbitrary orientation of the magnetic field with respect
to the polar Z-axis, which is chosen along the vertical direction in the atmosphere. We refer

to such a geometry as atmospheric reference frame (ARF, see Fig. 8.2). The transformation
between the MRF and ARF is described in Appendix K.

The magnetic field is characterized by the Hanle I'g parameter in the quantum cal-
culations, while in the classical calculations it is characterized by the parameter vg (i.e.,
the magnetic shift from the line center in Doppler width units). The two parameters are
related through

v = 2['gag, (8.35)

where agr = I'r/(4wAvp), which is related to the total damping parameter a of Eq. (8.8)
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through
a

aR = . 8.36
T+ (T + ) /T (8:36)

The classical analogue of Eq. (8.8) is

Yt

qa=-——". 8.37
el 4 Avp ( )

Comparing Eqgs. (8.8) and (8.37), we see that v = I'y +I'| and 7, = ['g. In the numerical
computation we give as input model parameters the ratios I'y/T'g, DY) /Ty and scattering
parameter € (= I'1/(T;+T'g)). The branching ratios A and B can be expressed in terms

of € and the ratios of the collision rates mentioned above.

Most of the figures presented in VB97b have been computed for the absence of inelastic
collisions (i.e., Tt = 0, which implies € = 0), and depolarizing collision rate D) = 0, while
the elastic collision rate I'g = ~, is chosen as a free parameter. Even though this choice is
physically inconsistent (since I'y is always proportional to D) for K = 1,2), we employ
it for the purpose of mathematical comparison with PRD benchmark diagrams presented
in VB97b. Unless otherwise stated we present our results for the same choice of branching
ratios as in VB97b. Thus I'r = v and

- ! (8.38)
L+9:/v’ '

BopE — _2lV 4 8.39

L+7./v (8.39)

In the absence of inelastic collisions the classical Hanle angles can be computed using (see
Egs. (7.6) and (7.7)),

_ o
tan By = %, (8.40)
_ Al
tanoy_gy = g = d)vs . (8.41)

201 +7./(2)]

For the D) = ~,/2 = 0 case, Eq. (8.41) reduces to

o
tan Qg—q = (qgﬂ =(¢—¢)Ts. (8.42)
aRr
In Eq. (8.42) one can clearly see the correspondence between the classical ‘Hanle angle o,

and the quantum ‘Hanle parameter ['g’, both of which are related to the field strength.
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Figure 8.3: Stokes parameters vs. incident frequency z’ and scattered frequency x, as pro-
duced in a 90° single scattering event involving a pencil of unpolarized incident radiation.
The model parameters are [a, vg, ©; €, ['y/T'r, D) /Tg] = [1073, 3,90% 0, 1, 0]. This
combination of parameters corresponds to an equal mix of both R"™ and R type redistri-
bution (since A = 0.5). U/I is zero for the geometry chosen by us. V/I stays within the
range (-1,+1), although we use a z-scale (-3,4+3) in order to avoid overlapping of surface

and contour plots. The magnetic field is along the line-of-sight.

In order to numerically prove the equivalence between our classical theory expressions
with those of QED, we have reproduced Figs. 1 - 7 of VB97b, which refer to angle-dependent
PRD. The classical PRD diagrams are found to agree in all details with those obtained from
QED. Here we choose to illustrate only the reproduction of Fig. 14 in VB97b, which refers to
the interesting case of Rayleigh scattering in strong fields (see § 6 of VB97b), with the field
strength given by vg = 3. The following is the set of standard model parameters chosen
to compute the results shown in Fig. 8.3: damping parameter a = 102, Hanle parameter
['p = 1, inelastic collision rate I'1 = 0 (purely scattering medium), depolarizing collision
rate D) = 0, scattering parameter € = 0 (as follows from I't = 0). The magnetic field is

chosen to be oriented along the scattered ray. This choice (95 = 9, v = ¢) corresponds
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to the maximum impact of the Hanle effect on line scattering. The Stokes parameters for

a single scattering event are simply given by the first column of the redistribution matrix.

In the geometry considered for all the illustrations in VB97b (magnetic field along the
line-of-sight), V/I is very small (nearly zero) as long as the magnetic field is very weak, but
for a longitudinal field as strong as vg = 3, the ratio V/I is very large. However, the V/I
profile for this particular case is not presented in VB97b. In Fig. 8.3 we reproduce Fig. 14
of VBI7b and in addition present the V//I profile. The surface plots of [log I, —Q/I,V/I] in
Fig. 8.3 show the (x,z’) dependence of the first column of the actual redistribution matrix.
The contour plot below each surface plot depicts the so-called two-dimensional ‘domain
structure’ in the (z,2') space. These contours are expected to be lines of constant values
of [logI,—Q/I,V/I] at selected contour levels. We would like to recall that our definition
of ‘positive  direction’ differs from that of VB97b whose (Q/I, U/I) plots differ from
our plots only in the sign and not in magnitude. This simply arises due to our particular
choice for the definition of the angles v and +' in the MRF (see § 8.2.1 and Fig. 8.1).

8.5 Hanle-Zeeman scattering of an unpolarized incident flat spec-

trum

In the present section we discuss how an atom immersed in a radiation field that is frequency
independent across the spectral line produces line polarization through Hanle-Zeeman line
scattering. We choose the magnitude of the incident intensity to be unity. Integration
over =’ can then readily be done. Branching ratios are chosen in such a way that we cover
both the regimes of ‘purely coherent’ and the ‘completely non-coherent’ scattering. In
contrast to VB97b, who gives the total damping parameter a as input, we prefer to give
the radiative damping parameter ag as input. It is indeed advantageous to keep ar fixed
for a given line, whose total damping width then changes depending on the rate of elastic
collisions, given by the ratio I'y/T'r. As in VB97b, we assume the inelastic collision rate to
be zero (i.e., a pure scattering medium). The elastic collisions only change the correlations
between the incident and scattered photons, but do not induce a transition.

In Fig. 8.4 we show the z’ - integrated Stokes I and fractional polarizations Q/I, U/I,
and V/I. The model parameters used are: [ag, U, ¢, ©; ¢, DY) /Ty] = [0.004, 90°, 45°,
90°; 0, 0]. We present the scattered Stokes profiles for several values of the field strength
parameter vg. The parameters chosen are the same as in Fig. 3 of Stenflo (1998). The Hanle
" parameter corresponding to various values of vg are: [0.1, 0.5, 2.5, 12.5, 62.5, 125, 312.5],
spanning a dynamic range of 3125, between the highest and lowest field strengths. Fig-
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ure 8.4a corresponds to a pure R type scattering (I'g/Tr = 0), and Fig. 8.4b to an equally
mixed R and R™ type scattering (I'gy/Tr = 1). Figure 8.4c corresponds to the case of
I'g/Tr = 999, i.e., the almost pure R! type scattering. Since the effect of collisions is
more clearly visible in the fractional polarization profiles, we present them instead of the

Stokes parameters themselves.

The scattered polarization profiles in Fig. 8.4a (for A = 1) resemble the corresponding
profiles of Fig. 3 of Stenflo (1998). Indeed the (Q/I, U/I, V/I) profiles closely agree
with his results throughout the line profiles. This is not surprising, because Stenflo (1998,
Fig. 3) assumed pure coherent scattering in the LF, which is a good approximation to the

pure R type scattering especially in the line wings.

Figure 8.4b refers to the case of an equal mix of R" and RM type scattering. We
note that the I and V/I profiles do not differ from those of pure R type scattering.
The fractional polarizations @/ and U/I in the line core region |z| < 2 resemble the
corresponding profiles of the pure R" case. However, in the line wing there is a substantial
difference as compared with Fig. 8.4a. Clearly @Q/I does not approach unity, and U/I is
non-zero in the wing (showing that the scattering does not approach the Rayleigh limit for
which Q/I = —1 and U/I = 0). We refer to this Q/I # —1 and U/I # 0 in the wings of
a pure line case (without the presence of continuum absorption and scattering), as wing
Hanle-effect — arising due to an elastic collision transferring the Hanle rotation from the
line core to the line wing, before an inelastic polarization destroying collision intervenes.
This transfer of coherence is most effective when 'y /' = 1 (see Fig. 7 of Nagendra et al.
2002). In other words, in the presence of a small number of elastic collisions, the Hanle
effect does not vanish in the line wings contrary to the standard assumption (employing
a Rayleigh phase matrix for x| > 3) used in Hanle scattering computations. The VB97b
theory for the Hanle effect in domain based form was included by Nagendra et al. (2002,
see also Nagendra et al. 2003) in line transfer computations, which showed how the wing
Hanle effect arises due to the presence of elastic collisions, in combination with PRD in
Hanle scattering. The present single scattering calculations based on a more general Hanle-

Zeeman scattering matrix confirm this prediction.

Figure 8.4c refers to the case of almost pure R type scattering (I'g/T'r = 999). The
total damping parameter corresponding to this case is ¢ = 4 (see Eq. (8.36)). Clearly
this corresponds to a regime of extremely large line broadening, which shows up in all the
Stokes profiles. As a result the triplet structure is no longer visible even when vg = 2.5

(see the thin long-dashed line in Fig. 8.4c). For the same reason the magnitude of I is
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Figure 8.4: Stokes profile I and the fractional polarization profiles Q/I, U/I, and
V/I after integration over the incoming frequencies (z'). The model parameters are:
lar, 9B, ©B, ©; ¢, DY) /TR] = [0.004, 90°, 45°, 90°; 0, 0]. Different line types correspond
to vg = 0.0008 (solid), 0.004 (dotted), 0.02 (dashed), 0.1 (dot-dashed), 0.5 (dash-triple-
dotted), 1.0 (long-dashed), 2.5 (thin long-dashed). (a) and (b) correspond to 'y /T'r = 0,
and 1 (pure RY; and equally mixed R" and RM respectively), while (c) corresponds to

['g/T'r = 999 — the case of almost pure R type scattering. See § 8.5 for discussions.

— —"
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an order of magnitude smaller than in Figs. 8.4a,b. The magnitudes of the fractional
linear polarizations (of both /I and U/I) remain nearly constant through the entire line
profile. This occurs due to the extreme dominance of collisional line broadening (principally
through R™), which produces similarly shaped (I, @, U) scattered profiles, except for

different scaling factors. V/I is strongly reduced once again due to the line broadening.

8.6 Concluding remarks

In the present chapter we have explicitly demonstrated (for a J =0 — 1 — 0 transition)
the equivalence between the Hanle-Zeeman redistribution matrices that are derived through
QED and those derived through classical, time-dependent oscillator theory. To establish
this equivalence, we have appropriately extended the classical scattering theory developed
in Stenflo (1994) and Bommier & Stenflo (1999). This generalization involves an expansion
of the redistribution matrix R in terms of its multipole components R(¥). It requires the
use of irreducible spherical tensors ’TQK as described in Landi Degl’Innocenti & Landolfi
(2004). The equivalence includes all the intricately coupled PRD correlations in frequency,
angle, and polarization between the incoming and outgoing wave packets of the scattering
process, and it holds for all strengths and directions of the magnetic field. In view of the
rich symmetries and complex mathematical behavior of the general redistribution matrix,

this equivalence is remarkable and may have a deeper meaning.

The Hanle-Zeeman redistribution matrix refers to scattering in magnetic fields of ar-
bitrary strength and orientation. For simplicity, we consider a pure scattering medium
(T'1 = 0), although the formulation can handle both elastic and inelastic collisions. We
have explored the dependence of the line polarization on field strength and on the relative
rate of elastic collisions I'g/I'g. Usually the efficiency of the Hanle effect is confined to
the line core. However, under the natural conditions of a mix of R and R™ type redis-
tributions, the coherence (caused by the anisotropy of the radiation field) is transferred
from the line core to the line wings due to the elastic collisions. This results in enhanced
linear polarization (Q/I, U/I) in the line wings. We call it the “wing Hanle effect”. It is
particularly pronounced in the case of angle-dependent PRD (Nagendra et al. 2002, 2003).

We have now formulated and explored the detailed behavior of the Hanle-Zeeman re-
distribution matrix for single scattering processes. Our next step is to integrate it into a
radiative transfer formalism, to be able to deal with polarized multiple scattering in opaque
magnetized media, which is the topic of Chapter 9. This is the tool we need for making

use of the rich diagnostic potential of the Second Solar Spectrum (see Stenflo 2004) and
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for determinations of chromospheric magnetic fields.



Chapter 9

Solution of the Hanle-Zeeman line formation

problem!

9.1 Introduction

The linearly polarized spectrum of the Sun, known as the “second solar spectrum”, contains
a wealth of information about the physics of light scattering on atoms. The recent series of
“Solar Polarization Workshops” (SPWs, and their proceedings: Stenflo & Nagendra 1996,
Nagendra & Stenflo 1999, Trujillo Bueno & Sanchez Almeida 2003, Casini & Lites 2006,
Berdyugina et al. 2008) and important polarimetry workshop proceedings (Sigwarth 2001,
Trujillo Bueno et al. 2002) highlight the growing body of research directed towards a deeper
understanding of the physical processes used to diagnose solar magnetic fields. The solution
of the polarized line transfer equation is used to interpret the shapes of observed Stokes line
profiles. The physics of anisotropic absorption and scattering has developed hand in hand

with sophisticated numerical methods to solve these complex radiative transfer equations.

Reviews on the methods of solving the polarized transfer equation (Trujillo Bueno
2003a, Nagendra 2003a, 2003b, Nagendra & Sampoorna 2008) list several exact and ap-
proximate numerical methods. Novel iterative schemes have been developed by Trujillo
Bueno and co-workers (see Trujillo Bueno 2003a, and references therein to their previ-
ous works) to solve the polarized non-local thermodynamic equilibrium (NLTE) radiative
transfer equation together with the statistical equilibrium equation in multilevel atoms,
including multi-dimensional geometries. Here we limit our attention to the vector version
of the standard two-level atom NLTE line transfer equation (Mihalas 1978, Stenflo 1994).

!This chapter is based on the paper which is accepted for publication: Sampoorna, M., Nagendra,
K. N., & Stenflo, J. O. 2008, ApJ (in press)
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The new aspect of our treatment is that it allows us to solve the line transfer problem
for the general case of arbitrary magnetic fields with full account of partial frequency
redistribution (PRD).

The solar atmosphere with its magnetically active regions harbor a whole range of field
strengths (milligauss to kilogauss fields). Hence a general form of the radiative transfer
equation that is valid in this entire range has to be formulated and tested. Such a transfer
equation has been formulated by Stenflo (1994, see also § 9.2 of the present chapter). It is
also briefly discussed in the review of Trujillo Bueno (2003a).

Polarized PRD scattering in the presence of magnetic fields of arbitrary strength and
direction is called Hanle-Zeeman scattering. In this chapter, we use a perturbation ap-
proach to solve the Hanle-Zeeman line transfer problem. Perturbation methods have often
been applied in polarized line transfer (Rees 1978, Rees & Murphy 1987, Faurobert 1987,
Nagendra et al. 2002). It is a practical approach, which works for any type of scattering

redistribution matrix in the polarized source vector.

Efficient numerical methods to solve the polarized radiative transfer equation in the
presence of magnetic fields have been developed in the past. In the weak field limit of
the Hanle effect, techniques like Polarized Approximate Lambda Iteration (PALI) taking
into account both complete frequency redistribution (Nagendra et al. 1998) and PRD
(Nagendra et al. 1999, Fluri et al. 2003b, see also Chapter 10) have been developed.
However, in the weak field limit a scalar isotropic absorption coefficient is often assumed
instead of the Zeeman absorption matrix, even when the magnetic field is non-zero. At
the other extreme, for the strong field Zeeman effect, techniques like the Feautrier method
(Auer et al. 1977), the Diagonal Element Lambda Operator (DELO) method (Rees et al.
1989), and DELOPAR (Trujillo Bueno 2003a) have been developed. In this strong field
limit one assumes local thermodynamic equilibrium (LTE), where scattering effects are
either neglected or are taken into account through a complete redistribution (CRD) line
source function, which is then solved using the polarization free approximation of Trujillo
Bueno & Landi Degl’Innocenti (1996). However, scattering included in this way does not

account for coherent scattering in the presence of strong magnetic fields.

In a correct treatment of NLTE line formation in the presence of a magnetic field of
arbitrary strength, one has to take into account both the Zeeman absorption matrix and
PRD effects. Such a treatment requires a redistribution matrix which is valid in all field
strength regimes. Clearly the weak field Hanle phase matrix (Landi Degl’Innocenti & Landi

Degl’Innocenti 1988, Stenflo 1994) does not suit these requirements. A quantum electro-
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dynamic (QED) and classical theory of PRD line scattering in the presence of magnetic
fields of arbitrary strength, and including collisions have been formulated respectively by
Bommier (1997a, 1997b) and Bommier & Stenflo (1999). The classical theory describes
the scattering process in a transparent way. In Bommier & Stenflo (1999) the redistribu-
tion matrices have been derived in the atomic rest frame. The corresponding laboratory
frame redistribution matrices are given in Chapter 7. The equivalence between the classical
(Chapter 7) and QED approach of Bommier (1997b) for the Zeeman triplet case has been
established in Chapter 8. Following Stenflo (1998) we refer to this as the ‘Hanle-Zeeman
redistribution matrix’, since it covers the entire field strength regime. In the present chap-
ter we incorporate the Hanle-Zeeman redistribution matrix derived in Chapters 7 and 8

into the polarized line transfer equation.

In § 9.2 we present the governing equations, a description of the general line radiative
transfer equation and its various limiting forms. In § 9.3 we introduce a numerical method
to solve the polarized transfer equation including ‘both the Zeeman absorption matrix and
the Hanle-Zeeman redistribution matrix’. § 9.4 is devoted to the results and discussions,
and § 9.5 to the concluding remarks.

9.2 Governing equations of the Hanle-Zeeman scattering theory

In the formulation that we are using here, the full Zeeman absorption matrix and the
Hanle-Zeeman redistribution matrix (see Chapters 7 and 8) are simultaneously and self-
consistently incorporated (assuming an unpolarized ground state). We remark that the
Hanle-Zeeman line transfer theory presented in this chapter is valid for a normal Zeeman
triplet (J =0 — 1 — 0) case only.

9.2.1 Formulation of the relevant radiative transfer equation

In the presence of a magnetic field, the vector radiative transfer equation for the Stokes
vector I(7,z,m) = (I QU V)T may be written as (see Stenflo 1994)
0
,U,a—I(T,.T),n) :KI(T,.Z',’I’L) —S(T,J),n), (91)
T
where the source vector S(7,z,n) = j(r,z,n)/ky, with 7 being the line-center optical
depth and z the frequency separation from line center in Doppler width units. The vector
n(d, ¢) is the propagation direction of the ray (where 9 is the co-latitude and ¢ the
azimuth), and p = cosd. The quantity ky = (N By, — NyBu)hvy/47 is the line center
opacity. N, N, are the populations of lower and upper states, By, and By are the Einstein’s
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X

Figure 9.1: Geometry specifying the direction of the magnetic field B and of the line-of-
sight n. The Z-axis is along the normal to the atmosphere. Angles 9 and ¥z are the
co-latitudes of n and B, respectively. The azimuthal angles ¢ and ¢ are measured from

the X-axis in the anti-clockwise direction in the XY -plane.

B coefficients, A is the Planck constant, and v is the line center frequency. Positive optical
depth is measured in the direction opposite to the vertical Z-axis (see Fig. 9.1). We use the
convention that positive () direction corresponds to the linear polarization perpendicular

to the solar limb.

In Eq. (9.1) K is the total absorption matrix
K=&+ rE, (9.2)

where @ is the 4x4 Zeeman line absorption matrix (see Eq. (2.4)), E the 4x4 unity matrix,
and r the ratio of continuous to line center opacity. The total emission vector j(7,z,n)

has contributions both from line and continuum :
j(ryz,m) =g (r,z,m) + 5 (1, 2,n). (9.3)

Assuming unpolarized continuum with emission occurring in LTE, j (7, z,n) = rk¢B,,U,
where U = (1000)* and B,, is the Planck function. The line emission vector has con-
tributions from coherent scattering (undisturbed by collisions), incoherent scattering (col-

lisionally disturbed), and non-scattering emission (see Stenflo 1994, for details), and may
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be written as

jL(Taxan) :jscat(7’$an) —i—jns(T,x,n). (9'4)
9.2.2 The scattering part of the emission vector

The scattering emission vector j.,, has contributions from both coherent and incoherent
scattering. The term coherent scattering refers to all scattering processes that are purely
due to radiative excitation, followed by spontaneous emission which is undisturbed by
collisions. The term incoherent scattering refers to all those scattering processes that are

disturbed by collisions. The scattering emission vector for this case may be written as

dn’ —+0o0
Jscat (T, T,M) = kof 1 / dr' R(z,n;z',n'; B)I(1,2',n'). (9.5)

™

The redistribution matrix R(z, n; 2’, n'; B) accounts for the correlations in frequency, angle
and polarization between the incident radiation field at frequency z’ and direction n' and
the re-emitted radiation at frequency x and direction m. The quantity dn' is an element
of solid angle around m'. For lines formed with PRD the analytic form of R is given in
Chapters 7 and 8 (see Eqgs. (7.43), (7.44), (7.46), and (8.16) - (8.19)). The explicit form of
R is presented in a frame where the Z-axis is along the magnetic field (see Figs. 7.1 and
8.1) rather than along the normal to the atmosphere. The required transformation to a
frame in which the magnetic field has an arbitrary orientation with respect to the normal

to the atmosphere (see Fig. 8.2) is described in Appendix K.

When the atom is in the excited state, collisions cause shifts of the emitted frequency,
change of phase, destruction of alignment, orientation etc., depending on the nature of the
collisions (quenching, elastic, or inelastic). All these processes are contained in a general
redistribution matrix (see Eqgs. (7.43), (7.44), (7.46), and (8.16) - (8.19)), through a com-
bination of collisional branching ratios and magnetically modified redistribution functions
(type II and IIT of Hummer 1962), which we have called ‘magnetic redistribution functions’
(see Chapter 7). The theoretical study and applications of such collisional redistributions
for the non-magnetic case have been described in Domke & Hubeny (1988), Faurobert-
Scholl (1992, 1993b), Nagendra (1994), Stenflo (1994), and for the arbitrary field strength
in Bommier (1997a, 1997b), Bommier & Stenflo (1999).

9.2.3 The non-scattering part of the emission vector

We refer to a process as non-scattering, if the atom has no memory of how it has been

excited when it emits the photon. In other words, the upper state has been populated by
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a process different from radiative absorption from the lower state. If the population has
been by isotropic collisions, then we get purely thermal emission. If radiative transitions
are involved (other than from our initial atomic state) which contribute to populating the
excited state then, since they are unspecified, we have assumed that the memory of the
population process has been erased. In this case we also get thermal emission as in the
collisionally excited case (see the discussion in § 5.3 of Stenflo 1998). Therefore we can
lump all these unspecified processes together, since they all contribute with the same form

of the emission vector. The non-scattering emission vector is given by (see Stenflo 1994)
Ins(T, 2, M) = koeB,, ®U. (9.6)

Here e = I'1/(I'1 + 'r) denotes the photon destruction probability per scattering, where I'g

is the radiative rate and I'; is the inelastic collision rate.
9.2.4 The Hanle-Zeeman line transfer equation

Combining Egs. (9.2) - (9.6), we can rewrite the polarized transfer Eq. (9.1) as

W ;—TI(T, z,n)=(®+7rE)I(r,z,n) — [(rTE + e®) B,, U + Sgcat(7, 2, )], (9.7)
where
dnl oo ! / ! / !
Sscat(T, 7, M) = 1 dr'R(z,n; 2, n's B)I (7, 2", n'). (9.8)
™ —0o0

Note that the factor (1 — €) is implicitly contained in R through the branching ratios.
We refer to Eq. (9.7) as the Hanle-Zeeman line transfer equation, as it includes both the

Zeeman absorption matrix (®) and the Hanle-Zeeman redistribution matrix (R).

Three limiting forms of Eq. (9.7) may be considered: (i) True absorption, or LTE: We
may set € = 1 and thereby recover the LTE Zeeman line transfer equation, for which rapid
solutions are available. (ii) NLTE strong field limit: In the presence of strong fields, if we
neglect the coherent scattering (PRD) contribution and retain only completely incoherent
scattering, then Eq. (9.7) takes the form given in Trujillo Bueno & Landi Degl’Innocenti
(1996). In this case scattering effects are taken into account through a CRD like line
source function, and the radiative transfer equation is solved by using the polarization
free approximation of Trujillo Bueno & Landi Degl’Innocenti (1996). (iiz) NLTE weak
field limit: In the weak field limit the line absorption matrix can be approximated by a
diagonal matrix with a single absorption coefficient profile ¢(x), and the redistribution
matrix can be approximated by a scalar redistribution function (CRD or PRD) times a

weak field frequency independent Hanle phase matrix. This is the conventionally employed
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Hanle scattering line transfer problem that has been solved in various papers in the past
(eg. Faurobert-Scholl 1991, Nagendra et al. 1998, 1999).

Bommier (1997b) proposed three kinds of Approximations (I, II, III, in order of de-
creasing complexity) for weak field Hanle scattering. In Approximation I, the redistribu-
tion functions are not factorized and retain their couplings to the angular phase matrix.
Approximations II and III are based on asymptotic expansion of the generalized profiles
(see Eqgs. (86) and (87) of Bommier 1997b). These expansions in the line center and in
the line wings lead to a decomposition of frequency space into several domains. In each
domain the frequency redistribution function is decoupled from the angular phase matrix.
Approximation IT uses the angle-dependent (AD) redistribution functions, Approximation
III the corresponding angle-averaged (AA) functions. Approximations IT and III have been
applied and tested in line transfer calculations by Nagendra et al. (2002) using a compu-
tationally expensive perturbation approach. Approximation III was later integrated into
a high speed PALI method by Fluri et al. (2003b). Both these papers use a domain
based treatment of polarized PRD. In Chapter 10 we develop a PALI method based on
non-domain based treatment of PRD, namely adopting the AA version of Approximation
I of Bommier (1997b). The present chapter deals with the more general problem that
fully includes the Zeeman absorption matrix when solving the full Hanle-Zeeman scatter-
ing problem with PRD. We use a perturbation technique similar to the one proposed by
Nagendra et al. (2002), with appropriate generalizations.

9.3 Numerical method of solution for the transfer equation

Here we present a perturbation method to solve the Hanle-Zeeman PRD line transfer
problem. There are two stages in the perturbation method that we use. In stage 1 we solve
the Hanle-Zeeman scattering problem neglecting Zeeman absorption (see § 9.3.1). In stage
2 the full problem including both Zeeman absorption and the Hanle-Zeeman redistribution

matrix is solved (see § 9.3.2).
9.3.1 Stage 1: Initializing Sg..(7,z, 1)

If we replace ® by ¢(z) in Eq. (9.7), we obtain the transfer equation traditionally used
for solving the weak field Hanle effect (e.g. Faurobert-Scholl 1991, Nagendra et al. 1998,
1999, 2002)

W %I(T, z,n) = [¢p(x)+r]I(r,z,n) — {[r + ed(x)|ByyU + Sscat(T, 2, 1)} . (9.9)
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However, the difference is that we now use the newly derived Hanle-Zeeman redistribution

matrix instead of the weak field Hanle redistribution matrix.

Equation (9.9) is solved using a perturbation technique presented in Nagendra et al.
(2002). We first calculate the scalar PRD intensity using an ALI method, which is used
to compute a first estimate Sgearar (7, 2, ) = (S(7,7) 000)T. In the 2nd step the polarized
transfer equation is solved using a short characteristic formal solver (FS) of Auer & Paletou
(1994), for which Sca1ar is used as input. In this step we use the AA version of the magnetic
redistribution functions (see § 9.3.5 for details). This procedure is repeated until the relative
variations of the polarization rate at the surface between two successive perturbations is
less than 1% (see § 9.3.4 for details). The converged source vector S, aa becomes the
input to step 3. The 3rd step is exactly the same as step 2, except for the use of AD
magnetic redistribution functions (see Egs. (7.21) - (7.26)) in the explicit computation of
the scattering integral. In this way we obtain a good initial estimate of Sy, which we

call Spo1,4D-
9.3.2 Stage 2: Full solution by perturbation

The Hanle-Zeeman line transfer equation (9.7) is now solved in three steps described below :

1. The initial values Sp,o.ap Obtained from stage 1 are used as input to a F'S, which finds
the solution of Eq. (9.7). For this purpose we use DELOPAR introduced by Trujillo Bueno
(2003a, see § 9.3.3 of this chapter for details).

2. The Stokes vector obtained from the FS is used to compute the new value of Sg.,; from
Eq. (9.8).

3. The perturbation sequence is tested for convergence (see § 9.3.4) and returned to step
1 if the convergence is not yet reached.

9.3.3 Formal solution using DELOPAR

A numerical method for the formal solution of NLTE Zeeman line transfer equations was
first given by Auer et al. (1977). It is a Feautrier type method which involves writing the
equations in second-order form and solving them by a finite-difference technique. However,
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the Feautrier method involves handling large matrices, and hence it is slow. A much faster
method was developed by Rees et al. (1989), which they call DELO method. Trujillo Bueno
(2003a) clearly showed that the DELO method, as a F'S, is less accurate when compared
with his new FS, which is a generalization of the scalar short characteristic method of
Kunasz & Auer (1988) to the polarized case. The reason for the inaccuracies of the DELO
method when solving hard problems of NLTE polarization transfer is that it is based on a

linear interpolation approximation to the source vector in optical depth segments.

Trujillo Bueno (2003a) overcame this problem by developing an improved DELO method,
which is based on using a parabolic interpolation for the total source vector. This method
is called DELOPAR.

In the present work, we apply the DELOPAR method. Let us define a total optical
depth d7'°" = dr (g1 + r)/u, where ¢ is the diagonal element of the Zeeman absorption
matrix ®. For notational simplification we will here call d7*°* = dr. Equation (9.7) can

be rewritten as p
a—I(T, z,n)=I(r,z,n) — Sex(7, x,N). (9.10)
-
Here the effective source vector is
Sex(T,2,n) = Siot(7,2,n) — K'I(1,2,1), (9.11)

where we have redefined the total absorption matrix of Eq. (9.2) as

K
K = —E. (9.12)
(g1 +7)
The total source vector is defined as
Siot (T, 2,m) = [(e® + rE)B,,U + Sscat (T, 2,n)]. (9.13)

(pr+7)
On the interval (7y, 7x11), the solution of Eq. (9.10) is
Th+1
I = Bl + / e[S (1) — K/ (O I(0)]dt, (9.14)
Tk

where Iy = I(7), and Ey = 6_5’“, with &, = 7,11 — 7. Note that we have dropped the
other two arguments of I and S, and also the subscript on S;.. Changing the variable
(p =1t —1k), Eq. (9.14) can be rewritten as

O%
L= BTy + / e 7 [S(p) — K'(0)I(p)) dp. (9.15)
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We assume that S varies parabolically,
S(p) = Sy + Cip+ Cyp?, (9.16)

where the coefficients are

(Sks1— Sk) k1 | (Sk— Sk-1) dn
Ok (0 + Ok—1) Ok—1 (0 + 519—1)’
(Sk+1— Sk) (Sk — Sk-1)

c, = L= Sk Sk1) (9.17)
Ok (Ok + Ok—1)  Op—1 (Ok + Ok—1)

C, =

Further we assume that K'I varies linearly,

ES

Kl(p)I(p) = K;cIk + [K;c+1Ik+1 - K;cIk: ;
k

(9.18)

If we insert expressions (9.16) and (9.18) into Eq. (9.15), it can be integrated analytically.
After some algebra, we obtain

I, =P+ Qplyyq, (919)
where
Gr\ o]
Pk = E+ F _S_ ch [FkSk+chl+HkCQ],
k
G - G
Q, = [E + (Fk - ~—’“> K}C] [EkE - ~—’“K;€+1} : (9.20)
Ok Ok
and
Fk =1- Ek; Gk =1- (1 + Sk)Ek; Hk = QGk - S,%Ek (921)

At the lower boundary we specify a boundary condition (either 0 or 1). Then Eq. (9.19)

can be applied recursively to derive the emergent Stokes vector at the surface.
9.3.4 The convergence criteria

The formal solver DELOPAR computes the Stokes vector at all depth, frequency and
angle points, provided a known source vector is given. To initialize the perturbation loop,
the starting values Spoap for Sgcat (see § 9.3.1) are given as input to DELOPAR, which
delivers new values of the Stokes vector. These new values are then used to compute a
new Syt using the defining Eq. (9.8).

This procedure is repeated until the maximum relative variations of polarization rate

at the surface between two successive iterations is less than 1%. The maximum relative
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variations of polarization rate denoted by pgut, is defined as

» — max ‘P(n) (33, /«‘afp) — pnY) (xa 12 90)‘ (9 22)
surf P P(n) (.’L’, L, (p) . .

Here P™ = \/Q%+ U2+ V?2/I is the degree of polarization at the surface for the nth
iterate, and P = [P(") + P("’l)} /2. The same convergence criteria is used for step 2

and 3 of stage 1 of the perturbation method.
9.3.5 Computational details

The memory and CPU time requirements of the perturbation method is discussed in detail
in Nagendra et al. (2002). In the Hanle-Zeeman scattering theory, the redistribution matrix
contains the magnetic redistribution functions (see Eqgs. (7.21) - (7.26)). The type II and III
magnetic redistribution functions are denoted as Rf; x(,2',©; B) and Rfﬂl,XY(a:, z',0;B),
where X and Y stand for the symbols H and/or F, © the scattering angle, and ¢, ¢ = 0, £1.
Clearly, there are 6 type II and 36 type III magnetic redistribution functions. In contrast,
in the limit of weak field domain based Hanle scattering theory, we need to compute only
one each of the scalar type II and III redistribution functions of Hummer (1962). Therefore
there is a much larger demand on the CPU time and memory in the Hanle-Zeeman case.
For this reason, we restrict ourselves to slabs of optical depth 20 and 200 in this chapter,

for which a smaller frequency band width is sufficient.

It is well known that (I, @, U) are symmetric about z = 0 and V' is anti-symmetric

about z = 0. Thus the frequency integral in Eq. (9.8) can be written as follows:
+o0 4 3

/ dz' Y > Rij(z,m;a',n'; B)Z,(r,2',n')

e i=1 j=1

oo 4 3
:/ dIIZZ[Rij(.T,n; +z',n'; B) + R;j(z,n; —2',n'; B)|Z;(1,2',n'), (9.23)
0

i=1 j=1

for Z;(r,2',n') =1, @, U, when j = 1,2,3. The corresponding equation for V(7,z',n') is

+0oo 4
/ dx’' Z Ry(z,n;2',n'; B)V(r,2',n')

- i=1
+00 4
= / dz' Z[Ri4(x,n; +z',n'; B) — Ry(z,m; —2',n'; B)|V(r,2',n'). (9.24)
0 i=1

Thus the magnetic redistribution functions entering individual elements of redistribution

which are then

matrix R are now computed in the range (0, Tmax) and (—xh.., +Thax),
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folded as shown in the square bracket of Egs. (9.23) and (9.24). This reduces the computing

time by a factor of two. Further, the memory is also reduced, as we store the concerned

!
max

quantities over the range (0, Tyay) and (0, z,.) only.

We recall that in the 2nd step of the stage 1 of the perturbation method (see § 9.3.1),
we use AA version of the individual AD magnetic redistribution functions appearing in the
Hanle-Zeeman redistribution matrix. We call this the AA approximation. The AA func-
tions can be computed from AD functions by numerically integrating over the scattering

angle © as follows:

_ 1 ™
RIqLX(x,x';B) = 5/ Rfl,x(x,m', ©; B) sin ©d0O, (9.25)
0
(see also Bommier 1997b), and
—ad 1 K ’
RIqI?,XY(x,x'; B) = 5/ R?ﬁ’xy(ac,x', ©; B) sin ©d0O. (9.26)
0

The AA functions still contain the physics of frequency redistribution and are very eco-
nomical to compute compared to corresponding AD functions. We use a Gauss-Legendre
quadrature with 31 angle points to numerically compute Egs. (9.25) and (9.26). We remark
that to obtain only the AA solution we skip step 3 of stage 1 and directly go to the stage

2 of the perturbation method, when S, 44 becomes the initial guess for Sgca¢.

Such a replacement of AD functions by their AA counterparts is not new (see e.g. Rees
& Saliba 1982). Although approximate, it gives very reasonable results. In line formation
computations, it is therefore reasonable to use AA functions in preliminary work. Faurobert
(1987) has shown that in the non-magnetic resonance scattering problem the use of AA
type II redistributions instead of AD functions give nearly the same overall behavior of the
linear polarization profile, but it may lead to an overestimate in the near wing maximum by
about 50% when the optical thickness is larger than 10. Nagendra et al. (2002) have shown
for the case of weak field ‘domain-based Hanle redistribution matrix’ (Approximations II
and III of Bommier 1997b) that there are large differences in particular for the U Stokes
parameter, between solutions that are obtained using AA and AD functions. We briefly

examine this important question again, but now for the Hanle-Zeeman regime (see § 9.4.4).

9.4 Results and discussions

Line transfer computations involving the Hanle effect traditionally use only a scalar ab-
sorption coefficient. Here, we explicitly include the full Zeeman absorption matrix, as we

consider intermediate and strong fields, where the Zeeman effect is important.
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The atmospheric model parameters are represented by (7, a, €, r, I'g/T'r), where T is
the optical thickness of the slab, and a is the damping parameter. The Planck function
B, is taken as unity for all the results presented here. The magnetic field parameters are
(I'p,vp, VB, ¢B), where I'g = gwy,/T'r with g being the Landé factor and wy, = 27y, is the
Larmor frequency, vg = gvy,/Avp is the magnetic splitting in Doppler units (Avp), and
angles (95, pp) define the field orientation with respect to the slab normal (see Fig. 8.2).
The magnetic splitting parameter vg is related to the Hanle parameter I'gz through the
relation vg = 2I'ga/[1+(I'1+'g) /T'r], where I'1/T'r = €/(1—e¢) and I'g is the elastic collision
rate. The depolarizing elastic collision parameter is assumed to be D) = D) = 0.5I'y,
while D = (. The details of parameterizing the collisional rates are given in Nagendra
et al. (2002, see also Chapter 8).

The grid resolution in the physical variables is given by the values of (N4, N, N, N,).
The quantity N, represents the number of points per decade in a logarithmically spaced
7-grid with the first depth point Tmin = 1072, unless stated otherwise. The frequency points
are equally spaced in the line core, with a gradual switch over to logarithmic spacing in the
wings, and satisfy the condition ¢(Zmax)T < 1 in the far wings (the atmosphere becomes
so thin at these far wing frequencies that the radiative transfer effects gradually become
insignificant). N, represents the number of frequency points from 0 t0 Zmax. We use a
Gauss-Legendre quadrature for co-latitude ¥ (u € [0, 1]) with N, points, and trapezoidal
quadrature for the azimuthal angles ¢ € [0, 27| with N, points. Unless stated otherwise,
we use Ny = 5 points per decade on a logarithmic scale, N, = 45 (with 2. = 17), N, =7,
and N, = 8. Such a grid resolution requires about 3 GB of main memory and half an hour
to one hour of computing time to obtain AA solutions. To obtain the corresponding AD
solutions, we require about 8 GB of main memory and about 65 to 75 hours of computing
time. Figures 9.2, 9.3 and 9.6 are computed using the AD magnetic redistribution functions,
while Figs. 9.4 and 9.6 are computed using the AA magnetic redistribution functions.

9.4.1 Scattering at optically thin slabs

The classical theory for Hanle-Zeeman scattering developed by Stenflo (1998) considered
only coherent scattering in the laboratory frame. Stenflo (1998, Fig. 3) presents the scat-
tered Stokes line profiles for Hanle-Zeeman coherent scattering in a 90° single scattering
event. To mimic such single scattering event from a Hanle-Zeeman line transfer problem
with PRD (described in § 9.2 and solved by a perturbation method discussed in § 9.3),
we consider an optically thin slab illuminated at the lower boundary by a unidirectional

unpolarized beam of radiation, namely I(7 =T, 2,/ = 0.95,¢' = 0°) = U. Observation
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Figure 9.2: Emergent Stokes I and ratios (—Q/I), (=U/I) and (V/I) profiles formed in an
optically thin medium, are shown as a function of frequency z for (1 = 0.11, ¢ = 0°). The
model parameters are: (T, a, €, r, [g/T'r) = (0.02, 4 x 1072, 0, 107?, 0). A nearly vertical
(' =0.95, ¢’ = 0°) beam of radiation is used as lower boundary condition. The magnetic
field orientation is: (9g, @) = (90°, 45°). Line types are: solid (I's = 0.1, vg = 0.0008);
dotted (0.5, 0.004); short-dashed (2.5, 0.02); dash-dotted (12.5, 0.1); dash-triple-dotted
(62.5, 0.5); and long-dashed (312.5, 2.5). This figure is to be compared with Fig. 3 of
Stenflo (1998), which corresponds to single scattering.

of radiation from the upper boundary, along a nearly tangential direction (¢ = 0.11 and
¢ = 0°) mimics extreme limb observations. For our present studies we consider a solar
chromospheric canopy like magnetic field (fields parallel to the surface of the slab medium)
with 9p = 90° and g = 45°. The Zeeman splitting parameter vg is chosen as a free pa-
rameter. The other parameters used are (T, a, €, r, ['g/Tr) = (0.02, 4 x 1073, 0, 1079, 0).
The optical depth is chosen very small so that the emergent diffuse radiation field is ‘dom-
inated’ by single scattered photons. The first depth point is Tmin = 107, N; = 3 points
per decade, and N, = 5.

The scattering parameter ¢ = 0 and r = 10~ together represent a highly scattering

medium with negligible continuum absorption. The choice of 'y /T'r = 0 corresponds to the
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pure R case and somewhat mimics the Fig. 3 of Stenflo (1998) which describes coherent
scattering in the laboratory frame. A comparison with Fig. 3 of Stenflo (1998) shows that
the shape of these profiles are very similar to the ‘single scattered profiles’ presented there,
except for U/I (which slightly differs because we do not have perfect 90° scattering now,
and U is indeed very angle sensitive). In addition, an admixture of multiply scattered
photons is also responsible for the differences with respect to the single scattering results.

For an optical line Ay = 5000 A with photospheric like Doppler width A\p = 30 mA
and Landé factor of unity, the field strength vg variation that is used here covers magnetic
field strengths in the range 2 to 6000 Gauss, approximately. In the case of very weak fields
(solid line), the (—Q/I) profile is nearly frequency independent with a value of ~ 80%
throughout the profile instead of 100% as in the single scattering case, because of multiple

scattering contributions as already mentioned.

The (—U/I) profile shows Hanle rotation of the polarization plane (the generation
of Stokes U) in the line core |z| < 3.5 (see the solid, dotted and short-dashed lines in
Fig. 9.2), but approaches zero in the line wings |z| > 3.5. This is in agreement with the
traditionally used assumption that, in the case of weak fields, it is sufficient to consider
the combination of using the weak field Hanle phase matrix (see e.g. Landi Degl’Innocenti
& Landi Degl’Innocenti 1988, Stenflo 1994) in the line core, the Rayleigh phase matrix in

the wings.

In the strong field limit (vg = 0.5 (1285 G) and vp = 2.5 (6424 G)), Stokes Q/I, U/I
and V/I appear very similar to the true Zeeman absorption profiles. For vg = 2.5 the

intensity profile is clearly split into a Zeeman triplet.

It is well known that Stokes V' gets completely decoupled from (I QU)" and transfers
independently both in the non-magnetic Rayleigh limit (Chandrasekhar 1950) and in the
weak field Hanle limit (Landi Degl’Innocenti & Landi Degl’Innocenti 1988). Thus, unless
a Stokes V' parameter is given as input, or generated internally through a thermal emission
coefficient, Stokes V is not generated at all. However, in the Hanle-Zeeman scattering
problem, the V' parameter is naturally coupled to (I QU)" and is generated even if no
input V is given or the anisotropic Zeeman absorption matrix is not considered explicitly.
The coupling of V to (IQU)T is weak in the weak field case and thus the V/I signal is
small (see the solid, dotted, and short-dashed lines in Fig. 9.2). This coupling increases
as the field strength increases, and hence V/I also becomes large (see the dot-dashed,
dash-triple dotted, and long dashed lines in Fig. 9.2).
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Figure 9.3: Convergence behavior. Panels (a) and (b) correspond to steps 2 and 3 of stage 1
in the perturbation method (see § 9.3.1), panel (c) to stage 2 (see § 9.3.2). Isothermal self-
emitting slab with model parameters: (7 a, €, r, I's/I'r) = (20, 1073, 107*, 107%, 1) and
field orientation (¥, ¢p) = (30°, 0°). Different line types are: solid (I's = 1, vg = 0.001);
dotted (3, 0.003); short-dashed (10, 0.01); dash-dotted (50, 0.05); dash-triple-dotted
(100, 0.1); and long-dashed (200, 0.2). Notice rapid convergence for (I'p < 10, vg < 0.01)
and slow convergence for (I'g > 10, vg > 0.01) in panel (c). The (I'p = 200, vg = 0.2)
case converges at n = 47 in panel (a) and at n = 60 in panel (c).

9.4.2 Convergence behavior of the perturbation method

A plot of pgyr (defined in Eq. (9.22)) versus iteration number 7 is presented in Fig. 9.3. The
model parameters are (T, a, €, r, ['y/T'r) = (20, 1072, 107%, 107, 1) and field orientation
(98, ¢B) = (30°, 0°). The Hanle I'g parameter is chosen as a free parameter. Panels (a)
and (b) correspond respectively to step 2 and 3 of stage 1 of the perturbation method,
while panel (c) corresponds to the stage 2 in the perturbation method. We note that for
(I'g <10, vg < 0.01), the convergence is reached within 10 iterations in both panels (a)
and (b) (except for (['g = 1, vg = 0.001) in panel (b)). Further, from panel (c) we see
that for (['p < 10, vg < 0.01), the convergence is reached within 5 to 6 iterations. This

clearly shows that the contribution from Zeeman absorption is quite small as expected.

For (I'p > 10, vg > 0.01), the increasing contribution from the Zeeman absorption
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matrix slows down the convergence (see dash-dotted, dash-triple-dotted, and long-dashed
lines in Fig. 9.3c). The numerical method fails to converge for (I'g > 200, vg > 0.2). This
is because the perturbation method is based on the assumption that the source vectors
corresponding to @), U and V serve as perturbation to that of I. For (I'g > 200, vg > 0.2)
this condition is no longer satisfied. In this chapter we have applied the perturbation
method to solve hard problems and used it as far as it gives a stable and converged

solution.

However, for optically thin slabs (for eg. see Fig. 9.2) where the single scattering
dominates the line radiation field, the polarization at every frequency is produced in the
very first scattering and has a small probability of undergoing modifications by subsequent
scattering events (within the slab). For this reason, the perturbation convergence is rapid
(3 to 5 iterations), with hardly any difference from first iteration to the second, and so on,
irrespective of the field strength. Therefore for thin slabs the final solution is extremely
close to the 1st iteration solution. For the same reason, in optically thin slabs, irrespective
of whether one uses a scalar absorption coefficient, or matrix absorption, the convergence
rate is nearly the same.

9.4.3 Hanle saturation of the line polarization

In Figure 9.4 we present the emergent Stokes parameters for a range of field strengths,
varying from very weak to the Hanle saturation regime. The model used is same as that of
Fig. 9.3, but for ' = 200. The Hanle I' 3 parameter is chosen as a free parameter and varied
from 0.1 to 100. The choice of 'y /T'g = 1 corresponds to a nearly equal mix of R" and R.
The results in the left panels are computed using the PALI method of Fluri et al. (2003b),
while the results in the right panels are obtained by solving Eq. (9.7), using the perturbation
technique described in the present chapter with AA Hanle-Zeeman redistribution matrix.
We also show in Fig. 9.5 the convergence behavior of the perturbation method for the
model considered in this section. The convergence rate in the AA case is somewhat larger
than the AD case (presented in Fig. 9.3). Also, the convergence is more uniform in the
AA case, compared to the AD case.

Domain based Hanle PRD theories show a saturation behavior as we go from weak fields
to the intermediate field regime (I's going from 0.1 to 100, see Fig. 9.4a). The @ values
initially decrease (depolarization) and then approach a saturation limit for all frequencies.
The U values initially increase (Hanle rotation of the polarization plane), then decrease

and approach zero at all the line frequencies. Such a saturation behavior is not exhibited
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(a) weak field domain-based theory (b) Hanle-Zeeman theory
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Figure 9.4: Comparison of domain based weak field theory with the full Hanle-Zeeman the-
ory, for a range of field strengths varying from very weak to the Hanle saturation regime, for
p = 0.11 and ¢ = 0°. Model parameters: (T, a, €, r, Tg/Tr) = (200, 1073, 107*, 1079, 1).
Magnetic field orientations: (g, vp) = (30°, 0°). Isothermal, self-emitting slab. The
Hanle I'p parameter is: 0.1 (solid), 1 (dotted), 3 (dashed), 10 (dot-dashed), 50 (dash-
triple-dotted), and 100 (long-dashed). We note that in the U panel of Fig. 9.4b the long-
dashed line has been rescaled by the factor 2 x 10* and not by 10° that has been applied
to the other lines in the panel.
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Figure 9.5: Convergence behavior of the perturbation method for the model considered in
Fig. 9.4. Panel (a) corresponds to step 2 of the stage 1 in the perturbation method (scalar
absorption coefficient), and panel (b) to the stage 2 of the perturbation method (matrix
absorption). We recall that to obtain the AA solution we skip the step 3 (AD computation)
of stage 1 in the perturbation method. Line types have the same meaning as in Fig. 9.4.

in the Hanle-Zeeman theory (see Fig. 9.4b). For 'y > 10, the Zeeman absorption matrix
plays a significant role, and we get a smooth transition from the scattering dominated weak
field Hanle effect to the Hanle-Zeeman effect for arbitrary fields. The contribution from
the Zeeman absorption is responsible for larger values of Stokes U. For example Stokes U
in the I'g = 100 case (see long-dashed line in Fig. 9.4b) is 5 times larger when compared

to the Stokes U profiles computed using smaller values of ['g.

From Fig. 9.4a we can define various field strength regimes for the Hanle effect. The
Hanle effect becomes operative when the Zeeman splitting (gv1,) is comparable to the
small damping width (I'r) of the line transition. Thus the different field regimes for the
Hanle effect can be defined in terms of the parameter I'g. The value of I'g in the range
0 < I'p < 0.2 may be considered as weak field regime for the Hanle effect, since the
scattering polarization in this regime is close to the Rayleigh scattering polarization. The
intermediate field regime of the Hanle effect corresponds to the range 0.2 < I'p < 5 (see
also Stenflo 1994, p. 228), with I'p = 1 representing the optimum field strength for which
the Hanle effect is most significant. The Hanle effect finally saturates for 'y > 5 and hence
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I'p > 5 may be considered as the strong field limit for the Hanle effect.

Similarly we may define the weak, intermediate and strong field regimes for the Zeeman
effect. The Zeeman effect becomes operative when the Zeeman splitting (gu1,) is comparable
to the much larger Doppler width (Avp) of the line. Thus we define the different field
regimes for the Zeeman effect in terms of the parameter vg. Weak field regime of the
Zeeman effect corresponds to vg < 0.3. The intermediate and strong field regimes are
respectively 0.3 < vp < 1.2 and vp > 1.2 (see Stenflo 1994, p. 299). Clearly, the Hanle and
Zeeman effects are two different physical effects. Further, it is important to note that the
intermediate Hanle regime and the intermediate Zeeman regime are very different, with

little overlap between the two.

The new aspect of the Hanle-Zeeman line transfer theory is that it covers all the field
strength regimes defined above, hence the name Hanle-Zeeman regime. The polarized PRD
scattering for all field strengths (from zero field to completely split lines) is described by
the Hanle-Zeeman redistribution matrix, while the absorption effects are accounted for by
the Zeeman absorption matrix. Both the parameters I'g and vg enter the calculations,
but in different ways. The Hanle parameter ['g appears in the scattering part, while the
parameter vg appears both in the absorption part (through ®) and in the scattering part
(through the magnetic redistribution functions, see Chapter 7). I'g and vp are related,
but the relation is model dependent. For the model chosen here, the Zeeman absorption
effects become significant for (I'y > 10, vg > 0.01). In this regime the scattering effects
can only be correctly included through the Hanle-Zeeman redistribution matrix. To obtain
a self-consistent solution one therefore has to solve the full Hanle-Zeeman line transfer

problem.

9.4.4 Comparison of angle-dependent and angle-averaged solutions

In Fig. 9.6 we compare the AD (solid lines) and AA (dotted lines) solutions for the Hanle
and Hanle-Zeeman regimes. The model used is the same as that of Fig. 9.3. A detailed
comparison of AA and AD solutions for the weak field Hanle effect are presented in Na-
gendra et al. (2002). They show that for the effectively thin slabs (eI" <« 1) the AA and
AD solutions show quite a large difference in () and U (which decreases for effectively thick
case). We re-confirm their result for the Hanle regime from the present computations. Our
numerical experiments show that as we increase I'g, the differences between the AA and
AD solution decreases and vanishes for I'g = 200. This behavior can be attributed to

the progressive dominance of the Zeeman absorption effect (which is blind to the choice of
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(a) Hanle regime (M,=1) (b) Hanle-Zeeman regime (I';=200)

0 2 4 6 0 2 4 6
Frequency Frequency
Figure 9.6: Comparison of AA and AD solutions. The model used is the same as that of

Fig. 9.3. Notice that as the field strength increases, the differences between the AA and
AD solutions become insignificant (panel (b)).
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AA or AD functions in the scattering part), over the scattering effects. It is interesting to
note that the Stokes V' parameter is also insensitive to the choice of AA or AD functions

irrespective of the field strength as shown in Fig. 9.6.

9.5 Concluding remarks

A general form of the line radiative transfer equation applicable for a two-level atom (J =
0 — 1) in arbitrary field strengths is presented and solved. We use a standard perturbation
method, extended appropriately to include both the Zeeman absorption matrix and the

Hanle-Zeeman scattering redistribution matrix.

To reduce the complexity of the PRD treatment in the Hanle scattering problem it has
been common to use domain based redistribution matrices. We show that such approaches
are indeed valid for weak fields. For intermediate fields, it is necessary to apply the Hanle-

Zeeman PRD line transfer problem presented in this chapter.

The scattering as well as absorption mechanisms in intermediate fields are self-consistently
included in the transfer equation. In the Hanle-Zeeman line transfer problem the Stokes V'
parameter is coupled to (I, @, U) and is generated not only by Zeeman absorption but also
by scattering. We have discussed the weak, intermediate, and strong field regimes for both
Hanle and Zeeman effects independently. The Hanle-Zeeman line transfer theory covers all
these regimes, from zero field to the completely split line. For the model used to present
the numerical results in this chapter, we conclude that one has to solve the Hanle-Zeeman
line transfer problem to obtain self-consistent solution for (I'g > 10, vg > 0.01).

In the solar atmosphere one encounters fields of all magnitudes (milligauss to kilogauss).
The method developed here addresses this complex problem of Hanle-Zeeman line transfer
in the presence of arbitrary field strengths. The weakness of the perturbation method is its
great demand for computer memory and CPU time (because it solves the non-axisymmetric
Stokes vector transfer equation explicitly). We use the perturbation method, because the
axisymmetric form (the so called reduced form) of the concerned transfer equation is yet
to be derived. A more elegant and powerful approach would have been to develop a
PALI (Polarized Approximate Lambda Iteration) method, which uses the more simple
axisymmetric form of the transfer equation. As a first step in this direction we develop

such a method in Chapter 10 to solve the transfer problem with weak field Hanle scattering.



Chapter 10

A PALI method for Hanle effect with partial
redistribution!

10.1 Introduction

Hanle effect refers to the line polarization caused by resonance scattering of radiation in
the presence of an external weak magnetic field. Resonance scattering in non-magnetic
media itself produces polarization of the scattered radiation. It is caused by an unequal
population of degenerate (non-split) Zeeman substates. Such unequal population naturally
arises in solar atmospheric conditions — because the radiation field that illuminates the atom
is anisotropic (limb darkened/ brightened), excepting in the deepest layers. In this way the
atom gets ‘polarized’ (temporary phase coherences are established between the degenerate
substates). In a scattering event, the ‘atomic polarization’ is transferred to the outgoing
photon. This ‘resonance polarization’ mechanism with the relevant scattering phase matrix,
and radiative transfer equation are described in Chandrasekhar (1950), Stenflo (1994),
Landi Degl’Innocenti & Landolfi (2004). The presence of a weak magnetic field (such that
the electron Larmor frequency is of the same order as the upper state life-time) causes two
important modifications to the non-magnetic resonance scattering polarization — (a) the
plane of polarization is rotated with respect to the non-magnetic value, (b) the degree of
linear polarization is changed with respect to the corresponding non-magnetic case (Stenflo

1978, and references cited therein).

The Hanle effect has a good diagnostic potential to measure weak directed fields, as in

the case of prominences, or canopy like chromospheric structures, and turbulent magnetic

! This chapter is based on the paper which is under review: Sampoorna, M., Nagendra, K. N., & Frisch,
H. 2008, JQSRT (under review)
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fields (see e.g. Trujillo Bueno 2003b, and references cited therein). The analysis of Hanle
scattering polarization in the polarized line spectrum of Sun usually requires the solution of
a radiative transfer equation in which the scattering term involves a redistribution matrix
that describes the correlation in frequency, angle and polarization between the incoming

and outgoing radiation.

In the case of subordinate lines (which also happen to be generally weak) the assumption
of complete redistribution (CRD) is reasonable. It allows one to decouple the polarization
from frequency redistribution effects which are described by a scalar redistribution function
independent of the scattering angle. When such a decoupling exists, the Stokes parameters
can be expanded in cylindrically symmetric irreducible components (Faurobert-Scholl 1991,
Frisch 2007). The decomposition method of Faurobert-Scholl (1991) is based on azimuthal
Fourier expansions of the radiation field and of the “weak field Hanle phase matrix” (Landi
Degl'Innocenti & Landi Degl’Innocenti 1988, Stenflo 1994). In Frisch (2007), it is shown
that the Stokes vector decomposition is readily obtained when the Hanle phase matrix
is expressed in terms of the irreducible tensors for polarimetry 75 (i, m) introduced by
Landi Degl’Innocenti (1984, 1985; see also Landi Degl’Innocenti & Landolfi 2004, p. 208).2
In previous works, the Stokes vector decomposition into irreducible components has been
employed to develop PALI (Polarized Approximate Lambda Iteration) methods for CRD
and a poor man’s version of partial frequency redistribution (PRD) in which frequency
redistribution is angle-averaged and decoupled from polarization (see Nagendra et al. 1998,
1999, Fluri et al. 2003b). Reviews can be found in Nagendra (2003a) and Nagendra &
Sampoorna (2008). The decoupling between frequency redistribution and polarization was
first suggested in Rees & Saliba (1982) for resonance scattering. A PALI method for
resonance scattering with PRD is developed in Paletou & Faurobert-Scholl (1997).

Taking properly into account PRD effects is of fundamental importance to interpret the
polarization of resonance lines (which happen to be generally strong). Examples of such
lines are: Ca1 4227 A line, Can1 H and K lines. An exact theory of polarized scattering
with PRD in the presence of a magnetic field of arbitrary strength was developed by
Bommier (1997b, hereafter VB97b). It is based on a QED approach, holds for a two-level
atom with unpolarized ground level and takes into account elastic and inelastic collisions.
Explicit form of the redistribution matrix elements in the laboratory frame have been
derived in Chapters 7 and 8, for a normal Zeeman triplet (J; = 0, J, = 1). This is
referred to as the Hanle-Zeeman redistribution matrix since it covers the full field strength

2The variable i (i = 0,...,3) refers to the Stokes parameter and m to a ray direction.
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regime from zero field to the completely split lines. VB97b has also presented useful
approximations in the limit of weak field Hanle scattering for practical applications, namely
Approximations I, II and III. In Approximation I, the Stokes V' gets decoupled from the
other Stokes parameters, but the generalized profiles @g’K(Jl, Ju,&) remain coupled to
the irreducible spherical tensor 7221( (i,m), the Hanle rotation angle, and the branching
ratios (see Egs. (80) and (81) of VBI7b), so that the redistribution matrix continues to
couple frequency redistribution and polarization. Approximations II and III are based
on asymptotic expansion of the generalized profiles @g’K at line center and in the wings,
and lead to a decomposition of the frequency space into several domains. In each domain
frequency redistribution is decoupled from polarization. Approximation IT uses the angle-
dependent (AD) redistribution functions, and Approximation III the corresponding angle-

averaged (AA) functions.

A PALI method for the Hanle effect with frequency domain decomposition is developed
in Fluri et al. (2003b, hereafter PALI6) for Approximation III. Here we generalize the re-
distribution matrix of Approximation III to investigate quantitatively the consequences
of the asymptotic expansions of the generalized profiles. We start from Approximation
I of VB97b describing the weak field Hanle effect, and angle-average the Doppler broad-
ened generalized profiles. In this new approximation, referred to as Approximation I-a,
frequency redistribution is angle-averaged as in Approximation ITI, but remains coupled
to polarization. Also there is no frequency domain decomposition. A decomposition of
the Stokes vector in azimuthally symmetric components is still possible (Frisch 2007) and
is used to construct a PALI method, hereafter referred to as PALI7. Stokes parameters
calculated with the PALI7 method are compared to results obtained with PALI6 in order
to evaluate possible inaccuracies due to the asymptotic expansions.

In § 10.2 we present the redistribution matrix in the laboratory frame, under the Ap-
proximation I-a. In § 10.3 we write the radiative transfer equation for the real irreducible
components of the Stokes parameters. The PALI7 method is presented in § 10.4. Its nu-
merical implementation and comparisons with other methods are presented in § 10.5. We
compare with the PALI6 method, and also with a perturbation based numerical method
developed to solve the polarized line transfer equation including both Zeeman absorption
matrix and the Hanle-Zeeman redistribution matrix (Chapter 9). We consider effectively
thin and effectively thick self-emitting slabs, and the interesting and a more difficult case
of conservative scattering in an irradiated slab. In § 10.6 we discuss the role of elastic
collisions on Hanle scattering. Conclusions are presented in § 10.7. In the Appendix L, we

list the elements of a magnetic kernel directly related to the redistribution matrix elements.
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10.2 The weak field Hanle redistribution matrix

Following VB97b, we write the redistribution matrix as
R;i(z, n; o, n'; B) = Ri}(z, n; o', n'; B) + R} (z, n; 2/, n'; B). (10.1)

The indices 7, 7 = 0, 1,2, and 3 correspond to the four Stokes parameters, B is the mag-
netic field, (z, ') are respectively the outgoing and incoming frequency in Doppler width
units with zero at line center (see Eq. (7.15)), and (n,n') the outgoing and incoming ray
directions. The indices II and III refer to Hummer (1962) type II and III PRD mechanisms.
The scattering angle between n and n' is denoted as © (see Fig. 8.2). Approximation I-a
is constructed by averaging the Doppler broadened generalized profile over the scattering

angle.

The elements of the redistribution matrix for Approximation I-a can be expanded as
in VB97b and Frisch (2007). For a normal Zeeman triplet, in the reference frame where
quantization axis is parallel to the magnetic field (which we call magnetic reference frame),

they may be written as

R;U=) D To(6,n) Zgy (@, 2 B) (—1)9T (5, n'), (10.2)
KQ

with r
A '"B) = R CNEFE (42 B 10.3
KQ(:E?‘/E? ) PR+ FI +PE +ingQ( ) Q,H (x’x’ )’ ( )

and
r Iy — D5 —

Z}EQ(.T,QCI;B) = > - (EK,K’K(xﬂxlvB)' (10.4)

- Tr+T1+ D +iwgQ Tr + 1+ Te +iwpgQ@ @™
The indices K and () are integers coming from the multipolar decomposition of the den-
sity matrix elements into irreducible spherical tensors. The index K takes the value
K =0,1, 2, and for each value of K, the range in ) is —K < ) < K. In the above expres-
sions 55 I?(:E, z', B) denotes the AA version of the AD composite redistribution function
@gé{(x, z',0; B) introduced in § 8.2.1 (see Eq. (8.9)). Similarly ESIﬁK(aE, z', B) is the AA

version of the corresponding AD composite redistribution function q)gIKHK(x, z',©; B) in-

troduced in § 8.2.2 (see Eq. (8.12)). The explicit expressions for the angle-dependent CIJgIII(
and @g:fl(fK are given in Appendix H. They can be expressed in terms of the magnetic

redistribution functions introduced in Chapter 7.

We recall that in Egs. (10.3) and (10.4), I'g is the radiative rate, I'1 and ['g are inelastic
and elastic collision rates respectively. DU represents the rate of destruction of the 2K -



10.3. Transfer equation for the real irreducible Stokes vector components 257

multipole by elastic collisions (note that D(® = 0). wy, is the Larmor frequency and g is

the Landé factor of the upper level.

In the atmospheric reference frame (ARF), defined with the Z-axis along the normal
to the atmosphere (see Fig. 8.2), the elements of the redistribution matrix may be written
(see e.g. Frisch 2007, LL04) as

Ry =Y 750, n) NS (@, 2 B) (-1)9 T, (5, n). (10.5)
KQQ'
In this chapter the direction of the positive () corresponds to linear polarization perpen-
dicular to the limb (reference angle v = 0°). The magnetic kernel is of the form
C5{621,1111(33 z'; B) = ¢(@ Qs Z deson (98)ding (— ﬁB)ZHg,%(x z'; B), (10.6)
QII
where ¥ and ¢p define the orientation of the magnetic field in the ARF. Explicit ex-

pressions for the reduced rotation matrices d3,,,, can be found in Landi Degl'Innocenti &
Landolfi (2004, Table 2.1, p. 57).

10.3 Transfer equation for the real irreducible Stokes vector com-

ponents

For redistribution matrices of the type written in Eq. (10.5), it is shown in Frisch (2007,
§ 6), that the Stokes vector has an expansion in terms of the spherical tensor 7 (i, n),

which has the form
Ii(T,.T,’n) = Z%K(%n)fg(ﬁ%ﬂ) (107)

Here n is defined by its polar angle ¥ and ¢ with respect to the ARF (see Fig. 8.2) and
= cos¥. If we only consider linear polarization, the index K takes the values 0 and 2.
Hence only 6-components are needed to represent the Stokes parameters I, (2, and U. The

components 1, 5 are complex, and satisfy the same conjugation relation as the QK , namely
K\* K
(15)" = (—D)%IL%,. (10.8)

Here we work with the real functions IéK = §R(Ig ) and IZ;K = %(Ig ) Note that Ig are
real for ) = 0.

In matrix notation the transfer equation for the real components may be written as

OR (T, x,
" (1,7, p)

or = [¢p(z) + ] [R(7, 2, n) — S(7,2)], (10.9)
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where R = ([0 B I IY 21 I%'Q)T, and 7 is the line-center optical depth. The absorption
profile ¢(x) is a normalized Voigt profile function. r is the ratio of continuum to integrated
line absorption coefficient. The Stokes parameters I, () and U and the components of R

are related through the following expressions (see Frisch 2007)

1
I(r,z,n) = IJ+ ——(3cos>¥ — 1) 12 — /3 cosVsin®(I** cos p — II* sin )

2v/2

3
+£ 1 — cos? ) (I¥% cos 2¢ — I3 sin 2¢), 10.10
B 2
Q(r,z,mn) = _ 3 1—cos?9) I2 — V/3cosdsind IXQCOSQO—IYQSiHQO
93 0 1 1

V3

—22(1 + cos® 9) (I3 cos 2 — I3 sin 2¢), 10.11
2 2 2

Ulr,z,n) = V3sin9 (I sin ¢ + I¥* cos ) + V3cos 9 (I sin 2 + I3* cos 2¢).  (10.12)

To simplify the notation the dependence on 7, x,  of the functions I, I* and ]g)K is
not explicitly indicated. We remark that Stokes I is controlled by IQ, Stokes @ by I2 and
Stokes U by I and I} for Q # 0.

The 6-component source vector in Eq. (10.9) is of the form

¢(2)8(7,7) +rg(7)

o) +r
Here G(7) = (B,, 00000)T is the primary source vector with B,, the Planck function and
the line source vector is given by

S(r,z) = (10.13)

+00 N7 ' B
Si(r,) = €G(r) + / N2 B) 7(r ot)dr, (10.14)
o B(@)
where € = I'1/(I'r + I'1) is the destruction probability per scattering. In the above integral

N"(z, ', B) is a 6 X6 matrix constructed with the elements of the magnetic kernels ( gc’;,l—i-

é(él,n) and J(7,z') is the 6-component mean intensity vector defined by

1 +1
J(r,2') = 3 (" R(r,x', i )dy. (10.15)

-1
The elements of 6 x 6 matrix ¥(u) are given in Landi Degl'Innocenti & Landolfi (2004,
Appendix A20, see also Frisch 2007). The elements of the magnetic kernel N"(x, z', B) are
given in Appendix L. For the brevity of notation, we specify the functional dependence

from now on only when necessary and as subscripts.
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10.4 The PALI7 iterative method

In this section we describe the basic equations of PALI7 method used to solve the line
transfer equation (10.9) iteratively. The main difference between the domain based PALI6
and the present method is in the definition of the magnetic kernel N"(z, 2/, B). In PALIS6,
the (z,z') frequency space is divided in different regions (domains) with constant value of
N" in each region. In PALI7 the magnetic kernel N" varies continuously with z and z'.
Several equations in the method are already presented in Nagendra et al. (1999) and Fluri
et al. (2003b). We recall the main ones for the sake of clarity.

10.4.1 The details of the iteration scheme

The formal solution of the Hanle transfer equation may be stated in terms of the full

Lambda operator as
T = Az[sz]a (10'16)

where A, operates on the quantity within [ ]. By defining a local, monochromatic approx-

imate Lambda operator A} as
A=A, +0A, =A + (A, —A]), (10.17)

we can set up an iterative scheme to compute the source vectors, namely

8£n+1) _ S;n) + 585(:), (10.18)
Sl(,T—l) _ Sl(’V;) + 585’?, (10.19)

where the superscript (n) refers to the nth iteration step. From Egs. (10.17) and (10.18)
it follows, by keeping only terms up to first order, that

T o g A [55(;)], (10.20)

Inserting Eqgs. (10.14) and (10.20) into Eq. (10.19) we obtain an equation for the corrections

to the line source vector (5Sl(,"$) :

ss [T NerB e [5s0) gr  pi 1021
L pr’ a! Lo | 0T =Ty - (10.21)

In deriving the above equation we have used the relation

AL [ped81 4] = peA; (0804 .- (10.22)
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It holds because p, = ¢, /(¢ + r) is a scalar quantity, and A% is a linear operator. In

Eq. (10.21), the frequency dependent residual vector is given by
r) =80, — 8. (10.23)

The formal line source vector is obtained from

+oo N
8. = €G(1) + / 7”;; B g®ay, (10.24)
where the mean intensity J™ = A, [8;”)] is computed using a short characteristic formal
solver (FS). The iteration algorithm is a standard one, described for e.g. in Fluri et al.
(2003b, § 3.1).

10.4.2 Calculation of source vector corrections

The crucial step of the iterative method is the calculation of the source vector corrections
(581(’7;). Here we use the frequency by frequency (FBF) method developed in Paletou & Auer
(1995) to compute these corrections. They are found from the system of linear Eqs. (10.21)

which can be organized as the formal expression
AéS, =, (10.25)

where the vector 7 is the right hand side of Eq. (10.21). At each depth point A is a
6N, x 6N, matrix with N, the number of frequency points, and r has a length 6/V,. Each
element of A corresponding to a given value of z and ' is a 6 x 6 block denoted by A®
and given by the expression

N’
A} = 0,;E — 7”ij;; i, =1,2,-++ Ny. (10.26)

i
Here E is the 6 x 6 identity matrix. d;; is the Kronecker’s symbol. The indices (7, j) now
refer to the discretized values of (x,z") respectively. The matrix A is computed only once

as it does not change during the iteration.
10.4.3 Angle-averaged magnetic redistribution functions

The elements of the magnetic kernel N"(z, z', B), given in Appendix L, contain frequency
redistribution functions denoted as EIqLX and RI(II{XY with X and Y standing for the Voigt
or Faraday—Voigt functions, and ¢,¢' = 0, +1. They are defined in Egs. (L.13) and (L.45)
and are calculated by numerical integration. For this purpose we use a Gauss—Legendre
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Figure 10.1: Angle-averaged magnetic redistribution functions of Hummer’s type II (panels
(a) and (b)) and type III (panels (c) — (f)) for ¢ = ¢' = 0. Damping parameter a = 1073,
Different line types correspond to the incoming frequencies: z' = 0 (solid), 1 (dotted), 2
(dashed), 3 (dash-dotted), 4 (dash-triple-dotted) and 5 (long-dashed).
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quadrature with 31 angle points. There are 6 components of the type IT and 36 of the type

ITI. We now present their main properties.

It is well known that the Hanle effect has its largest sensitivity for I'g = 1, where I'p
is the Hanle efficiency factor defined by I'g = gwr,/T'r. In the solar atmosphere, I'g = 1
corresponds to a field strength of a few Gauss for a electric-dipole transition. For such
weak fields the different ¢ components of FIqLX, and (g, ¢') components of RI‘IS:XY differ very
little (in the 4th digit after the decimal). However, the differences between components
with different ¢, ¢’ are significant when we form quantities like fqltll, (see Eq. (L.12)), which
ensure of a smooth transition from Hanle effect in the line core to Rayleigh scattering in

the wings.

In Fig. 10.1 we present the components corresponding to ¢ = ¢’ = 0, the other com-
ponents being graphically identical. The damping parameter a of the Voigt absorption
profile ¢(x) = H(z,a)/\/7 is taken equal to 1073, The function EIOLH shown in Fig. 10.1a
is the usual angle-averaged Hummer redistribution function of type II (see e.g. Jefferies
1968, Mihalas 1978). The new type II redistribution function, FIOLF has the shape of a
typical Faraday-Voigt function for ' = 0. As x’ increases, E&F also exhibits a frequency-
coherent behavior with decreasing peak value, quite similar to that of R&H. However for
x> 2 R&F is larger than EI(LH (compare in Fig. 10.1 the panels (a) and (b) where we
show R&H /o(z") and RIOLF). This can be ascribed to the fact that Faraday-Voigt function

decreases slowly compared to the Voigt function.

The AA magnetic redistribution functions of type III are presented in Figs. 10.1c - f.
In Fig. 10.1c, EI(}(I{HH is the usual angle-averaged Hummer redistribution function. The
AA redistribution functions of type III are very similar to the corresponding AD func-
tions for a scattering angle of 90°. We now use this analogy to analyze them. For a 90°
scattering angle, the AD type III functions are of the CRD type and may be written as
R xy = X(2',a)Y (z,a)/7 (see Eqs. (7.47), (7.50) - (7.52)). This expression shows that
the variations with x are determined by Y'(z,a), and the overall amplitudes by X (2, a).
For this reason, to show the z-dependence of the functions EIOI(I)’HY for different values of =’
in the same panel we rescaled them by ¢(z') = H(z',a)//7. For Fﬁ?}FY (panels (e) and
(f)) this rescaling is not needed because F'(2,a) decreases slowly for large 2’. With the
simple approximation given above, it is easy to understand that the shapes of RﬁiHH and
EﬁiFH are Voigt like and the shapes of Fﬁ(I),HF and RI(}(I)’FF are Faraday—Voigt like. We note
that for 2’ = 0, the functions EI(;(I]’FY are zero because F(0,a) = 0.

It can be seen in Fig. 10.1f that the RI(;(I),FF fall very slowly and hence that a large



10.5. Numerical results and tests of the PALI7 method 263

frequency bandwidth is needed in the radiative transfer calculations to correctly handle
this function. Also these functions should be calculated with a great numerical accuracy
since they enter as differences in the magnetic kernels elements (see Egs. (L.12), (L.39) -
(L.42)).

10.5 Numerical results and tests of the PALI7 method

In this section we calculate the emergent Stokes parameters from a plane parallel slab
characterized by a set of input parameters (T, a, €, 7, 'y /T'r), where T is the optical thick-
ness of the slab. The other parameters have been introduced above. The magnetic field
is characterized by a set of three parameters (I'g, g, ¢p). We consider isothermal self-
emitting slabs of thickness 7= 200 and 7' = 2 x 10° (in §§ 10.5.1 and 10.5.2 respectively),
and also an irradiated slab with conservative scattering of thickness 7" = 200 (in § 10.5.3).
In §§ 10.5.1 and 10.5.2 we assume pure Ry, i.e. I'y/T'r = 0. Other values of this ratio
are considered in § 10.6. In § 10.5.3, we assume I'y/Tg = 0.1, i.e. a mixture of Ry and
Rypr. In all computations shown in this chapter the Planck function B, is set to unity and

depolarizing collision rate D® to 0.5I;.

The PALI7 method is tested for numerical performance and accuracy by comparing
the results obtained with PALI7 to those obtained with PALI6 (Fluri et al. 2003b) and an
independent perturbation method for Hanle-Zeeman scattering (Chapter 9).

In our previous PALI methods for the Hanle effect with PRD (namely, Nagendra et
al. 1999, Fluri et al. 2003b), the redistribution matrix is factorized into a product of
angular phase matrices of Hanle or Rayleigh type and of scalar frequency redistribution
functions of Hummer type II and III. Since the magnetic kernel remains outside the integral
in Eq. (10.21) within each frequency domain, it was possible to apply the “core-wing
separation” method introduced by Paletou & Auer (1995), also called the CRD-CS method.
This method amounts to calculate the integral over frequency separately in the core and
in the wings. It is very efficient. In the present problem we are dealing with a set of
magnetic redistribution functions which are not only of Hummer’s standard type II and
ITI, but also of a new type involving plasma dispersion functions (see Fig. 10.1, and also
Chapter 7). It is not clear how to apply the existing core-wing separation techniques to
these new magnetic redistribution functions. For this reason, we restrict ourselves to a
FBF method which is however computationally more expensive than a CRD-CS method
as discussed below. The convergence properties of the FBF iterative method are very
similar to that of the CRD-CS method used in Nagendra et al. (1998, 1999) for polarized
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problems. Therefore we do not elaborate on this point in the present chapter.

The perturbation method for Hanle-Zeeman scattering has been set up to handle res-
onance scattering in magnetic fields of any strength. It is based on the Hanle-Zeeman
redistribution matrix (see Bommier 1997b, Bommier & Stenflo 1999, Chapters 7 and 8).
Here we are using this method with the AA version of the magnetic redistribution func-
tions. This method has been described in detail in § 9.3. It must be said that this method
works only when the Stokes parameters (), U, and V' are small in magnitude compared to
Stokes I. In this sense it can be called a weak polarization method (only several percents
in the degree of polarization) but can work up to I'g ~ 200. For this value of I'g, the
magnetic field is around a thousand Gauss for a typical solar line, but Stokes V' remains a

few percent of Stokes I.

10.5.1 Thin slab model

Figure 10.2a is devoted to the ”thin” slab (7" = 200) atmosphere. In such a medium, the
I profile is a self-absorbed emission line because the optical depth in the wings become
smaller than unity. The model parameters are (T, a,¢, 7, T'y/Tr) = (200,103,107%,0,0)
with the magnetic field parameters (I'g, ¥, ¢5) = (1,30°,0°). For accurate computation
of Stokes vector, we have used an optical depth resolution of 9 points per decade in a
logarithmic scale, covering the range 1072 < 7 < 200, a Gaussian quadrature with 7 co-
latitudes [0 < p < 1], and a 45 point non-uniform frequency grid with the last frequency
point .« = 17. In the case of the perturbation method an integration over azimuth angle
@ is also involved as we solve the non-axisymmetric Stokes vector transfer equation. For

azimuthal integration, we use 8 point trapezoidal grid in the range [0 < ¢ < 27].

Figure 10.2a shows that our PALI7 method gives results that are quite similar to the
perturbation method and to PALI6. Only small differences are observed for Stokes U.
This good agreement implies that for thin slabs and weak magnetic fields, PALI7 is a good
approximation for the more general perturbation method and also that Approximation ITI
of VB97b with the domain decomposition implemented in PALI6 is a good approximation
for the more general Approximation I-a implemented in PALI7. For thick slabs, large
differences between PALI6 and PALI7 are observed for Stokes U (see Fig. 10.2b).

In Table 10.1 we compare the CPU time and memory requirements of the above men-
tioned three methods for the model corresponding to Fig. 10.2a. The main differences in
memory requirement and CPU time between the PALI7 and PALI6 is due to the follow-
ing reasons: (i) In PALI7 we need to compute 6 type II and 36 type III angle-averaged
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(a) T=200 (b) T=2x10°
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Figure 10.2: Emergent Stokes parameters for the direction y = 0.11 and ¢ = 0° computed
with different numerical methods. Isothermal self-emitting slab with the model parameters
(a, €, r, Tg/Tr) = (1073, 107%, 0,0), and the magnetic field parameters (I'g, Up, v) =
(1, 30°, 0°). Panel (a) “thin” slab with 7" = 200. Panel (b) “thick” slab with T' = 2 x 10°.
Solid line: PALI7 method, dashed line: PALI6 method, dotted line: perturbation method
for T = 200.
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Table 10.1: CPU time and memory requirements for PALI7, the PALI6 and perturbation
methods. The model parameters are the same as those used for Fig. 10.2a. The computa-
tions are performed on Sun Fire V20z Server, 2385 MHz with a Single-core AMD Opteron

Processor.

Method CPU time Memory
(second) (MB)

PALI6 16 6
PALI7 292 7
Perturbation 2141 3000

magnetic redistribution functions, compared to one for each type II and III in PALI6. (ii)
Further we need to invert and store a 6 N, x 6 N, matrix for Ny depth points because we
are using a FBF method instead of a core-wing separation method (see §§ 10.4.2 and 10.5).
The perturbation method is significantly more demanding in both CPU time and memory
requirements than either PALI6 or PALI7 because we are solving the transfer equation for

the non-axisymmetric Stokes vector.
10.5.2 Thick slab model

Figure 10.2b is devoted to the “thick” slab model with 7' = 2 x 10°. The other model
parameters are the same as that of Fig. 10.2a. The calculations are performed with a
logarithmic optical depth scale having a resolution of 5 points per decade, 7 point Gaussian

quadrature for [0 < p < 1], and a 71 point non-uniform frequency grid with ., = 100.

Figure 10.2b shows the emergent Stokes parameters computed with PALI7 (solid line)
and PALI6 (dashed line) methods for g = 0.11 and ¢ = 0°. For the moment we have not
been able to apply the perturbation method to very thick slabs. The profiles of Stokes I
and @ show a good match. Unlike the effectively thin case (¢I' < 1 shown in Fig. 10.2a),
there are some considerable differences in Stokes U profile. Differences in U are mainly
in the peak amplitude at the transition between core and wings, which corresponds to a
cut-off frequency in the PALI6 method.

We show in Fig. 10.3 the frequency and angle dependence of the real and imaginary
parts of Ig corresponding to the model used in Fig. 10.2b. We observe limb darkening in
the case of I) (which controls Stokes I) and limb brightening in case of I (which controls
Stokes @). The 2nd harmonic components I}2, IY?> show limb darkening and the I3?, IJ?

limb brightening. Together these four components contribute to the shape of the U profile
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Figure 10.3: Real irreducible components for the model of Fig. 10.2b. Different line types
are: solid line (u = 0.11), dotted line (u = 0.5) and dashed line (u = 0.89). We show I§*
for a larger frequency bandwidth to show the far wing behavior. Notice that IJ and I3 for
4 = 0.11 have nearly same shape as the Stokes I and @) of Fig. 10.2b.
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in Fig. 10.2b.

To study the relative difference between the solution obtained from PALI6 and PALI7,
we plot the difference Wg — 6[5 | for the real and imaginary parts of IX, with 7 and
6 denoting PALI7 and PALI6 respectively. Figure 10.4 shows this difference for a self-
emitting slab solution presented in Fig. 10.3. The relative difference between the domain
based and non-domain based solutions is largest around the cut-off frequency = ~ 3. For
IE, the relative difference is of the order 1%, while for other components it can be as
large as 100%. Clearly the non-domain based PRD is a better choice for uniform accuracy
all through the Stokes U profile. In Stokes I and () the simple domain based PRD still

provides a correct solution to a reasonable accuracy of few percent.

10.5.3 Irradiated slab model

In this section we present a benchmark which is interesting from both the physical and
numerical viewpoint — namely conservative scattering (e = 0, » = 0) in a medium irradiated
by an unpolarized incident radiation R(r = T,z,u) = B,,U, with U4 = (100000)7,
on its lower boundary. The numerical errors (arising due to poor normalization of the
redistribution and profile functions, or due to the accumulated round off errors that build
up after a large number of scatterings if the medium is very thick) can easily be quantified
in this set up. This is done by checking “flux conservation”, namely that the sum of the
emergent fluxes at both the boundaries remains equal to the incident flux. In the case of

PALI7 flux conservation is satisfied to an accuracy of 1078.

Any scattering problem with given boundary conditions can be converted into a problem
with primary sources inside the medium and no incident radiation. For the problem at
hand, this transformation will help us to understand the creation of the polarization inside

the slab. First we decompose the radiation field into primary and diffuse fields: we write
R(, 2, 1) = RP (1,2, 1) + R (7, 2, ), (10.27)

where the intensity RP of the directly transmitted radiation is given by
RP (7,2, 1) = Bye T 7@/ for y > 0. (10.28)

Substituting Eq. (10.27) into Eq. (10.9) with ¢ = 0 and r = 0, we obtain for the diffuse
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Figure 10.4: Difference between the solution obtained from PALI6 and PALI7. The model
and different line types are the same as that of Fig. 10.3. The relative difference is largest
around the cut-off frequency = ~ 3.



270 Chapter 10. A PALI method for Hanle effect with partial redistribution
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Figure 10.5: Line polarization in a conservatively scattering medium. Model parameters
and line types are listed in § 10.5.3.

field R? the transfer equation

x (YR (1,2, i) dp'dz’ — SP(r, x)} : (10.29)

where 8P plays the role of the primary source. It is given by

SP(r,z) = Bu, /+00 /+1 e~ T—meE)/w Uz, o', 1, B) dy' dx’, (10.30)
2 J w Jo ¢()
with . 2 i
U> = Nj\U + ﬁ(&/ — 1) (0, Ny, Ny, Nip, N5z, Nea) ™ - (10.31)
The elements N}, with £ = 2,...,6 are the elements of the second column of the matrix

N" (see Appendix L).

In Fig. 10.5 we show the Stokes parameters at the surface 7 = 0 for ; = 0.13 calculated
with PALI7. The slab model is defined by (T, a, ¢, 7, ['g/T'r) = (200, 1073, 0, 0, 0.1)
and (I'p, UB, ¢B) = (1, 30°, 0°). The PALI6 and perturbation methods yield essentially
the same results, differences being similar to those shown in Fig. 10.2a. The memory
requirements for PALI7, PALI6 and the perturbation methods are the same as those given
in Table 10.1. The CPU time needed are 326 s for PALI7, 23 s for PALI6 and 3297 s
for perturbation method. The increases in memory and CPU time requirements between
PALI6 and PALI7 and the perturbation method are explained in § 10.5.1.
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The solid line is the solution of the initial problem. The dotted line represents the
unpolarized directly transmitted radiation computed using Eq. (10.28). The dashed line
is the diffuse field. For () and U the dashed lines are identical to the solid lines since the
direct field is unpolarized. The total field, shown by the solid curves, is the sum of the
dotted and dashed curves. We also show, dot-dashed line, the emergent Stokes profiles due
to the primary source 8 when the scattering term in Eq. (10.29) is ignored.

The results displayed in Fig. 10.5 clearly show the contributions from the direct and
diffuse fields. In the wings, say for x > 3, the slab becomes optically thin and it is the
direct field which controls the Stokes profiles. This implies that Stokes Q and U are zero,
and that Stokes I goes to B,, = 1. All the polarization is created by multiple scattering of
the polarized primary photons contained in SP. In the near wings this multiple scattering
decreases the magnitude of the polarization created by 8P (dot-dashed line) but around

the line center they have an opposite effect.

10.6 The effect of elastic collisions on the Stokes profiles

For strong resonance lines formed with PRD, elastic collisions have an important effect
on the shapes and values of Stokes I, @), and U. The sensitivity to elastic collisions has
already been examined in Nagendra et al. (2002) for a slab with a thickness 2 x 10%.
We return to this topic with an example that emphasizes even further the role of elastic
collisions and their effect on the anisotropy of the radiation. We recall that for I'g/T'r = 0,
frequency redistribution is described by Ry, i.e. by coherent scattering. When I'p, /T # 0,
redistribution becomes a mixture of coherent scattering (the Ry term) and incoherent
scattering (the Ry term). Although Ry redistribution has a larger weightage than Ry
redistribution through branching ratio, the latter controls the wings of the Stokes profiles
for lines with very large optical depth as explained below. The effects of elastic collisions

are illustrated in Fig. 10.6.

The Stokes parameters have been calculated with PALI6 and PALI7 for thin (7" = 200)
and thick (7T = 2 x 10°) self-emitting slabs and different choices of the ratio I'y/T'r. For
the thin slab case, differences between the PALI6 and PALI7 results are independent of
the value of I'y/T'g. They remain as shown in Fig. 10.2a. For the thick slab, differences
in Stokes U, between PALI6 and PALI7 are also independent of I'y /T'g. They are similar
to those shown in Fig. 10.2b and can be ascribed to the frequency domain decomposition
in PALI6. For Stokes I and (), we have observed small differences when |z| > 5 and the
ratio I'y /T'g is about unity (maximum relative differences are of the order of 5%). They
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Frequency x Frequency x

Figure 10.6: Effect of elastic collisions on the emergent Stokes parameters for the direction
4 =0.11 and ¢ = 0° computed using the PALI7 method. The model used is the same as
Fig. 10.2, except for I'y/T'r which is taken as a free parameter. Different line types are:
solid line I'y /T'r = 0, dotted line I'y/T'g = 0.1, and dashed line I'g /T = 1.
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are probably due to some approximations made to set up the CRD-CS method used in

PALI6 but a detailed investigation on their origin is beyond the scope of this chapter.

For lines with small or moderate optical depths, the transfer effects are confined to the
line core and the near wings (z < 4). Elastic collisions have essentially no effect on Stokes

I and have a simple depolarizing effect on Stokes () and U (see Fig. 10.6a).

For very strong lines, the dependence of Stokes profiles on the ratio I'g /Ty is illustrated
in Fig. 10.6b for the self-emitting slab model with 7" = 2 x 105. Already for I'g/T'g = 0.1,
Stokes I and @ strongly depart from the I'y/I'r = 0 case. For pure Ry, in spite of
Doppler broadening, scattering in the distant wings remains almost coherent in frequency
and wing photons can suffer a larger number of scatterings before being destroyed or
escaping the medium. As a result Stokes I is almost isotropic (Frisch & Bardos 1981)
and the polarization zero (see middle panel of Fig. 10.6b). The profiles of Stokes I and
@) change drastically as soon as a small percentage of incoherent scattering (through the
elastic collisions) is introduced. For large frequencies, Ry behaves essentially as CRD. In
this case, as well known, there is a strong coupling between core and wing photons and
the latter cannot be trapped in the wings. Since photons are created in the line core, the
strong core-wing coupling leads to a Stokes I profile with very extended wings (see upper
panel of Fig. 10.6b). This phenomenon has been known for quite a while (see e.g. Mihalas
1978). Since photons cannot remain in the wings, the radiation field away from line center
is anisotropic (Frisch & Frisch 1977, Frisch 1980) and induces in Stokes ) the formation
of a broad maximum. For 'y /I'g = 0.1 its peak value is around x ~ 20. For I'g/T'g = 1,
the (Q maximum shifts further to 2 ~ 30. This trend does not continue for 'y /I'r > 1, as
the non-monotonic behavior of the composite branching ratios ensure an overall decrease

of the polarization. For more detail on this regime see Nagendra et al. (2002).

For Stokes U, an increase in 'y /T'g simply results in a decrease in U because the Stokes
U, which is directly linked to the Hanle rotation, is more or less confined to the line core.
This situation may change if the magnetic field becomes strong enough to produce some

Zeeman splitting (Hanle—Zeeman effect).

10.7 Concluding remarks

In previous PALI methods devoted to the weak field Hanle effect with partial frequency
redistribution, the frequency space is separated in several domains in which frequency re-

distribution is decoupled from polarization. In this chapter we introduce an approximate
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redistribution matrix referred to as Approximation I-a. It is constructed by angle-averaging
the Doppler broadened generalized profile functions entering in the weak field Hanle redis-
tribution matrix (Approximation I in VB97b). Coupling between frequency redistribution
and polarization is preserved and the magnetic field effects vary continuously along the line
profile. This Approximation I-a is a generalized version of Approximation IIT in VB97b in
the sense that there is no frequency domain decomposition while frequency redistribution
remains angle-averaged. For this new redistribution matrix a PALI method (referred to as
PALI7) has been developed. Its philosophy is identical to previous PALI methods which
rely on the decomposition of the Stokes vector into a finite number of cylindrically sym-
metrical components Ig (K =0,1,2; —K < @ < +K) which satisfy standard transfer

problems with the source vector independent of the ray direction.

The PALI7 method has been used to examine the consequence of the frequency space
decomposition. For a few atmospheric models, we have compared the Stokes parameters
calculated with PALI7 and PALI6 (the method introduced in Fluri et al. 2003b to treat
Approximation III of VB97b). It is found that a frequency domain decomposition leads
to somewhat incorrect evaluations of the components Ig for @@ # 0. The largest errors
may reach 100% and occur at the border between core and the wings. This implies errors
of the same order for Stokes U (assuming that positive @ refers to polarization plane
perpendicular to the limb). Frequency domain decomposition barely affects Stokes I and
Stokes () which are controlled by I§ and I3. Our calculations with PALI7 thus confirm
the merits of the asymptotic expansions of the generalized profiles at line center and in
the wings introduced in VB97b. They also vindicate the usefulness of PALI6, which is
numerically much less expensive than PALI7. However only PALI7 can treat the more

general problem of non-domain based Hanle PRD.

In its present form, the numerical method employs a frequency by frequency (FBF)
approach which is not very economical computationally because it requires matrix inver-
sions. The computational work could be reduced if a core-wing method, as employed in
PALI6, could be set up. The difficulty is that the redistribution matrix involves Faraday-
Voigt dispersion functions (which change sign) with slow fall-off at large frequencies, hence
demanding very large frequency bandwidths to correctly compute the scattering integral.
In previous PALI methods, because of domain decomposition, only Voigt functions enter

in the redistribution matrices.

For the moment, PALI methods require angle-averaged (AA) frequency redistribution.

The next step should be to devise a PALI method for angle-dependent (AD) frequency
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redistribution. Calculations performed in Nagendra et al. (2002, see also Chapter 9) with
a perturbation method for Approximation IT of VB97b and its angle-averaged version Ap-
proximation III, clearly show the need to take angle-dependence of frequency redistribution
into account for the calculation of the Hanle scattering polarization. The introduction of
Fourier expansions to handle azimuthal variations of the redistribution functions, in addi-
tion to the spherical tensor expansion for the redistribution matrix seems to be a promising
approach to generalize the PALI methods to solve angle-dependent PRD problems (see
Firsch 2008).
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Chapter 11

Outlook : Future developments

In this thesis we have touched upon two very interesting front-line topics in the field of
solar spectro-polarimetry. First one concerns the polarized line formation in stochastic
media. The second one concerns the partial redistribution (PRD) scattering theory for
applications in the polarized radiation transfer in the presence of arbitrary magnetic fields.
We addressed some fundamental ideas under these two topics, basically by formulating
the necessary theoretical framework in this thesis. What remains to be done in the near
future, for example, is the sophisticated modeling of the polarimetric observations using

these frameworks in the ‘line transfer theory’.

11.1 Stochastic atmospheres for solar polarimetric studies

Due to the solar convection, photospheric plasma has a rather complicated structure in
terms of its temperature and velocity distribution. This dynamic behavior also influences
the magnetic field, in particular in a region where the gas pressure is comparable to or
larger than the magnetic pressure. Thus the photospheric magnetic fields are certainly

turbulent with a wide range of wave-numbers.

The theory developed for the stochastic Zeeman line formation is based on a simple
Milne-Eddington atmosphere, although various possible generalizations are outlined (see
Chapter 4). However, for modeling the actual observations, the theory developed here
needs to be used in a code that can handle realistic atmospheres taking full account of the
temperature-density stratification. Such an effort is worth trying, since the photospheric
magnetic fields seem to comprise a broad range of structures which span from micro to meso
to macro scales (see for eg. Stenflo & Holzreuter 2002, Khomenko et al. 2003, Dominguez

Cerdena et al. 2003a). Some efforts in this direction have already been made by Carroll
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& Kopf (2007). However there is scope for more detailed investigations.

The Hanle effect is a powerful diagnostic tool for the measurement of weak magnetic
field, deterministic or turbulent (see Stenflo 1994, Trujillo Bueno et al. 2004, Bommier et
al. 2005). Thus it is necessary to develop the theory and numerics for the Hanle effect pro-
duced by a turbulent magnetic field with finite correlation length. Such a theory has been
developed by Frisch (2006) by assuming a KAP (Kubo-Anderson process) model for the
magnetic field fluctuations along each incident photon path. She gives explicit expressions
for the mean Stokes parameters with a two-scattering approximation. This theory needs
to be implemented in a numerical code to investigate the effect of correlation length and
of the different PDFs (probability distribution functions considered in Chapters 2 and 6)

on the Hanle polarization profiles.

The solar atmosphere with its magnetically active regions harbor a whole range of field
strengths (milligauss to kilogauss fields). The most ambitious project would be to develop
the theory for ‘stochastic Hanle-Zeeman line formation’ in random magnetic fields.

11.2 Matter-radiation interaction including partial redistribu-

tion effects

The basic theoretical tool required to model the “second solar spectrum” (Stenflo & Keller
1996, 1997) is the polarized radiation transfer equation. First one has to formulate the
theory of polarized radiation transfer for a multi-level atom in the presence of arbitrary
field strengths taking account of all the relevant physical processes like PRD, quantum
interferences, hyperfine structure etc. The solution of the transfer equation so derived
requires developing fast iterative algorithms. These basic theoretical tools are already
available to model only those spectral lines for which PRD effects are not important (see
Landi Degl'Innocenti 2003). However for strong lines PRD effects are important. But the
required theory of polarized scattering with PRD line formation is still at its beginning.
This theory is developed only recently for a two-level atom with unpolarized ground level
(see Bommier 1997b, Bommier & Stenflo 1999, Chapters 7 and 8 in this thesis). A fully
consistent formalism capable of handling the PRD in polarized radiation scattering in

multi-level atomic models is yet to be developed.

One of the major goals in theory is the development of fast algorithms for solving the
Hanle-Zeeman line transfer problems (see Chapter 9). So far, the fast iterative methods

like PALI (Polarized Approximate Lambda Iteration) have been developed only for weak
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field Hanle scattering problem using angle-averaged PRD functions (see Chapter 10). It
will be a numerical challenge to develop a PALI method for (i) angle-dependent PRD
function (still in the weak field limit) and (ii) the full Hanle-Zeeman line transfer problems
in arbitrary fields. Some efforts have been made on the former (see Frisch 2008), while no

attempt is yet made on the latter.

There are many open questions and unsolved problems in the field of solar spectro-
polarimetry, that deserve an intensive theoretical effort in the near future. It is exactly
these unanswered questions that form a source of inspiration for those who like to specialize

in ‘scattering physics’ and apply it to solar magnetic field diagnostics!
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Appendix A

Some properties of Wigner rotation matrices

Df?gn, and spherical harmonics Y},

The properties that are needed here can be found in Brink & Satchler (1968, Appendix
IV), Varshalovich et al. (1988), Dolginov et al. (1995) or in LL04. We reproduce them
here for convenience. The Wigner matrices pY (e, B,y) (1> 0, =1 < m,m' < +I) are the

mm
transformation matrices for irreducible tensors of rank [ in rotations of the reference frame.
0]

mm/’

DY =emagl) (B)e ™, (A1)

The Euler angles of the rotation are «, 3, 7. The D have an explicit representation :

where dﬁ,?m, (B) is real. Tables of d(l) , can be found in the above references. The Y, are
special cases of D( ~ correspondlng tom' =0 (or m=0):

mo(6,0,7) = \/2l+1 Yim( V21+1d ' (A-2)

The Legendre polynomial P;(f) are special cases of Wigner matrices corresponding to

=0 and m’ =0, or in other Words, special cases of Y}, corresponding to m = 0:

A7

Pi(cos 0) = D (6,0,7) = || 57— Y6 (0, 9). (A.3)

The first Legendre polynomials are
Py(0) =1; Pi(0) =cosl; Pp(0)= %(3 cos® — 1). (A.4)

The Y}, for | =2 and m = 2 are
Yo 10 = (%) i sin? § e*%9. (A.5)

The angular dependence of 1 uv can thus be expressed in terms of the Y}, (see Eq. (2.10)).
This property is used to calculate their average values over the magnetic field distribution.
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Appendix B

Integration over Gaussian probability distri-

bution functions

The mean values A; are given by the averages, over the magnetic field distributions, of
Voigt or Faraday-Voigt functions, multiplied by some polynomials (see Eq. (2.17)). Explicit
expressions for the average values are given in Eq. (2.22) for 1D turbulence, in Eqgs. (2.38)
- (2.43), for 3D turbulence. We show here how to obtain these expressions which for 3D
turbulence involve the generalized H™ (and F(™) functions introduced in § 2.4.1 and
discussed in Chapter 3. Several methods are available to carry out the integration. One
can consider the Fourier transforms of the quantities to be averaged. One can write the
functions H® and F© as real and imaginary parts of the function W (2), with z complex
(see Chapter 3) and then do contour integrations in the complex plane. Here we describe

a direct method based on simple change of variables.

The integrals we want to transform are of the form

G =2 L / - / ” " w0 p(y) dy d (B.1)
= e u -
! /2 ﬁ —o0 J—o0 ($ —u-—- quBy)z + a? v ey

where P(y) is a polynomial in y. For 1D turbulence, P(y) =1 (see § 2.3). The weak field
limit corresponds to yq = 0.

First we transform the integral over u. We write
T —u—qygy==t-—s, (B.2)
with ¢ and s defined by
t=z—qvpyo; s=u+aqv8(y — ) (B.3)
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Note that ¢ = 0 gives the positions of the g-components corresponding to the mean mag-
netic field By. We thus get

400  ptoo —s avB(y—yo)]® —(yo—y)?
Gy = 73/2\f/ / (t— )2+ a? e” WY P(y) dy ds. (B.4)

Regrouping the two exponentials, we rewrite

2
¢?
[s = qvB(y — vo)* + (Yo — y)> = s> + (y — %0)*71 — 25q78(y — yo) = ? b (B.5)
q q

with
(=72 [(y — o) — qz—g% : (B.6)

q
Thus Eq. (B.4) becomes

+oo  ptoo 752/'711 1 ¢
_ e ¢Mi—_p S 4 q2Bs) dcds. (B
q 7_(_3/2\/—/ / t—S +a2 'Y <y0+7 +q')/q8) C S ( )

q q

Since P is a polynomial in (, the Gaussian integral over ( can be calculated explicitly and
one obtains a polynomial in s. It is easy to see that the integral over s can be expressed
as a combination of H™ functions. When P(y) = 1, the integral over ¢, divided by /7,
gives a factor v, and one obtains G, = H(z,, 4)/7, where z,, a, and -y, are defined in
Eqgs. (2.23) and (2.24).



Appendix C

Modified spherical Bessel functions

The functions of order 0, 1 and 2 introduced in Egs. (2.45), (2.46) and (2.47) can be
obtained by performing the integration over p in Eq. (2.30) (see also Abramowitz & Stegun

1964, p. 443). They may be written as

T 1
—_l = —gj h
5 1/2(2) zsm z,

1 1
21[3/2(,2) = —— sinhz + — cosh 2,
z

22 z

3 1 3
”271-_215/2(2) = (z_3 + ;) sinh z — ;cosh z.

For small values of z, one has at leading order,

[ T [ T
511/2(2) ~ ]_, 513/2(2’) ~

T 22

—1 ~ —,
55 1512(2) > 35

b

[GSRIRN

(C.4)

(C.5)

All the functions \/7/221111/2(2), for z real and positive, have positive values and go to

o0 as 2z — Q.
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Appendix D

Some properties of the transport operator

For the benefit of the reader we recall here some of the main properties of the radiative
transport, operator for polarized transfer (Landi Degl’Innocenti 1987). The homogeneous

transfer equation associated to Eq. (4.1) of the text may be written as

diif(s) = K(s)I(s), (D.1)

where s is the ray-path coordinate which varies from 0 at the surface to co in the interior,
K the 4 x 4 propagation matrix and I the 4-dimensional Stokes vector. We consider rays

propagating from infinity to the surface in the direction normal to the surface.

The Green’s function, also called evolution or transport or propagation operator, is
here defined by
I(s) = 0O(s,s)I(s"), (D.2)

with s’ > s because photons propagate from the interior (positive values of s) to the
surface at s = 0. In Landi Degl’Innocenti (1987) and LL04, photons propagate from —oo
to 0, hence O(s, s') is defined with s’ < s (as in time-dependent problems). The evolution

operator obeys the limiting condition,
O(s,s) = E, (D.3)
where E is the identity operator, and the semi-group property, which can be written as
O(s,s') = 0O(s,8")0(s",s"), s<s" <4, (D.4)
The evolution operator further satisfies two differential equations,

—O(s,s") =K(s)O(s, §), (D.5)
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and
%0(5, §) = —O(s, 8K ('), (D.6)

which can be derived from Egs. (D.1) and (D.2) by taking the derivatives of Eq. (D.2) with

respect to s and s'.

When the propagation matrix is a constant, the evolution operator is given by
O(s, s') = exp[—(s' — s)K]. (D.7)
Using Egs. (D.3) and (D.5) one can verify that the expression

I(s)=— /s O(s, s")K(s")S(s") ds' + O(s, s0)I(s0), (D.8)

50

where I(sq) is the prescribed value of I at sg, satisfies Eq. (4.1) of the text. Assuming that
the source function increases less rapidly than an exponential at infinity, we obtain for the
Stokes vector at the surface of a semi-infinite atmosphere,

I(0)= /000 0(0, s)K(s)S(s) ds. (D.9)

Using Eq. (D.6) we can rewrite this equation as

I(0)=— /000 [%O(O, s):| S(s)ds, (D.10)
and after integrating by parts,
1(0) = S(0) + /O 7000, 9) [d%S(s)] ds. (D.11)

When S(s) = (Cy + C1s)U, we immediately obtain the result given in Eq. (4.3) of the
text.



Appendix E

Zeeman absorption matrix in the magnetic

reference frame

X’

Figure E.1: Right-handed magnetic reference frame (MRF) X'Y’Z’. The random vector
magnetic field B is defined by the polar angles © and . The MRF is obtained by an
Eulerian rotation of the LOS reference frame (see Fig. 2.1) through (a, 53, v) = (0, 6o, 0).

We now write the coefficients of the Zeeman absorption matrix in the MRF (see
Fig. E.1). The Euler angles («, §, 7) of the rotation which brings the LOS reference
frame to the MRF are a = ¢, § = 6y, v = 0, where 6y and ¢, are defined in Fig. 2.1.
In this rotation, the spherical harmonics transform according to (Varshalovich et al. 1988,
p. 141):

Yim(0,6) = Yim (0, ¥) DY), (0, — 00, —o), (1)
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where © and ¥ are the polar angles of the field B in the MRF (see Fig. E.1). Combining
Eq. (E.1) with Eq. (2.10), and using the explicit forms of the Y}, and fob),m (see e.g. Brink
& Satchler 1968, Varshalovich et al. 1988, LL04), we find

2 3 3
or = Ag — §A2 Py(cos by) P2(cos ©) — 1 sin 20, sin 20 cos ¥ + 1 sin? @ sin® © cos 2V | ,

(E.2)

oy = A; [Pi(cosby)Py(cos ©) — sin  sin © cos V], (E.3)
g = As | cos 2¢ [1] — sin 26y [2]], (E.4)

pu = Az [ sin 2¢q [1] + cos 2¢, [2]], (E.5)

with
1 1
[1] = sin? By P (cos ©) + 3 sin 26, sin 20 cos ¥ + 5(1 + cos? f) sin® © cos 2, (E.6)
[2] = sin 6 sin 20 sin ¥ + cos f sin® O sin 2. (E.7)

The anomalous dispersion coefficients are given by Egs. (E.3) to (E.5) but with the
Voigt functions in A; and A, replaced by Faraday—Voigt functions.



Appendix F

Unno-Rachkovsky solution for the determin-
istic fields

According to the Unno-Rachkovsky (UR) solution (see for e.g. Landi Degl’Innocenti 1976,
Jefferies et al. 1989, Rees 1987) the surface value of the Stokes vector may be written as

I(0) = [Co + O/K MU, (F.1)

where K = E + f®. We introduce the vector

1

[1.(0) — I(0)], (F.2)

where

I.(0) = (Co+ C)U, (F.3)
is the continuum intensity at the surface. For simplicity we call 7(0) the residual Stokes
vector, although the usual residual Stokes vector, also called line depression Stokes vector
(Stenflo 1994, p. 244), is defined by Eq. (F.2) with the intensity of the continuum I.(0) in
place of C;.

The UR solution yields

ro= 1= [kis +pg + pt + )1/ D, (F.4)
rq = [king + ki(nvpu — nupv) + pW1/D, (F.5)
rv = [kinu + ki(ngpv — nveq) + puW1/D, (F.6)
rv = [k +pyW]/D, (E.7)
where
k1 = 1+ Ber; nou,v = Bequv; PQUv = BXQ,U,vs (F.8)
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W = nqpq + nupu + mvpv, (F.9)

D = ki[K{ = ng — 1% — 0% + po + P + py] = W2 (F.10)

The absorption and anomalous dispersion coefficients respectively ¢1qu,v and xq,uv are

given in Eq. 2.5. We stress that W, D, (g + ¢f) and (x§ + x{) are independent of

the azimuthal angle ¢. Hence 71 and ry are independent of ¢ whereas rq and ry are ¢-

dependent. For rq, the first and third term in the square bracket of Eq. (F.5) vary like

cos 2¢ and the second term like sin 2¢. For ry, it is the first and third term which vary
like sin 2¢) and the second term like cos 2¢.

UR solution takes a simpler form for longitudinal and transverse fields. When the

magnetic field is aligned with the LOS (longitudinal), the UR solution reduces to rq =

rg =0 and 5
14+ Byr
=1- , F.11
" (14 Bor)? — B2p% (1)
Beov
ry = , F.12
VT (14 Ben)? - B2 (F.12)

with o1 = (41 +¢-1)/2, v = (P41 — ¢-1)/2.

When the magnetic field is in a transverse direction, the UR solution yields ry = 0,

and 148
_ 1 _ P1
S (P R ) e
N Bequ
TV = T B — F(h 5 ) (F-14)

where o1 = [po + (041 + ©-1)/2]/2, and g + ¢ = [0 — (P41 + ¢-1)/2]*/4. The zero-
crossing points of 7y and rq correspond to ¢q = ¢y = 0. They have frequencies z = £z,
with z,, defined by ¢o(Zm) = [¢+1(Zm) + ¢—1(Zm)]/2. The value of z,, is independent of

8.

When AzB < 1, one can take ¢r >~ ¢y ~ ¢_; ~ ¢4;. Equations (F.11) and (F.13) for
r1, and Egs. (F.12) and (F.14) for ry and rq become

Ber
" 1+ 5@1 ( )
Bov 5<PQ U
VY —————=; TQU N —————, F.16
VT U+ B YT (14 Ber)? (F.16)
with J . P

¥1 207 P1

~ -A,B—: ~——_A,B"——. F.17



Appendix G

Auxiliary coefficients and phase matrices re-
lated to R

Here we list the various auxiliary coefficients and matrices appearing in Eq. (7.46). Fol-
lowing Stenflo (1998) we introduce the auxiliary coefficients:

iy = €08 By g { cos [(q — ') (¢ — ¢)] (higs €08 By—q — [y S0 By—g)
+sin[(g— ¢) (@ — )] (hlL sin B,y + F cos By_y) } (G.1)

sty = 008 fyg {sin[(q = ¢)(6 — )] (hhly cos Byg — f1ysin fy—g)
—cos[(q — ') (6 — 9)] (bl sin By + fih 0 ') }, (G-2)
for type II functions, and
bt = os ey cosagy ((coslla o)~ 0] {[R(1ES) ~ S (788)] costB + aey)
— S (nt) + R ()] sin(Bo—g + cg-g) | +sinllg - )6 - )] {|S(R)
R(1)] cosl6 g + ay-) + [R(HE) = 3(7) | sn(6, o + 00} ). (63

Spy = €OS fq_g COS Qq_g (sm[ q—4) {[ (hm) - ( IH)} cos(Bg—q + g—q')
=[S (hg) + R(fa) | sin(Boy + 0gg) } = coslla— a) (&= )] {|3(nif)
+§R<f£ﬂ cos(By—q + 0q—q) + [?R (hg;) - d(flllﬂ sin(B,—g + aqq:)}), (G.4)
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for type III functions. The angular phase matrices appearing in Eq. (7.46) are listed below :

1100
100
Co=0—m)0=k1 00 0ol (G-5)
0000
QA+p)A+p?) —(1+p)(1-p?) 0 0
o - | ~Q=p)A+u?) Q=-p)A-p?) 0 0
+_ J
2 0 0 0 0
0 0 0 4dpy
(G.6)
0 0 0 (14 pH)y
CO _ 0 0 0 _(1 _:u2):u’l
B 0 0 0 0 ’
p(l+p?) —pd—p?) 0 0
(G.7)
Q—p?)1—p?) —(1—-p)A+p?) 0 0
o o | A+ —=pu?) A+p)@+p®) 00
T2 0 0 A 0 |
0 0 0 0
(G.8)
0 0 —(1— ) 0
0 0 (14 p*)p 0
S?I—: 12 12 ? (G.9)
p(l—p'®) —p(l+p'%) 0 0
0 0 0 0
1100 0 0 0 p
1100 0 0 0 p
CL = +Es;+Ey; C! = , G.10
TR 0 0 0 0 BT 00 00 (G-10)
0000 oW 00
0 0 u o0
0 0 0
Si: —M' —'u' /(;l 0 3 S :E43—E34 (Gl].)
0 0 00
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Here E;; denotes a matrix that has a single element E;; = 1, while all the remaining
elements are zero. We note that the above matrices are identical to those introduced in
Stenflo (1998).



Appendix H

Laboratory frame composite redistribution func-

tions

For type II redistribution, to facilitate comparison with the classical equations (derived
in Chapter 7), we express q)g:;iKl (,2',0; B) in terms of auxiliary functions hy,, and fy,
introduced in Egs. (7.27) and (7.28). We list below @g:ﬁK’ (dropping the arguments) for
different combinations of K", K’, and Q:

(1)8:?1 = % (h%)lo + h1111 + hlfllq) ; CI)&III = % (h% - h171171) )
Oomr = —Fhty + 55 (M + R0 0) 5 @ =—5 (A} + AL, ),
Bih = (W — il L iAL)5 R =~k (W - ),
(I%:?I = _% (hlllo —1 %(I) - hg—l +1 51—1) ) q)ngl = %hgo + % (h% + hl—ll—l) )
(I)i?I = _(1)1:111§ CD;:?I = h111—1 - ile—l- (H.1)
We further note that

oo = (1) oG (H.2)

The (Dl_(é’ﬁl are obtained using the conjugation property
oFul = (o) (H.3)

For type III redistribution, to simplify the notation, we introduce the following new

functions:
]_ ! Al 1 ! S |
(Rt = 5 (Rt & Bt ) 5 (P00 = 5 (Rifle £ Rl ) (HA)
expressed in terms of HH and FF type magnetic redistribution functions respectively, and
1 ] P 1 ’ A
(hf)?ql'i = 9 (R?IqI,HF + RH?,H%) ; (fh)fllqlfi = 9 <R?IqI,FH + RHEF?—I) ) (H5)
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expressed in terms of the corresponding HF and FH type magnetic redistribution functions.

Various combinations of these functions are used in the following quantities:

di = 2[(h)T = () = (PO = CHT] +4 [N + (et + (AN

dy = 2[(bN + (I + (B = (PR ] =4 [(Fh)ar + (R3]

dy = 2[(hh)y" + (hh)Z] — (FFRNT + (O] + 4 [(hh)og ™ + (hh)ei™ + (hh)1g ],

di = 2[(hf)07 + (fP™ = ()5 + (PARS] + 4 (Ao + (fl)o ]

ds = 2[(hh)1i” = (fH)u~ + (h)Zy + (FhS] +4 [(F)a™ + ()]

ds = 2[(hf) + (PRI — (AT + (PRI — 4 [(FR)ge™ + (PR — (FR)GY]

di = 2[(hh)i5 + (PO — (BRI + (FNET] = 4 [(hR)ST + (P ]

ds = 2[(fMF — (RN = (RANT = (FRIT] +4 (R ™ — (RAGT + (R T] -
(H.6)

We now list below the functions @5;{;"’” (z,2',©; B) for different combinations of K,
K', K" and @ (dropping the arguments ) :

2

Porit =5 |5 © (hAY + () + (R + (Y + ()™ (H.7)
1
Sonit = 3 (WA — (hh)IT] = gy, (H.8)
1
Sonit = 5 [2(hh)eo " — 2(hh)5i™ — 2(hh)igT + (hA)ET + (BR)ITT] = €%, (H.9)
2
ot = % [~ (hh)eo ™ = 2(hh)oy™ + (hh)ig™ + (hR)IT + (RR)TT] (H.10)
1 1
it = o = %ot ot = ot = 5 %o (H11)
1 1
i = 16 (di +ids); @VH = 16 (ds +idy), (H.12)
1
oty = Wi [—4(hh)o™ +A(hR)si " = 2(hh)ig" + (hh)™ + (hh)iTH] (H.13)
1
Borit = 75 [8(h)G " +4(hR)GT + 4(hh)TGT + (WA + (hR)ITH] (H.14)
o3 = w(nL) - s(aim) —i[s(ri) + (A1) (H.15)
1
@3;%? = Wi [—4(hh)go T — 2(hh)g1 T + 4A(hR)1G T + (RR)TTT + (hR)TT] (H.16)
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V2

ot = 5 [—(hh)go ™ + (hh)gy* — 2(hh)1o T + (RR)TYT + (hh)1EE], (H.17)
V2
Oounn = —= [(BR)GT — (AR, + (hR)TT ], H.18
0,111 3\/§ [( )01 ( )1 1 ( )11 } ( )
1 ~ _
Dyt = Ve [—2(hh)§i™ — (RR)TET + (hR)T] = V2®51, (H.19)
1 B _
Oyl = 7 [(hR)T + (hR)IET] = V28y 11, (H.20)
6
1 , 1 .
1 - B _
Oy = [4(hh)s™ — (hh)ET + (R, (H.22)
6v/3
Dyt = = [(hh)ﬁI+ + (hh)'1], (H.23)
Oy = OTht; @ = @}:?f?; oyhl =0ty PR = oy, (H.24)
1 B _
o = 373 [—2(hh)T5~ + (AT + (hR)TT] = V2®5h, (H.25)
2, - L 101
(I)(l),?nl - ﬁ [(hh)m (hh)m ] = E‘I’o,ma (H-26)
1
Oomit = —= [4(hR)1™ + (AR)1T + (hR)TT], H.27
0T 6\/3[( )io~ + (hh)TLT + (hh)i] (H.27)
@0,0,1 \/_ hh TI1— hh TI1— hh IIT— H.28
0ITT = [(hh)To~ + (hh)T + (RR)T ], (H.28)
3v/3
R = (o) (H.29)

The auxiliary functions A", and f{!, appearing in Eq. (H.15) are defined in Eqgs. (7.29) -
(7.34).



Appendix I

Auxiliary coefficients and phase matrices re-
lated to R

Here we list the various auxiliary coefficients and matrices appearing in Egs. (8.17) - (8.19).
We first introduce some intermediate phase matrices with angular factors:

1100
1100
Cl=(1-pHA - p'? , I.1
o= L= )A=u5) 1 0 (L1)
000 0
Q+p)(1-p?)  (Q+p)Q-p?) 00
1— )1 =p'?) —(1—p?)(1=pu?2) 0 0
Dy = 1 —=p)A=p?) == p)(1 = p) | (12)
0 0 00
0 0 00
Q—p)1+p?) —1=p)1—p?) 00
— u2)(1 12y (1 = 12)(1 — 12
D = 1= p?)(1+p%) —(1 = p*)( ) 00 | (13)
0 0 00
0 0 00
Q+p )1 +p?) —(1+p?)A -2 00
_ 2 1 12 1— 2 1 — 12
D — (=)@ +p) (=) =p) 004 (14)
0 0 0 0
0 0 0 0
D, = dpp'BEu, (L5)
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298 Appendix I. Auxiliary coefficients and phase matrices related to R
0000 000 1
0000 000 1
D, =2u(1 — p'? : D, =2(1 — i) . (1.6
R I =20\ (L6)
1100 0000
[0 0 (L4 ]
_ 0 0 —(1—p?)
D, = , L7
I 0 0 0 (L7)
p(l+p'?) —p—p?) 0 0
0 0 0 (1+p2)
_ 0 0 0 —(1—p)u
D, = , 1.8
= 0 0 0 0 (1.8)
—p(l+p'?) p(l—p?) 0 0
1100
1100
F = + Ey ; FV = E,, 1.9
1 127 000 0 33 44 (1.9)
0000
0000 0001
0000 0001
FO — : FY — _ , 1.10
1000 0 * #1000 0 (110
1100 0000
0 0 —pu O
0 0 —p O
Sgl) = a 3 S31) = E43 3 S41) = E34, (111)
popt 000
000 0 0
[ Q- p)Q—p?) —(1-p)A+u?) 0 0
ez | ) —p?) A+ p)a ) 00 (112)
T2 0 0 dpp! 0 |’
i 0 0 0 0
0 —(1—pHu' 0
0 (1+p*)u' 0
Si: o ' . (113)
p(l =) —p(l+p'?) 0 0
0 0 0
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Here E;; denotes a matrix that has a single element E;; = 1, while all the remaining ele-

ments are zero. Notice that the matrices CJ, C?,

in Stenflo (1998), and were also used in Chapter 7.

cients:

(KT

(K)IIT

81

and Si are the same as those introduced

Using the various quantities defined in Eq. (H.6), we can define the following coeffi-

%cos ol cos 51{cos( ) [d1 cos (al )+ /51) + dysin ( (9 Bl)]
Lo s (+3) - o+ 1))
é cosa{ cos f, {cos(6 — ) [dscos (o) + 8,) +dysin (o) + 3, ]
+sin(¢ — ) [d3 sin (a§ )+B1) — d cos( (K) +ﬁ1)] }
- %cos ot cos ﬁl{cos( ¢') | ds cos (al + ﬁl) + dg sin (oé’“ + ﬁl):
+sin( — ) [ds sin (f* )+,81) —dscos (o) + 1) | }.
= %cos i cos ﬁl{cos( ') | dv cos (ozl + ﬂl) + dgsin (aY‘) + ﬁl):
+sin(¢ — &) _d7 sin (agK) ¥ 51) — dg cos (aY‘) ¥ ﬁl): } (1.14)
Similarly, we can define another set of coefficients:
é(—1) cos o cos 1 {sin(6 — ¢') [dn cos (o' + 1) + dsin (o) + 5, ) |
—cos(¢ — ¢) d1 sin (a1 + 51) — dycos (a ) 4 51)- }
%(—1)1(005 o cos i {sin(p — ) [ds cos () + 1) + dasin () +5,)]
—cos(¢ — &) [dysin (o) + 1) = ducos (o) + 1) [},
%(—1)K cos o) cos 1 {sin(p — &) [ds cos (' + 8,) + dosin (o + 5,
—cos(¢ — @) [dysin (o) + B,) = dycos (o +5) |},
%(—1)K cos o/ cos 1 {sin(6 — ¢") [dr cos (o + 1) + dysin (o) + 5,
—cos(¢ — &) [drsin (of) + ;) = ds cos (af'0 + )] }. (L15)




Appendix J

Hanle scattering matrix of Stenflo (1994) in
terms of 7,

In this Appendix we describe how to expand the classical expressions in Stenflo (1994,
hereafter S94) in terms of the irreducible spherical tensors of Landi Degl’Innocenti (1984,
see also LL04), and show this explicitly for the special case of the weak field Hanle effect.

We note the following similarities or differences between the classical formalism of S94
and that of LL04: The elements of the coherency matrix of S94 (see his Eq. (2.33))
are equivalent to the complex conjugate of the polarization tensor (E;E;) of LL04 (see
their Eq. (1.14)), where E is the electric field. In both cases the starting point is the
classical oscillator equation, from which the electric vector of the scattered radiation is
derived. LLO04 determines the polarization tensor, which is then converted to the Stokes
representation. In contrast, S94 finds the Jones matrix, from which the Mueller scattering
matrix is obtained. Both approaches use geometric factors (as referred to by S94) or
direction cosines (as referred to by LL04). LL04 names them C,; = u, - ;*, where u, are
complex spherical unit vectors corresponding to the unit vectors that are parallel to the
components of the vector magnetic field, and e; are reference directions for the ray. S94
names these geometric factors e = e, - €, where e, are complex spherical unit vectors
corresponding to the unit vectors that are parallel to the magnetic field, while e, are linear

unit polarization vectors.

For a magnetic field oriented along the polar Z’-axis, the expression for the geometric
factors or direction cosines are given in Eq. (3.86) of S94 and unnumbered equations above

Eq. (5.96) of LLO4 (p. 187). Clearly Cy; and & differ simply by a complex conjugation.

In order to introduce an irreducible tensor 7'QK similar to that introduced by LL04 in
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the classical formalism of S94, we need to first introduce the reducible spherical tensors
Ey¢ and Tyy, following LLO4 (see their Eqgs. (5.115) and (5.131), respectively). To achieve
this we have to write €f of S94 in a form similar to that given in Eq. (5.113) of LLO4.
Following Eq. (5.113) of LL04, we may write

€q = Z(ea)q’(eq);' = Z(ea)q’(sqq’ = (€a)q- (J.1)
¢ q
Thus we can re-write the electric field of the scattered radiation given in Eq. (3.84) of S94
as (dropping the constants)

E,~ Y (ng = 1)(en(n));(e,(n)g By, (J.2)

where n, denotes the refractive index induced by the vector component g of the vibration,
and E' is the electric field of the incident radiation. For the linear polarization unit vectors,
LL04 choose

! i = ; 1 —eq(n) +iey(n)| = e (n
&=z [ea(n) +ien(n)] = e_1(n); e = \/5[ a(n) +iep(n)] = e41(n),
o1 el(n)+ie/(n)] =€ ,(n'); €,= 1 —e!/(n) +iej(n')] =€ ,(n
e = \/5[ o() Tig(n)] = ey (n); ey = o [—e () +iey(n)] = €, (n), (J.3)

where (e,(n), es(n), n) form a right handed coordinate system about the outgoing ray and
similarly a primed system for the incoming ray. We note that the Eq. (J.2) is written in
the basis defined in Eq. (J.3), so that the indices pu, p take values +1. Now, the elements
of the coherency matrix may be written as

I, = Z T35, (n, ', B)IS, (J.4)
po

where IEU = E,FE}, which differs from corresponding polarization tensor of LL04 (distin-
guished through a symbol ‘L’ from our notations distinguished through ‘S’) by a complex
conjugation, and

Tovpe(nom'; B) =Y (ng = 1)(nyy — 1) [eu(n)]; [es(n)], [ep(R)], [eq (0] - (J.5)

qq

Following LL04 we define the ‘reducible spherical tensor’

Eq (0, B,m) = [ea(n)]; es(n)],, - (J.6)

Note that our definition of Eqsq, (o, B,n) differs from that of LLO04, again by a complex
conjugation (see their Eq. (5.115)). Following S94, we may replace (ny — 1)(n, — 1) in
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Eq. (J.5) by cos@, g€ (see Eq. (5.54) of $94), where &, , is the weak field Hanle
angle defined in Eq. (5.53) of S94 (where it is referred to as «). Thus Eq. (J.5), may be

re-written as

uv,po

3 .
TS (na ,n'l; B) = 5 Z Cos a'/q—q’elaq_q,gqsq’ (,LL, v, n)gs’q(o-a Ps nl)' (J7)
qq

In the above equation the factor 3/2 is the normalization constant (see S94).

To deduce the scattering phase matrix P for the Stokes parameters we need the re-
lation between the Stokes parameters S;, with 7+ = 0,1,2,3 and the coherency matrix

corresponding to the unit vectors (J.3). This relation can be obtained using the equality
Elea + Egeb = E+16+1 + E_16_1, (J8)

because the total electric vector should remain the same in both the basis. Using the
above equation, we obtain the following expressions for the Stokes vector in terms of the

coherency matrix elements, in the new basis as

I'=1, 1+1I;4; Q=T 141+ I414],
U= i[[_|_1,1 — Ifl-}—l]; V= I_|_1_|_1 - 171,1. (Jg)

In other words, we may write

Sz' = Z(ai)uulﬁya (J]_O)

uv

and the inverse relation

where o; are given by

10 0 —1 0 i ~1 0
_ : _ . — : - . (J12

The o; given in the above equation differ from corresponding matrices given in LLO04 (see
their Eq. (5.128)) by a complex conjugation. Using the Egs. (J.10) and (J.12), we may

write, the scattered Stokes vector as

Si = ZP,‘J‘(’I’L,TLI;B)S;-, (J13)
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where,

3 — i ’
P,j(n,n';B) = 1 Z COS Qg€ a—a (a’i)w(a’j)pgc‘/’qsq,(u, v, n)é'qs,q(a, p,n'). (J.14)

uvpoqq'

Following LL04, we define (see their Eq. (5.131))

7:12' (i’ n) = Z %(ai)a/qusq’ (ﬁa &, n) (J15)

Clearly Eq. (J.14) may be re-written as

P;j(n,n';B) =3 Z cos Gg_g €% T o (3, n) T2, (4, ). (J.16)

qq

From the reducible spherical tensor 7;‘2, it is possible to construct an ‘irreducible spherical
tensor’ (see Eq. (5.132) of LLO04)

[%K(z',n)}s = Z(_1)1+q 3(2K + 1) ( ! 1, _Ké ) ao (i, 1), (J.17)

qq q —q

with the inverse relation given by

. e 2E+1(1 1 K
Talim) = D (=11 /=2 (q_q, 0

KQ

) ARD] (1.18)

Substituting for 72, from Eq. (J.18) in Eq. (J.16), and using Eq. (2.23a) of LL04, we obtain

P,j(n,n’; B) Zcos age®(—1)9 [%K(i,n)]s (7253, n')}s, (J.19)

where ) = ¢ — ¢’. In order to evaluate the above expression, we need to first calcu-
late the [%K}s Following LLO04 (see their Eq. (5.117)), we may write &,,(, 8,m) =
D,,(R)*Dg,(R), where R = (0, —0, —¢) is a rotation that brings the system (e,(n), e;(n), n)
into the system, where the magnetic field is along the polar Z’-axis. Substituting for 5qsq,
in Eq. (J.15), which in turn is used in Eq. (J.17), gives

[75(i,m))° = (-1)° Y [t5.(1)]° DE_o(R), (J.20)
=~
where
[tg,(i)]s = azﬁ %(ai)aﬁ 32K + 1) ( ; —15 _I;, ) : (J.21)
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By explicitly determining [7221{ ]S, making use of the table of rotation matrices given in
Table 2.1 of LL04 (p. 57), we find that our new irreducible tensor (['TQK]S) is just the
complex conjugate of the corresponding irreducible tensors ([73( ]L) listed in Table 5.6 of
LL0O4 (p. 211). In other words,

737 = [73°]" (7.22)

Substituting for the newly defined [7221( ] % in Eq. (J.19), one can easily verify that we obtain
Eq. (5.139) of LLO04, which is the Hanle phase matrix in the weak field limit.



Appendix K

Transformation between magnetic and atmo-

spheric frames

Here we give the transformation equations for going from magnetic reference frame (MRF)
to the atmospheric reference frame (ARF). While it is natural and easy to derive the
redistribution matrix in the MRF, its actual use in the radiative transfer equation requires
it to be given in the ARF. The geometry of the MRF is shown in Fig. 8.1. In Fig. 8.2
we show the scattering geometry that refers to the ARF. The redistribution matrix in the
ARF is given by Eq. (5.66) of Stenflo (1994):

R(z,9,¢;2", 9", ¢";vp,98, o) = L(is)R(z, 0, ¢; 2,0, ¢'; vg)Li(iy). (K.1)

The explicit expressions for R(z, 0, ¢; ', 0', ¢'; vp) are given in Eq. (7.46) (classical theory).
The corresponding QED expressions are given in Eq. (8.16) (and the discussion at the end
of § 8.2.1). The geometry and angles are described in Fig. 8.2. In radiative transfer theory
the incoming rays (represented by 1, ¢') and the outgoing rays (represented by 9, ) are
given as inputs in the computation of the source vector. To compute the MRF angles
(0, 6;0',¢') we need to perform a transformation of the ARF angles (¢, p; ¢, ¢’). This is
achieved by using the rotation matrix:

cosvp cos g cosVp sinpg —sindpg
R0t (0, =B, —pB) = —sinpp oS pp 0 , (K.2)
sing cospp sindp sinpg cosvp

(see Jefferies et al. 1989, LL04, p. 197)

Consider a unit vector n along the outgoing ray. The components of n in the ARF are:

nARF —sing cosp; niRF =sindsing; n

» ARF — cos ). (K.3)

z
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306 Appendix K. Transformation between magnetic and atmospheric frames

The respective components in the MRF are given by:

=sinf cosp; nMBF =sinfsing; n

MRF _
» . =cosf. (K.4)

MRF
nw

These two sets of components are related through the expression:

nMRF = Rrot(oa _793; _(PB) nARF7 (K5)

ARF __ (, ARF , ARF , ARF\T
Ty, N = (nz Ty M, )

tions we obtain the following simple trigonometric relations:

. From these equa-

MRF ,, MRF , MRF\T
- MRFYT and n

where nMRF = (p

sinf) cos¢p = costp cosyp sint cosy + cos¥p sinpp sind sinp — sinvg cos v,
sinfl sin¢ = — sinppg sin? cosy + cos g sin ¥ sin @,
cosf) = sindpg cospp sind cosp + sindp sin g sind sing + cosIp cos.(K.6)

Analogous relations are valid for the incoming ray, but with (4, ¢) changed to (¢, ¢') and
(9, @) changed to (', ¢’). From these equations one can easily obtain cos#, cosf', sinf, sinf’,
cos@, cosd’, sing, sing’, as required for the construction of the ¢, s coefficients and C, S
matrices (see Egs. (G.1) - (G.11) or equivalently Eqs. (I.1) - (I.15)). Further, the angles 7,
and 7o are given by (see Faurobert-Scholl 1993b)

cos g sin?d — sindp cos?' cos(¢' — ¢p)

- K.
COS 71 sin 6’ ) ( 7)
o sindpg sin(p’ — pp)
= K.8
sin 74 g , (K.8)
cos iy — cosVp sint — sin 1.93 cos ) cos(p — ng)’ (K.9)
sin 6
sini, = SmVs sin(es = ¢) (K.10)
sin f

Simple trigonometry then gives cos2i;, cos2is, sin2i;, sin2is, which are required for con-
structing the Mueller rotation matrices L(4;), and L(i3) (see Eq. (5.65) of Stenflo 1994).



Appendix L

Elements of the magnetic kernel N"(z,z’, B)

The magnetic kernel N"(z, 2, B) is given by

NT(x; xla B) =U (@B)M(ma xla 193’ B)UT(_QDB)

The 6 x 6 matrix U"(¢p) has the form (see also Frisch 2007)

( 10 0 0 0 0
01 0 0 0 0
Ur— 0 0 cosgpp singg 0 0
0 0 —sinpp cosyp 0 0

0 0 0 0 cos2pp sin2ppg

0 0 0 0 —sin2¢p cos2pp

We express the matrix M as

M(z,2',9p, B) = M"(z, 2,95, B) + M"(z,2',95, B).

Matrix MY and M™ are of the form

( by 0 0 0 0
0 bop  boz  bay  bos
2bo3 b3z b3y bs3s
—2bgs —b3s  ba  bus
2bys  bgs —bss  bss
—2bgs —b3s  bis —bss

o O o O

\

The elements of the matrices M and M™ explicitly contain branching ratios A and B

given by
1—‘R i B(K) _ FR

)

I'y — D)

A= B
'R +I1+T'g
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We also define C'g = costp and Sp = sin¥p, for notational simplification.

We first consider the elements of the M matrix. To simplify the notation, we introduce
the functions 7(z, z', B), with 4 = 1,...,5. We note that the subscript 7 on 7! do not

have any physical meaning. These functions are given by

I
ry = 3 (hoo + h11 +hoy 1) (L.6)

2 1 /-—m —1u
= ghoo Te (hn + h—1—1> ; (L.7)

I S
ry = cos B [(h10 + h’O—l) cos 1 — (fw + f0_1) sin 51] , (L.8)
8 = cos [(R R s (715 72 ) eos ] L)
ri = cos By ( 1H L COS By — fln,l sin ﬁ2> , (L.10)
i

T = cos By ( 1_1 8in By + f1 L COS ,32) (L.11)

The auxiliary functions E;II, (z,z', B) and 72, (z,z', B) with ¢, ¢ = 0, %1 are given by

—1I 1 /= — —1I 1 /—¢ —
hqq’ = 9 (RIqI,H + RIqI,H) ; qu' = 9 (RIqI,F - RIqI,F> . (L.12)

The functions Fﬁ,x(m, z', B), with X denoting H or F, are given by
_ 1 [~
RIqLX(ac,x’, B) = 5/ R x(v,2',©; B)sin© dO, (L.13)
0

where Rf| x (v, ', ©; B) are the AD magnetic redistribution functions of type II introduced
in Egs. (7.21) and (7.22). We refer to EIQLX(x,x’ , B) as the AA magnetic redistribution
functions of type II. The indices ¢ or ¢’ denote the magnetic substates of the upper level.
The smooth transition from Hanle effect in the line core to Rayleigh in the wings is con-
trolled by the function f;;, for ¢ # ¢'. For ¢ = ¢, 7;(11, are zero. We also introduce Hanle
angles 5; and (s, which are defined as

tan 51 = AFB, tan 52 = QAFB, (L14)

where the Hanle I'g parameter is written as I'g = gwr/Tr. We now list the elements of
M matrix below :

b = Argl, (L.15)
1

1
= AL 1305 — 18 + 3550500 + Ssprt] (L.16)
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bt = A\/gSBCB [—%(30@ — )it + (C}%ﬁ, - %) T+ = 52 H} : (L.17)
b = A\/gSB (CBA 4+ 5211, (L.18)

B, = A\/gs,g B(gc;g Te C%)rf] | (L.19)
b — A@S%CB (r — ), (L.20)

b1 = 4352020 42 (cg _ %)27«9 + 20T (L.21)

B = AC) [(cg - %) A S%r?} | (L22)

bys = A%SBCB [-3S5r1 — (O — S)rs + (1+ CH)ry'], (L.23)
BL = AS, Ba a0zl 4 c;grg] | (L.24)

bl =A [ Cory + ngr}f] : (L.25)

pL = A%SB (G2l — (14 C2)rl], (L.26)

bl = AS5Ch (@I - %rg) | (L.27)

W= 4l [ Shrll 4 SHO + L(1+ Oy H] | (L.28)

B — A%CB (3 4+ (14 02)r] (L..29)

bee = A ( S2rit 4+ C% H) : (L.30)

Next we consider the elements of the M'! matrix. Again to simplify the notation, we

introduce the functions r}'(z, z', B), with 4 = 1,...,5 and they are given by

——1III+ —FIII+ III+ I+ —FIII+
} , (L.31)

= 2 | G0 + Tl + W™+ )+ G,

1 1 ——11+ — T+ — I+ 4 I+
T{II =18 [S(hh)oo + 4(hh)01 + 4(hh)10 + (hh)n (hh)1 1] ) (L.32)
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1 - _
Ty = g cos B cos ol [ds cos (Oz§2) + 51) + dysin <C¥§2) + 51)] ; (L.33)

1 - _
ryt = g cos By cos ol? x [d4 cos (a?) + 51) — dgsin (a?) + 51)} ; (L.34)

il = cos f3,cos aéZ){ [?R <51H,11) — %(flllilﬂ cos (aéz) + 62)

- [ (R) + () Jsin (o + 52) . (L.35)

rat = cos f3ycos agz){ [?R (ﬁln_ll) - %(7111_11)] sin (ag) + Bg)
+ [%(Eln_ll) + %R(?ln_ll)] cos (ag) + ﬁQ) } (L.36)

The various auxiliary functions appearing in the above set of equations depend on z, z’
and field strength B, and are listed below

—1II 1 /—¢¢ —q —ad _
§R(hqq') =1 (RIqII({HH + RIqII(fHH + RIqI(i,HH + Rfﬁ,HH) ) (L.37)
o (7T 1 (=dd 49 - ad’ 49
S5 (hqq') = <RIII,FH + Riypn — Rrrn — RIII,FH) ) (L.38)
—T+ 1 (—qq — —qg—q
(hh)qq’ = 9 (qug,HH + RIH‘ZHIq{) ) (L.39)
T+ 1 (—gq — g
(f / )qq’ = ) (RI(II?,FF + RIH({F}? ) ) (L-40)
—Tx 1 (=g ——g—¢
(hf)qq’ = 5 (RIqI(i,HF + RIIEH;) ) (L-41)
—Tt 1 [—qq ——q—¢
(fh)qq’ = B) (RIqI‘iFH + RIII({FI(-]I) ) (L.42)
- T4+ —— I+ I+ I+ T+ I+ ——III+
ds =2 [(Bh)y, "+ (h) Ly = Py + Py | +4[(RR)gg + (hb)gy -+ (B |
L.43
- - M- Il Tl - - ( )
d=2[(f) + TR —Bhiy + P | +4[Bhe + R |- (L49)
We note that xy in the auxiliary function (xy);gi is simply a notation and is not product

of z and y. The functions RI(II?:XY(:U, z', B), with X and Y denoting H and/or F, are given
by

—aqd’ ]_ ™ !
Rii xy (7', B) = 5 / Rffi xy(z,7',©; B) sin© dO, (L.45)
0
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where R}’IQII,XY (z,2',0; B) are the AD magnetic redistribution functions of type III intro-
duced in Egs. (7.23)-(7.26). We refer to EI(II(%:XY(:I:’ z', B) as the AA magnetic redistribution

functions of type III. The Hanle angles agK) and agK) are defined through

(K) _ L'x
tana; = T i, +D(K)FB,
r
tanaéK) =2 t I's.

I'g + 'y + D&K)

We now list the elements of M below :

11 _ p(0),.101
by = BYry,

1

1 3
b = B [5(3039 1) 4 38303 55;751} |

2

3 1 1
o = 0y 3sucu [-L60s - 1+ (03 - 1) i+

3
i = B35 (s34 - ),

3 1 1

bys = B® \/%SQB [—2(3(]2B — 't = Ogrs + 2
3

bys = BQ)[ §S2BCB (Téﬂ + T%H) ;

1
b = B |35303:00 12 (c;, .

2

1
bl = BACy [Sgryl — <C§ — —) ril

2

1
=505 [ Yot i

111
)

1
e B® (—201237%11 + S%rfln> ,
1
bys = —B(2)§SB [C’%réﬂ + (14 Cp)r

1
Bl = BO)S,C (@H - 5@) ,

0+ e,

II1
5

],

1
L],

2
11 2 ~2 111
) ry + SpCary

|\

1
M = B S [-3531T = (0 = ST+ (1+ Gl

|

(L.46)

(L.47)

(L.48)

(L.49)

(L.50)

(L.51)

(.52)

(L.53)

(L.54)

(L.55)
(L.56)
(L.57)
(L.58)

(L.59)

(L.60)



312 Appendix L. Elements of the magnetic kernel N"(z,z', B)

1
B — BO [ Spri’ + SHCRrS" + 51+ Cp)’r IH} (L.61)
1
bis = B®SCp [=Spry’ + (1+ CR)rs'], (L.62)
1
b = B® (55?3 1+ Chr HI) : (L.63)

Even though the expressions for the elements of the matrices M!! and M™ are cumbersome,

one needs to use them for a correct and exact treatment of PRD in Hanle scattering.
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