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MHD waves on the Sun
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Abstract : 'Theoretical aspects of wave propagation in an atmosphere with a vertical
magnetic field are reviewed. Suding from the ideal magnetohydrodymamic equations, the
differential equation govermning lnear oscillations is presented for a stratified medium with a vertical
magnetic ficld. In order 10 obtain physical insight into the nature of the different types of waves; it
is instructive to first consider cerain simple cases, for which the wave equation can be solved
analytically. The dispersion relations for these modes are examined. Next, the case of an
isothermal stratified atmosphere is considered in the limit of strong and weak magnetic fields. The
effect of & magnetic field on the medal structure is highlighted. Coupling of different types of
modes-is examined. Solutions for the general case comesponding to the atmosphere in the umbra of
a sunspot are also presented and related to observations of umbral oscillations. Finally, wave
propagation in intense flux tubes is briefly discussed.
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1. Introduction

The study of oscillations on the Sur has witnessed impressive progress in recent years, With
the development of sophisticated observational techniques, it is now possible to detect waves
in the solar atmosphere over a wide range of frequencies and length scales. The discovery of
5Smin global oscillations and their theoretical interpretation has generated considerable interest
in wave phenomena and led to the growth of a whole branch of knowledge, known as
helioseismology, devoted exclusively to this aspect. The various modes, which are localised
in different regions of the Sun, provide valuable information about physical conditions in the
solar interior. However, in this review, we shall be concerned mainly with the surface layers
Le., the photosphere, which is most accessible to direct observations (in the optical
wavelength band). It is also well known that the photosphere is threaded with strong
magnetic fields. The ain of this paper is to review the nature of oscillations assaciated with
these magnetized regions.

Historically, the study of wave motions on the Sun dates back to the 1940's, when
theorists grappled with the question of understanding why the corona is much hotter than the
underlying photosphere. Typically, the temperature of the corona is some million degrees,
whereas that of the photosphere is only a few thousand degrees. The earliest theories were
based upon the hypothesis that the convection zone is a rich source of sound waves. As these
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waves travel upwards, their amplitudes increase (because of energy conservation) owing to
the fall in density and eventually they form shocks and dissipate their energy very rapidly,
For. a variety of reasons, which will not be discussed here, pure acoustic wave theories are
dead and most modern theories of coronal heating involve the magnetic field in some way or
the other and depend upon magnetic waves to carry the energy flux.

It is now generally accepted, on the basis of observations (for a recent review see (1]
and references therein) that the magnetic field on the solar surface occurs in the form of
discrete elements known as flux tubes. Diameters of these tubes range from several thousand
kilometers, corresponding to sunspots, down to a few hundred kilometers, associated with
intense flux tubes or fibrils. There are also tubes with intermediate sizes, such as pores and
faculae. Despite the fact that these elements have different horizontal dimensions, one feature
that is common to all of them is that the magnetic field in the tubes is fairly strong, with field
strengths in the kilogauss range. Flux tubes on the sun exhibit a rich variety of oscillations, of
which umbral oscillations with periods in the 2-3 min band and penumbral waves are perhaps
the most well known. In addition, oscillations have also been observed in intense flux tubes,
though not as extensively as in sunspots, because intense tubes are hard to resolve from
ground based instruments. In the ensuing sections, we shall examine some of the properties
of such oscillations. However, before doing this, it might be worthwhile to briefly mention
some.of the reasons for studying magnetic waves on the Sun. They are :

® Waves are likely candidates for transporting energy from the sub-surface layers to the
upper regions of the atmosphere.

® Waves provide a powerful diagnostic for probing physical conditions within flux
tubes, particularly in the deeper layers, normally inaccessible to observations.

@® Lastly, the Sun can be regarded as an astrophysical observatory, which can yield
important clues to understanding wave phenomena in laboratory magnetised plasma,
in addition to being a site for testing new theories.

Qualitatively, the waves that we are dealing with are called magneto-acoustic-gravity
(MAG for short), reflecting the three distinct forces that are present, viz., magnetic, pressure
and gravity. Without gravity, the theoretical analysis i$ straightforward. However, when
stratification due to gravity is taken into account, the mathematical problem becomes
considerably more complicated. Historically, the normal modes of a stratified medium with a
vertical magnetic field began with the analysis of Ferraro and Plumpton [2]. Since then there
have been several papers and reviews on this subject [3-18]. Despite the considerable
atention that this topic has received, it would still be premature to say that we have a complete
understanding of MAG waves. In the following sections, - we shall quantitatively discuss
some of the fundamental aspects related to MAG waves. The treatment adopted in this review
is by no means exhaustive and reflects to some extent the author's own interests.
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The plan of this review is as follows : in Section 2, the relevant equations governing
oscillations will be presented. Analytic solutions corresponding to special cases are examined,
In Sections 3 and 4, waves in a medium with zero gravity (unstratified) and in a stratified
atmosphere with no magnetic field are treated respectively. Section 5 examines oscillations in
an isothermal stratified atmosphere with a vertical magnetic field. The analysis clearly
highlights the effect of a magnetic field on the modal structure of a non-magnetic atmosphere.
The most general case is treated in Section 6, where numerical results for umbral oscillations
are presented. Finally, oscillations in intense flux tubes are discussed briefly in Section 7.

2. Equations

Let us consider a stratified plasma with a uniform vertical magnetic field. Using a fluid

description and assuming an ideal plasma (i.e., inviscid and with infinite conduétivity), the
relevant MHD equations are

%e+ V. (pv) = 0, )
¢ = pg- Vp+-- VxBxB, 2
4r

i[5 o
V.B =0, @)

1B

VxE = -+ 2,
X ¢ 5 &)
E+loxB) =0, ©

where p is the mass density of the fluid, v is the velocity, p is the pressure, B is the
magnetic field strength and E is the electric field. The constants g, ¢ and y refer to
acceleration due to gravity, the speed of light and the ratio of spectific heats respectively. Eq.
(1) express continuity of mass, eq. (2) is the equation of motion, eq. (3) corresponds to the
assumption of an adiabatic fluid, eq. (4)—~(5) are Maxwell's equations and eq. (6) is Ohm's
law for an infinitely conducting plasma.

2.1. Equilibrium :

Att=0(i.e., the unperturbed state) let us assume that the fluid is in hydrostatic equilibrium
and that all physical quantities have only a z dependence, apart from the magnetic field, which
we take to be constant. The equilibrium state can be determined by solving eq. (1)—(6),
without the time derivatives. Let us also assume that the velocity is zero in the unperturbed
atmosphere. Thus, in equilibrium we have

Do _pg M
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assuming that gravity acts in the z direction, which is chosen to point away from the Sun, For
simplicity, let us assume that the equilibrium atmosphere is isothermal i.e., the temperature is

constant with height. This implies that the sound speed defined as ¢, =+ ¥p/p s constant
with z and that p has the following height dependence

p=po expHM), ®
where the subscript zero refers o values at z = 0 and H = p/pg is defined as the scale height
of the atmosphere, which is constant for an ispthermal medium.

2.2. Wave equation :

We now consider wave propagaticn in an ideal stratified plasma. This is accomplished by

considering small perturbations about the equilibrium. Let E denote a Lagrangian
displacement of a fluid element from its equilibrium position. This displacement is related to

the velocity through the equation

H
v—at. )

Expressing all physical variables in €q. (1)~(6) as the sum of an anperturbed part and a small
perturbation and retaining only first order terms in the perturbations, we arrive at the
following differential equation

p ‘ZSF—F(E} 10)
where

F (&)= Vop-g& _.i (V x 8B) x B, 1)

& =-pv. & - Evp, (12)

& =-wV. - . %, a3

8B =V x (& x B), (14)

where 8p, 8p, 8B denote Eulerian perturbations in density, pressure and magnetic field
respectively.

In cartesian geometry, the linearised equations for MAG waves, assuming that the
displacements have the form exp [i(@t— kx)] , can be written as [2]

d* d
2 2 q2\32 .
[ﬁA.ziz_z_- (cs + zﬂA)k + a)21|§, —zk(cﬁ -——dz - g)ﬁz =0, (15)
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where k is the horizontal wave number, @ is the frequency, and 9, is the Alfvén speed
defined as ¥4 = B/N4mp. Eqgs. (15) and (16) govern the propagation of MAG waves in a
stratified atmosphere.

Eq. (17), which is decoupled from the other equations, describés purely transverse
waves known as Alfvén waves, bearing the name of the person who first discussed their
theoretical properties. We have implicitly assumed that the propagation and motions of the
MAG modes are confined to the x—z plane and of the Alfvén modes to the y—z plane. This
involves no loss of generality.

It is instructive to examine the solution of the wave equations (15)~(17) for certain
special cases, which can be treated analytically.
3. Zero gravity (unstratified medium)

Itis well known that in a unstratified magnetized plasma, there are basically only three types
of waves, viz., fast, slow and Alfvén . The dispersion relation can be obtained fairly trivially
from egs. (15)-(17) and is

(0% -K2v} )[co“ ~o?{cd+vi k2 + kfk2c§v§]= 0, (18)
where k, is the vertical wave number and k, is the total wave number defined as k, =

K2 + k- Equating the first term in eq. (18) to zero yields the dispersion relation for Alfvén
Zz°

waves, These waves as discussed carlier are decoupled from the other modes.

On equating the second term in eq. (18) to zero, the dispersion relation for fast and
slow modes is obtained. It is instructive to look at this relation in the thin flux tube limit i.e.,
when k,fk — 0. In this limit @ and wj, the fast and slow mode frequencies respectively, are

k2 (cd +v3)
2 ’
w? = k2ct, (19b)

where ¢ = cgv, /4f cZ+ V2 is known as the tube speed.

2 _
o= (192

4. Unmagnetized medium (B = 0)
4.1. Isothermal atmosphere :

The dispersion relation for a stratified isothermal medium is

B 5&6(19)
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o' - (0l + kic})o® +klciogysin®6 =0, 0)
where
7z

w, =—2—,

T @)

_pi2
wgy =L "8 @)
Cs

and @is the angle between the vertical (z-axis) and k. The quantities @, and @gy are referred
to as the acoustic cut-off and Brunt-Viisild frequencies respectively. Eq. (20) is the
dispersion relation for atmospheric waves. It is useful o write eq. (20) as

(0?- cof)

2 _ k2 w%V -1
ki =~ + - - 23)

Cs

Wave propagation occurs only in those regions where If > 0. When kH >> 1, the dispersion
relation factorizes out into two expressions

w? = kxck, @4

where egs. (24) and (25) correspond to acoustic (p) and gravity (g) modes respectively. In
the opposite limit when kH << 1 the following relations are obtained

?=d @)
aﬂ:%cékz. @n

4.2. Polytropic atmosphere :

We now consider wave propagation in a polytopic atmosphere, without a magnetic field. In
such an atmosphere, the pressure and density are related according as follows

P +1/1
p=py| —— (28)
0( Py j

where [ is the polytropic index and the subscript zero refers to vatues at z = 0. This case was
first investigated by Lamb [19], who found an analytic solution to the problem in terms of
confluent hyper geometric functions, For large horizontal wave numbers the dispersion

relation can be factorized once again into p and g modes. In the limit of high vertical mode
order n, it is [20]
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a)2=2')gk_£-—_2___’ 29
+1 29)
g-modes
\ (1_ l+1)
g Y
n+—-2—

where [ is the polytropic index of the fluid. It is easy to show from eq. (30) that for an
adiabatically stratified fluid (/ = 3/2), the g-modes are neutral.

5. Magnetized medium with isothermal stratification

The problem of wave propagation in an isothermal stratified atmosphere with a vertical
magnetic field was ‘first investigated by Ferraro and Plumpton {2], who obtained analytic
expressions in the asymptotic limits of strong and weak magnetic fields. For the general case
of arbitrary field strengths, an analytic solution in terms of Meijer function was found by

iug\zlda [5]. In order to obtain a physical insight into this problem, let us first consider the

solutions in the asymptotic limits of weak and sirong fields. Since the differential equation is
of fourth order, there are in general four linearly independent solutions.

5.1. Strong field limit :

For a strong field, such that ¢ g'v4 — 0, the solutions for the vertical component of the wave
amplitudes are of the form

g2 ~ exp[——(l + ia)—ﬁ} (31)
Mtk (32)

where Q= wH/c, and @ = V4£22 - 1. Solutions given by eq. (31) are essentially slow
waves, modified by gravity, whereas those given by eq. (32) correspond to gravity modified
fast modes. The latter are evanescent in the vertical direction (purely growing solutions are
unphysical and can be discarded). It is interesting to note that the atmosphere has a cutoff
frequency, which is the same as that for a atmospheric wave.

5.2. Weak field limit :

For a weak field, such that v,/cs — 0, the solutions for the vértical component of the wave
amplitudes are of the form

§i'2 _ 9(-1t2iK,), (33
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(20
4 T
: ~ * PR 34)

where

Q2 1
2_ w2 BY
K% = Q°-K (1__62—-j_7’ 35
8= Qc,/v,, K = kH and Qgy = (y - 1)/7? is the Brunt-Viisili frequency (in dimensionlesg
units). The case Q2= (25 requires special treatment, which can be found in [2].

Let us first consider the solutions corresponding to eq. (33). These solutions,
representing propagating waves for K> 0, ie,when Q> Q or < Qpgy, can be

recognized as the usual p and g modes in an unmagnetized isothermal plasma. For £y, < Q <
£, the solutions represent purely evanescent waves.

Turning our attention to the solutions given by eq. (34), we find that these modes arise
solely due to the presence of the magnetic field. They are approximately transverse,
Physically, these modes can be interpreted as gravity modified slow modes in a weak
magnetic field.

Normal modes :

We eXamine the normal modes of a stratified atmosphere in a weak magnetic field, in order to
delineate the influence of the field on the oscillation spectrum. For simplicity, let us assume
rigid boundary conditions such that

(=& =0atz=0and z=D, (36)
where D is the height of the top boundary in units of H.

Using eqs. (36) as boundary conditions, it can be shown that the dispersion relation
is [21]
(2% - K*)sin Bsin(K,D)
£
(9]

ePr4 {2K,K2[cosh(D / 4)cos Bcos(K, D) ~ 1]

+2sinh(D / 4)cos E)sin(K,D)l:M(.Q2 -K%)- [(2(_1_ - _1_)]}

Y 2
2
Q
@7

where
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£=—1-)-&—, r=(1-— '(2%2" )
Cs Q
8,=6(0), 6p=6(D), B8=2(6,-6,),
2

For £<< £2, the dispersion relation to lowest order in &/ Q2becomes

(€@* - K?)sin @sin(K,D)=0, 38)
Eq. (38) admits the following solutions

sin(X,D) =0, (39)

=K, “0)

sin =0, @1

Let us first consider the solution given by eq. (37) which 'implies that KD = nr, where nis
an integer and denotes the order of the mode. Use of eq. (35) yields the usual relation for p-
and g-modes, which is

ot - o}(K% + 4 )+K'h =0 (=pp) )
where K2= K* + K2,

The solution corresponding to eq. (40) can easily be recongnised as the Lamb mode in
an unmagnetized atmosphere. Let us denote this frequency as €. The Lamb mode in a non-
magnetic atmosphere propagates horizontally and is evanescent in the vertical direction. It
does nqt satisfy the boundary conditions (36). However, this can be achieved by adding a
small contribution from the magnetic modes.

Turning our attention to the solutions given by eq. (41), we find that these modes arise
solely due to the presence of the magnetic field. On applying the boundary conditions given
by egs. (36), we find that the magnetic modes have frequencies

_ &nm
™7 as
where s = (1- €~P/2). These modes are approximately transverse, since it can be shown [21]
that

“3)

1,2
5~ 0(6)

z

Physically, these modes can be interpreted as gravity modified slow modes in a weak
magnetic field.

We now consider the corrections to the lowest order frequencies obtained from
eq. (38).
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Frequency correction to the p- and g- modes :
Let us write

Q=+ 58 44
where £2( = p,g) is the solution of eq. (39), and 8Q; denotes the first order correction to ()

due to the magnetic field. Substituting eq. (44) in the dispersion relation (eq. 37), yields an
expression for 8Q;, which is

Didp2p2 k202, \* n = ~
80, = Dz.(ji (szf; ) ( - fo" ) [(—1) *! cosec + cosh(D / 4)cot9],(45)
where K, = nz/D,

In the limit X — 0, 2, —» 0 and Q, — nn/D (for nz/D >> 1), The correction to Q,in ths'
limit is

2€D€D/4K2 1
80, = ——-n———[(—l)’” cosecd + cosh(D / 4)cot 8, 46)

The frequency correction, for small X' varies as K 2 and n2, becoming negligibly small for
high orders. In the limit K — 0, eq. (45) cannot be used for the g-modes since these have
very small frequencies (2, ~ X).
Let us now consider the limit of large X, sothat X >> £2and K >> K ,. In this limit,
.(% —> 'Q.BV and
D4 2,2

50 = 2ee”’"'n“m

8 D3 KZ
Eq. (47) hold for K in the range Q2 << K << Q52 7'/

[(—1)"+1cosecé +cosh(D /4)cot 5], @n

The frequency correction, for large K varies as K2 and n?, and, therefore, increases with
mode order. The correction to £2, cannot be obtained from eq. (45) since 2,~ K

Freguency correction to the Lamb mode :

Let us now consider the frequency correction to the Lamb mode with frequency £; = K. The
frequency correction to this mode is

8Q, = %e”"‘& [cosh(D /4)Dcot@coth(K )

_cosecécosech(kz)-sinh(D/4)]+o(—;-), @)

where K, = (1/ y- 1/2). Eq. (48) is valid for e >> K >> €. For K < &, the condition
&€2/€, << 1 does not hold, whereas for K >> &1, the second order term on the right hand
side of eq. (48) dominates over the first order term.
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Frequency correction to the magnetic mode :
The frequency correction 1 €2, is
2,D/4
5Q. = £e {21< K*[(=1y"*!cosec(K,D
= "2s0 (Gl k%) 12K sec(K, D) +cosh(D / 4)cot(K, D))
+2sinh(D / 4)| M(Q% - k) - k2| = - L\ @)
Y 2
where £2,, is given by eq. (43).
In the imit K << £2,,, we {ind
D/4 : 2
_ ¢ge sinh(D / 4) K il
80, =—— { T [21{, (=1 cosec(,D)
+cosh(D / 4)cot(K, D)) + 2sinh (D / 4)[% - -}Z—J} G0
Y
Table L. Values of c g, U4 and 8 = wH/v, at different 2 {13].
4 Cs A7 8
(k) (km s7) (km s7)
-500 ... 10.42 2.81 (4.21) 3.84 (2.56)
-300 ... 9.61 3.63 (5.45) 2.44 (1.62)
-100 ... 8.24 4.55 (5.45) 1.16 (0.77)
0.. 6.52 5.84 (8.22) 0.59 (0.40)
100 ... 5.87 9.13 (13.70) 0.29 (0.19)
300 ... 5.94 34.82 (52.23) 0.08 (0.05)
Note : H is the scale height and o is the frequency, assuming B = 2000 G
and a wave period of 180 s. The numbers n parentheses correspond to
B =3000G.
where K, =\ Q2~1/4.
In the opposite limit, when K >> (2, we have
22 o 2 _Dl4
50, = €°K* sinh(D/4) Qzpe (51)

Q3 5 ’
The frequency correction given by eq. (51) holds as long as &2,/Q2,, << 1. This restricts the
validity of eq. (51) to K in the range Q, << K << .Q,z,, g1 or roughly when nme << K <<
e,

6. Magnetized atmosphere with general stratification

We now consider waves in a straufied and magnetized atmosphere of: the most general kind.
The nature of the waves in this case is much more difficult to understand and cannot be
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analysed in terms of the elementary modes discussed in the previous section. In ap
atmosphere, where the ratio of the sound to Alfvén speed changes with height, a continyoyg
transformation of the wave modes occurs. This mode transformation is particularly effective
in layers where @H fv4 ~1 [22]. Table 1 (taken from [13] hereafter Paper II) gives the valyes
of v, cgand B, where 6 = wH/v;, at various z for B = 2000 G and @ = 3.49 rad ¢!
(corresponding to a period of 180 s). The numbers in parentheses give the values for B =

3000 G. We find that the "transformation” region occurs deeper in the umbra for B = 300
G.

Thus, when attributing a fast or slow character to a mode, it should be born in mind
that this is local property, and applicable only in layers separated from the "transformation
region”. Incidentally, decreasing the frequency, moves this region lower down into the
atmosphere.

Let us consider the solution of the wave equation in the most general case. For the
sake of illustration, we choose an equilibrium atmosphere corresponding to the umbra of a
typical sunspot. The normal modes of this atmosphere can be obtained by numerically solving
egs. (15)-(16). Details of the method can be found in Paper IL Figure 1 (taken from Paper II)
shows the diagnostic diagram i.e., the variation of the wave frequency v(where v = wf2n)
with k for umbral oscillations, for B = 2000 G (solid lines) and B = 3000 G (dashed lines),
assuming rigid boundaries.

T L

i m

67 =

co 1.0 20 30 Z0 50
k(Mn)

Figure 1. Variation of v with k in the umbra of typical sunspot for B=2000 G (solid lines) and
B=3000 G (dashed lines), corresponding to 40/ csp=0.84 and vsq / .csp=1.26 respectively,
where the subscript zero corresponds to z=0. The right-hand scale denotes the periods and the
numbers besides the curves correspond to the order n of the solution, with Tespect to B=2000G

(from [13})
The various numbers besides the solid curves denote the orders (n) of the solutions (with
respect to B = 2000 G). An interesting aspect of the solutions in that curves of different
orders do not intersect i.e., accidental degeneracy does not occurs. In fact, when curves of
adjacent orders approach one another, an avoided crossing occurs. Physically, this
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phenomenon can be understood in terms of coupling between modes confined to different
regions of the atmosphere [2,3]. The existence of avoided crossings in the context of
magnetoatmospheric waves appears o have been only recently notices [12]. A detailed
analysis of the nature of the waves in the vicinity of avoided crossings has been given in [21].

Certain properties of the solutions can be discerned by an inspection of Figure 1. For
instance there are regions in the diagnostic diagram where the frequency hardly varies with k.
These portions roughly correspond to modes which are dominantly of the slow type. In the
limit of large k, the dispersion relation for the slow mode is given by eq. (19b). When
k- oo, @ — oo for the fast mode, so that the two sets of modes are well separated in
frequency. Thus, for large horizontal wave number, we expect the low order modes to be of
the slow type, whose frequencies depend on B through the tube speed cy. The magnetic
nature of a mode can be seen by looking, in this limit, at the shift in frequency, when the
magnetic field is varied. We find that the frequency of the n=2 mode is unaffected by a
change in the field, suggesting that this mode is dominantly acoustic in character. For the
other modes, however, the frequency increases with B, although the dependence on field
strength is fairly weak.

7. Oscillations in intense flux tubes

In the previous sections, we considered wave propagation in a stratified atmosphere with a
uniform vertical magnetic field. Let us now consider the case of a single vertical isolated flux
mbe surrounded by an unmagnetized medium. Owing to the stratification, the tube will flare
out with height. This problem in its generality is at present intractable. However, some
progress can be made if one resorts to the thin flux tube approximation, which essendally
assumes constance of all quantities in the horizontal diréction. In this approximation, the ideal
MHD equations for axisymmetric longitudinal disturbances are [24,25]

G (PN, 9 (pv)
ot ( B )+‘az ( B )‘0’ (52)
o v\ _ dp
(%] =P, 53
”(af vg) 2 pg (53)
P, P2 (®, P\, (54)
& & x " &
p+E = p, (55)
8x
BA = constant, (56)

where vand B denote the vertical components of the velocity and magnetic field respecttively
in the wbe with cross-sectional arca A and p, denotes the external pressure.

For linear motions, eqs. (52)-(56) can be manipulated to yield the following
equation [26]

B 5&6(20)
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2 2
Qg 90
-C +m,Q0=0, 5
x| &7
where .
2
Q=(EB'3%-) v, (58)
and
2 2
2__¢r | ¢ ( v-1 9 1
B [ o7 & )+ 16 27 ] ®

For an isothermal medium, cyand @y, are constants. It is then easy to show that eq. (57),
y. 'ds the dispersion relation

?= of + &k, )
where k, denotes the vertical wave number. From eq. (60), we find that @y, corresponds to

the cutoff frequency for tube modes. For an unstratified medium, @y = 0 and we recover the

slow mode dispersion relation (¢f. eq. [19b]). The cutoff frequency for longitudinal
disturbances in a thin flux tube can be expressed to terms of @, = cg/2H, the usual cutoff

frequency in a field-free atmosphere, as

2 2
2 2. ¢cr | cs (v-1 9 1 }

0t =40 + - R 61
t “c?[vi(f) 16 2y €D

For typical parameters in the photosphere, it turns out that @y ~ @,

So far we have been dealing with the axisymmetric mode, also referred to as the
sausage moee. Let us now consider the kink modes of an intense flux tube, These modes are

transverse and- for an isothermal medium are governed by the following differential
equation [27]

Po,_ oy, P
2B+ 1) 7% = gL 2gH 7L 62
@B+D— S, F2si— 62

where v) denotes the transverse velocity amplitude and 8 = 8 zp/B2. Assuming a variation of
the form

v, ~expiot- ik,z + z/AH), 63
we obtain the following dispersion relation from eq. (62)
wP= af + G, ®4

where

2
v
CZ A

- 28+1° ©3)
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g
SH(2B+1) ~ (66)

k=

From eq. (66). we find that analogous to longiludinaf oscillations, kink oscillations travel
with the a speed cx und have a cut off frequency wy. Eq. (66) can also be written as

w} =[ . }wz
KTl 2y |0 ©7)

In general, @x < ¢, which implies that lower frequencies can propagate up to greater heights
in flux tubes than in the field free medium. This can have important implications for coronal
heating, since there is considerable power in photospheric oscillations at periods below the
acoustic cut-off period.
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