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The authors present the results of their calculation for the parity nonconserving 5p66s1/2

→5p65d3/2 transition in Ba+ using the relativistic coupled-cluster theory in the singles, doubles, and
partial triples approximation. The contributions from the leading intermediate states are explicitly
considered. It is found that the largest contribution comes from the �5p66p1/2� state. Their results are
in reasonable agreement with other calculations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2404664�

I. INTRODUCTION

Parity nonconservation �PNC� in atoms and ions is an
important area of atomic physics where combined sub-1%
accurate relativistic many-body calculations and experiments
provide important information about the possible existence
of new physics beyond the standard model in the regime of
small momentum transfer.1 To this date, such a precision has
been achieved only for atomic Cs,2 where the result of the
PNC calculation combined with the experiment on atomic Cs
by Wood et al.3 is found to be consistent with the standard
model.

A variety of ab initio and semiempirical methods has
been employed to compute the PNC induced electric dipole
transition amplitude �E1PNC� in various atoms and ions in the
past few decades. Among them the order-by-order many-
body perturbation theory �MBPT� is the method that is most
widely used. In this method, apart from the residual Cou-
lomb interaction �difference of the two-electron Coulomb in-
teraction and the one electron Dirac-Fock �DF� potential�,
the PNC interaction arising from the neutral weak currents is
also considered as a perturbation. For atoms with strongly
interacting configurations, it would be appropriate to use a
hybrid approach consisting of configuration interaction �CI�
and MBPT or coupled-cluster �CC� approaches. Examples of
such atoms are bismuth and ytterbium.

The quantity that is measured in a PNC experiment is
related to the interference of E1PNC and an allowed electro-
magnetic transition amplitude.4 Experiments that have been
successful so far are based on fluorescence and optical
rotation.3,5 In the former case the interference is between
E1PNC and a Stark-induced electric dipole transition ampli-
tude. In the latter it is between E1PNC and an allowed mag-
netic dipole transition amplitude. Precise measurements of

optical rotation have been carried out for the 6p1/2→6p3/2

transition in 205Tl in Oxford6 and Seattle,5 for the 63P0

→63P1 transition in 208Pb in Seattle7 and Oxford,8 and for
the 4S3/2→ 2D3/2 transition in 209Bi in Oxford.9 The other
stream of experiments based on fluorescence has led to very
accurate predictions in atomic cesium �10%,10 2%,11 0.35%
�Ref. 3�� which in comparison with the theoretical calcula-
tions by Blundell et al.12 using the linearized CC method and
the most recent all order MBPT approach of Dzuba et al.2 are
found to be consistent with the standard model. For the past
two decades a number of ingenious experimental techniques
�e.g., laser cooling and trapping of atoms� have been used in
the study of symmetry violations in atomic systems.

Our interest is mainly on Ba+ for which an experiment to
observe PNC using the �5p66s�1/2→ �5p65d�3/2 transition has
been proposed by Fortson.13 For this ion we have performed
step by step relativistic CC calculations for various proper-
ties of interest such as the ionization potentials/excitation
energies,14 lifetimes,15 and hyperfine constants,16 and the re-
sults are very promising. The hyperfine constant calculations
using different single particle orbitals by Sahoo17 reveal the
importance of the accuracy of the basis functions in such
calculations. All these tests are essential as the accuracy of
E1PNC depends on the accuracies of certain atomic properties
close to and far away from the nucleus. In this paper, we
have evaluated E1PNC using the sum over states approach in
which we have taken the contributions from the dominant
low-lying states using the relativistic CC theory and the rest
by the DF method.

The outline of the paper is as follows. First we present
the basic formalism of the relativistic CC method and then
describe briefly the two different approaches to compute
E1PNC, viz., the sum over intermediate states approach and
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the mixed parity approach. This is followed by the applica-
tion of sum over intermediate states approach for the com-
putation of E1PNC in Ba+ which is compared with other cal-
culations of this quantity.

II. METHOD OF CALCULATION

Let us consider the atomic Hamiltonian to be the exact
no-virtual pair Dirac-Coulomb �DC� Hamiltonian as dis-
cussed in Refs. 18 and 19 and given by

HDC = �
i

N

�c�i · pi + ��i − 1�c2 + Vnuc�ri�� + �
i�j

1

rij
. �1�

The contributions due to the Breit interaction, negative-
energy states, and radiation corrections are omitted in the
present calculation as they are rather small compared to the
terms present in the DC Hamiltonian. The CC theory is
based on the exponential wave function

��CC� = eT��o� , �2�

where ��o� is the DF reference state and the operator T gen-
erating excitations from it. One can choose a non-DF refer-
ence state instead of the DF state, and for a multireference
method it is replaced by a linear combination of determi-
nants. In the present case, we start with the DF reference
state corresponding to �N−1� electron closed-shell configu-
ration �in the present case it is Ba++�. In the single reference
case, the operator T is given by

T = �
i=1

Ti, �3�

where

T1 = �
a,p

ta
pap

†aa, �4�

T2 =
1

�2!�2 �
a,b,p,q

tab
pqap

†aq
†abaa, �5�

and so on. Here a ,b and p ,q represent core and virtual or-
bitals. These operators act on the N−1 electron ���o�� refer-
ence state function to give single and double excited states
with respect to reference state and they can be represented as
��a

p� and ��a,b
p,q�. Once we solve the N−1 electron closed-

shell configuration we add one electron to the kth virtual
orbital and obtain the N electron system as

��k
N� = aK

† ��o� , �6�

where ��k
N� represents the N electron system. Any general

state in the open-shell CC method20 is written as

��k
N� = eT�0�

�eSk
�0�

	��k
N� . �7�

Similar to the definition of T amplitudes, we define the S
amplitudes as

S = �
i

Si, �8�

where

S1 = �
p

sv
pap

†av, S2 =
1

�2!�2 �
a,p,q

sva
pqap

†aq
†aaav,

and so on. Here in addition to a, p, and q �as defined earlier�
v defines a valence orbital. These operators act on the N
electron reference state function, thereby generating ��v

p�,
��a,v

p,q� which are singly and doubly excited states with re-
spect to ��k

N�. Using the mathematical simplifications given
in detail in Refs. 14 and 21, we can arrive at two different
equations for determining the cluster amplitudes correspond-
ing to T and S in the CC formalism.

In the present work we have used the nonlinear coupled-
cluster singles, doubles, and partial triples �CCSD�T�� for-
malism for determining the T and S amplitudes. The approxi-
mations for the closed and open shell cluster amplitudes are
described in our previous publication.14 E1PNC induced by
weak interactions can be expressed as

E1PNC =

�̃ f�D��̃i�

�
�̃i��̃i��
�̃ f��̃ f�
, �9�

where D denotes dipole operator and ��̃i� and ��̃ f� are the
initial and final atomic states of mixed parity given by

��̃i� = ��i
�0�� + ��i

�1��, ��̃ f� = �� f
�0�� + �� f

�1�� .

Here ��� with the superscripts 0 and 1 denote the unper-
turbed and perturbed atomic states. The neutral weak inter-
action Hamiltonian22 given below is considered as the per-
turbation.

HPNC =
GF

2�2
QW�

e

�5��re� , �10�

where GF is the Fermi constant and QW is the weak nuclear
charge given by QW=2�ZC1p+NC1n�. Z and N are the num-
bers of protons and neutrons, respectively. C1p and C1n are
the vector �nucleon�-axial vector �electron� coupling coeffi-
cients, ��re� is the normalized nucleon number density, and
�5 is the usual pseudoscalar Dirac matrix.

We now focus on the important features of the two dif-
ferent approaches to compute E1PNC using the above CC
amplitudes.

A. Evaluation of E1PNC using the sum over intermediate
states approach

In this approach, we consider contributions from the
bound low-lying states as allowed by the angular momentum
selection rules using the CC method and the rest by the
DF method. In the present case, we have taken the DF
contributions from the singly excited states comprising of
bound core and continuum virtual orbitals. Electric dipole
transition amplitude induced by the PNC interaction from
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�5p66s1/2�→ �5p65d3/2� for Ba+ using the sum over states
approach12 can be written as

E1PNC =
1

��
�i
�0���i

�0���
� f
�0��� f

�0���

� �
I
� 
� f

�0��D��I
�0��
�I

�0��PNC��i
�0��

�Ei − EI�

+

� f

�0��HPNC��I
�0��
�I

�0��D��i
�0��

�Ef − EI�

 , �11�

where

��i� = �5p66s�1/2, �� f� = �5p65d�3/2.

From angular momentum considerations, we know that the
nuclear spin independent neutral weak23 PNC interaction
�rank zero tensor� can connect only states of the same angu-
lar momentum. Hence, the first term in the E1PNC expression
can have intermediate atomic state functions with angular
momentum j= 1

2 and the second term with angular momen-
tum j= 3

2 , respectively. That leads to intermediate atomic
state functions to be only

��I� = �5p6np��1/2,3/2�,

with n=6,7 , . . . ,nmax, where nmax is the number of bound p
virtual orbitals for the chosen basis. Using the all order
closed and open shell CC amplitudes denoted by T�0� and
S�0�, all order dipole and PNC matrix elements between vari-
ous intermediate bound states and initial and final states of
interest can be computed. These matrix elements are used in
Eq. �11� along with other quantities such as the energy de-
nominators and the normalization factor to obtain E1PNC.

B. Evaluation of E1PNC using mixed parity approach

In this approach, the all order CC amplitudes for closed-
and open-shell systems are first computed without and with
PNC as the perturbation. Later the PNC amplitude E1PNC is
constructed with just one order in PNC and all orders in the
residual Coulomb perturbation at the singles, doubles, and
partial triples level. The basic equations for obtaining these
full fledged cluster amplitudes are described in detail in the
literature17,24 including its application to Ba+ �Ref. 25� PNC,
which is an important breakthrough in the computation of
weak interactions in atoms. The important correlation effects
incorporated in this method, but excluded in the summation
over intermediate states, will be mentioned later in Sec. III.
A somewhat similar approach based on MBPT �taking core
polarization effects to all orders with important pair correla-
tion effects to lowest order instead of all orders as in CC�
when applied to Ba+ PNC �Ref. 26� points to the importance
of the pair correlation effects in the evaluation of E1PNC. The
result obtained by this method is in good agreement with the
mixed parity MBPT approach of Dzuba et al.27

Substituting the form of the CC wave function con-
structed from the unperturbed and perturbed T and S CC
amplitudes, respectively, E1PNC given in Eq. �9� takes
the form

E1PNC =

� f

�0��e�S̃f
†	eT̃†

DeT̃e�S̃i	��i
�0��

�
�i
�0���i

�0���
� f
�0��� f

�0��
. �12�

To obtain a nonzero electric dipole transition amplitude be-
tween initial and final states of the same parity, we need to
consider terms which are at least linear in 	 �zero order 	
terms vanishes as per Laport’s28 rule�. All the higher order
terms in 	 are negligible as 	 scales as GF the Fermi constant
�10−14�.

III. RESULTS AND DISCUSSION

An experiment to observe PNC in the �5p66s�1/2

→ �5p65d�3/2 transition in Ba+ has been proposed by
Fortson.13 Previous calculations on this ion using different
approaches based on the CI method23 and MBPT by Dzuba
et al.27 and Gopakumar et al.26 have shown the importance
of the contribution from low-lying bound orbitals. Here we
employ the CC method to calculate E1PNC using the sum
over intermediate states approach.

We first generate the single particle DF orbitals with
Ba++�5p6� as the starting potential. We make use of the hy-
brid approach29 where we consider a part numerical and part
analytical Gaussian-type orbitals �GTOs� on a grid. Techni-
cal details related to orthogonalization and completeness
of the above basis set can be found from this reference. The
advantage of choosing such a hybrid basis over purely
analytical GTO basis is explained in detail taking a test cal-
culation, computing ionization potential �IP� and excitation
energy �EE� using CCSD�T� method for the low-lying levels
of Ba+ ion. The results of the calculation using the above two
different bases consisting of 9s1/2�3, . . . ,11� / ��3, . . . ,8�
�9, . . . ,11��, 9p1/2,3/2�3, . . . ,11� / ��3, . . . ,8��9, . . . ,11��,
10d3/2,5/2�3, . . . ,12� / ��3, . . . ,7��8, . . . ,12��, 9f5/2,7/2�4,12� /
��4,5��6, . . . ,12��, 9g7/2,9/2�5, . . . ,13� / ��−� , �5, . . . ,13��, and
7h9/2,11/2�6, . . . ,12� / ��−��6, . . . ,12�� single particle orbitals
are tabulated in Table I. Here 9s determines the number of s
symmetry orbitals in the above two bases with j=1/2 angu-
lar momentum. Principal quantum number �n� of the orbitals
starting from 3 to 11 belongs to pure analytical basis set,
whereas for the hybrid basis n=3–8 are taken as numerical

TABLE I. Ionization potential �IP� and excitation energy �EE� calculations
using pure GTOs and hybrid basis using 9s9p10d9f9g7h basis in units of
a.u. Errors are given in parentheses.

Orbital Analytical basis Hybrid basis Expt.

6s�1/2� 0.369 91�0.62%� 0.368 14�0.14%� 0.367 64
5d�3/2� 0.347 06�0.47%� 0.346 23�0.23%� 0.345 43
5d�5/2� 0.342 94�0.34%� 0.342 11�0.1%� 0.341 78
6p�1/2� 0.275 91�0.22%� 0.275 68�0.12%� 0.275 34
6p�3/2� 0.268 05�0.16%� 0.267 81 �0.07%� 0.267 62

6s-5d�3/2� 0.022 84�2.9%� 0.021 91�1.4%� 0.022 21
6s-5d�5/2� 0.026 97�4.3%� 0.026 03�0.66%� 0.025 86
6s-6p�1/2� 0.094 00�1.8%� 0.092 46�0.17%� 0.092 30
6s-6p�3/2� 0.101 85�1.8%� 0.100 33�0.31%� 0.100 02
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orbitals followed by analytical orbitals from n=9 to 11. For
all other orbitals with the same symmetry but different angu-
lar momenta, the same kind of basis set is used.

The errors in IP and EE using the two different basis sets
are schematically represented in Fig. 1. The average errors in
IP and EE for Ba+ using the hybrid basis are 0.1% and 0.6%
as against the analytical basis with 0.4% and 2.7%. The ma-
jor difference in the accuracies of the above quantities can
only be attributed to the choice of the basis. By representing
the core, valence, and the appropriate virtual single particle
states by numerical DF/VN−1 orbitals, we have been able to
obtain the best physical description for them.

The number of analytical orbitals used for the generation
of basis using the finite basis-set expansion method30 and the
actual number of analytical and numerical orbitals used in
the present calculation are given in Table II.

Examining the single particle orbital energies of p� 1
2 , 3

2
�

orbitals generated by the above method, we find that there
are three bound virtual orbitals �6p ,7p ,8p� 1

2 , 3
2

�� and the
lowest continuum orbitals are 9p� 1

2 , 3
2

� orbitals. Hence we
consider the contribution from 6p−8p orbitals by the CC
method and the rest from 2p−5p and 9p−29p by lowest
order MBPT, i.e., the DF approximation. Due to the presence
of nuclear density in the PNC Hamiltonian, the PNC matrix
element will be nonzero only when they are connected by
s� 1

2
� and p� 1

2
� orbitals. The expression for the lowest order

E1PNC in terms of single particle orbitals and energies can be
written as

E1PNC = �
n


5d3/2�D�np1/2�
np1/2�HPNC�6s1/2�
�
6s1/2

− 
np1/2
�

+ �
n


5d3/2�HPNC�np3/2�
np3/2�D�6s1/2�
�
5d3/2

− 
np1/2
�

,

where the first term represents PNC admixtures into the ini-
tial state and the second to the final state. The contributions
from the bound and some of the continuum virtual p1/2 or-
bitals at the DF level are tabulated in Table III.

From Table III it is clear that the core 5p1/2 and the
lowest virtual 6p1/2 orbitals are the largest two contributors
to the lowest order E1PNC calculation. Even though the PNC
matrix elements between the inner core p1/2 and 6s1/2 are
relatively large, the electric dipole matrix elements are small
and the energy denominators are large. The overall contribu-
tions are therefore small. For the other bound virtual orbitals,
the electric dipole as well as the PNC matrix elements reduce
in size, and this with the increasing energy differences results
in a rather small value of the total contribution from these
orbitals. Examining the specific contributions from con-
tinuum 9p1/2 with bound 7p1/2 orbital as tabulated above, we
can clearly identify the importance of continuum orbitals in
the calculation of E1PNC. Comparing with the total contribu-
tion from the continuum orbitals starting from 9p1/2 to
29p1/2, we find that 99% of the contribution to E1PNC comes
from 9p1/2 and 10p1/2 orbitals. Hence the total contribution
from the lowest order E1PNC is 2.30�10−11iea0QW / �−N�
with 96% from the bound orbitals and the rest from the con-
tinuum orbitals. The Hermitian conjugate term connecting

TABLE II. Number of single particle orbitals �numerical+analytical� used
in the calculation.

Symmetry
Analytical

�generation�
Numerical

orbitals
Analytical

orbitals

s� 1
2

� 32 1s . . .8s�8� 9s . .32s�24�
p� 1

2 , 3
2

� 28 2p . .8p�7� 9p-29p�21�
d� 3

2 , 5
2

� 25 3d . .7d�5� 8d . .27d�20�
f� 5

2 , 7
2

� 20 4f ,5f�2� 6f . .23f�18�
g� 7

2 , 9
2

� 15 ¯ 5g . .19g�15�
h� 9

2 , 11
2

� 10 ¯ 6h . .15h�10�

TABLE III. DF contributions from bound �core, virtual� and continuum
virtual orbitals in units of 10−11ieao�−QW /N�. Here p� denotes p1/2 orbitals.

np� 
5d�D�np�� 
np��HPNC�6s� E1PNCi
Total

2p� 0.002 4.825 0.000 0.000
3p� 0.007 2.284 0.000 0.000
4p� 0.003 1.038 0.000 0.000
5p� −0.792 0.378 0.286 0.286
6p� 1.529 0.101 1.872 2.158
7p� 0.143 0.063 0.044 2.202
8p� 0.080 0.044 0.014 2.215
9p� −0.192 −0.242 0.072 2.287
10p� −0.055 −0.658 0.011 2.298
11p� 0.009 1.952 0.001 2.299
¯ ¯ ¯ ¯ ¯

29p� 0.11�10−7 −0.76�103 −0.33�10−12 2.300

FIG. 1. Percentage of error in IPs and EEs for Ba+ with analytical and
hybrid �partly analytical and numerical� orbital bases.
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the initial state 6s1/2 through dipole to intermediate p3/2 and
then through HPNC to final state 5d3/2 is zero due to the fact
that the HPNC matrix element vanishes in this case. However,
this term is not zero when correlation effects are taken into
account.

Our present approach is similar to that of Blundell et
al.12 for cesium, for which the largest contribution to E1PNC

is from the 6p1/2 and 7p1/2 intermediate states. A sum over
states calculation based on MBPT for Ba+ by Dzuba et al.
clearly shows that the dominant contribution comes from the
intermediate 6p1/2 state. The results of our work on Ba+ with
ab initio computed matrix elements and energy differences
are tabulated in Table IV. We obtain good agreement with
the values obtained by Dzuba et al.27

The DF contributions to E1PNC from the bound core
�2p−5p� and the continuum �9p−29p� virtual p1/2 orbitals
are found to be 0.28iea0�−QW /N��10−11 and 0.08iea0

�−QW /N��10−11, respectively. The all order contribution
from �6p−8p� virtual � 1

2 , 3
2

� intermediate states to E1PNC is
1.98iea0�−QW /N��10−11. Hence the total contribution to
E1PNC from 2p−5p and 9p−29p at zeroth order and 6p
−8p to all order is found to be 2.35iea0�−QW /N��10−11.
Dzuba et al.27 using the experimental dipole matrix elements
in the sum over intermediate states calculation find the value
of E1PNC to be 2.34iea0�−QW /N��10−11. The total contribu-
tion to E1PNC using the sum over states approach as com-
pared to the results got by Dzuba et al.27 is given in Table V.
Another calculation based on the CC method using the
mixed parity approach25 gives the total contribution to be
2.46iea0�−QW /N��10−11. The discrepancy of the above re-
sult with respect to the mixed parity approach based on
MBPT of Dzuba et al. is because the latter does not include
contributions from certain correlation effects such as struc-

tural radiation, weak correlation potential, and normalization
correction of states which are automatically present in the
CC method, whereas the discrepancy between the present
calculation with the mixed parity approach25 is due to the
noninclusion of doubly excited opposite parity intermediate
states which are implicitly added in the latter approach.

In order to determine the accuracy of the above calcula-
tions, it is necessary to know the accuracy to which one can
compute the electric dipole/PNC matrix elements and the
excitation energies. All these quantities, except the PNC ma-
trix elements, can be obtained experimentally. The connec-
tion between the PNC matrix elements and hyperfine con-
stants in terms of dependence on the wave functions at
regions close to nucleus has been the yardstick for the deter-
mination of the accuracy of PNC matrix elements.25 The
above quantities are computed by CC method using the same
basis and the results are tabulated in Table VI.

As emphasized in the previous paper on electric
quadrapole transition calculations,15 the accuracy of
this method depends mainly on the matrix elements;

5p65d3/2�D�5p66p1/2�, 
5p66p3/2�D�5p66s1/2�, 
5p66p1/2�
HPNC�5p66s1/2�, 
5p65d3/2�HPNC�5p66p3/2�, and the energy
differences E5p66s1/2

−E5p66p1/2
, E5p65d3/2

−E5p66p3/2
, respec-

tively. Apart from this, the electric quadrupole transition am-
plitude �E2� between �5p66s1/2� and �5p65d3/2� is also impor-
tant as it is closely related to the physical quantity that will
be measured in the proposed PNC experiment on Ba+. Com-
paring the electric dipole matrix elements and the energy
differences with available experimental quantities we find

TABLE IV. Contribution to E1PNC in Ba+ from the intermediate states I=6p−8p1/2,3/2. PNC and the final matrix
elements using present method and calculations by Dzuba et al. are given in units of 10−11ieao�−QW /N�. Dipole
matrix elements and energy are in a.u. Normalization=1.005 494.

n
j= 1

2


5d�D�np�
�a.u.� 
np�HPNC�6s�

E6s−Enp

�a.u.�
This
work

Dzuba et al.
�Ref. 27�

6 3.00 −2.51 −0.09 2.10 2.036
7 0.31 −1.46 −0.22 0.05 0.045
8 0.11 −0.94 −0.28 0.01 0.012

n
j= 3

2


np�D�6s�
�a.u.�


5d�HPNC�np� E5d−Enp

�a.u.�
This
work

Dzuba et al.
�Ref. 27�

6 −4.80 −0.14 −0.10 −0.18 −0.264
7 −0.34 −0.10 −0.23 −0.08 −0.001
8 0.53 −0.06 −0.28 0.0 0.0

TABLE V. Contribution to E1PNC in Ba+ in units of 10−11ieao�−QW /N�.

Intermediate
states

Present
�DF+CC�

Dzuba et al.
�Ref. 27� MBPT

Sahoo et al.
�Ref. 25� CC

2p–5p �DF� 0.28 ¯

9p–29p �DF� 0.08 ¯

6p–8p �CC� 1.99 ¯

Total 2.35 2.34 2.46

TABLE VI. Excitation energy �cm−1� and E1 transition amplitudes �a.u.� for
different low-lying states of Ba+ ion.

Initial state 6s�1/2� 6s�1/2� 5d�3/2� 5d�3/2�
→ final state −6p�1/2� −6p�3/2� −6p�1/2� −6p�3/2�

Excitation
energy 20 293 22 020 15 383 17 077
Expt. 20 262 21 952 15 388 17 079

E1 transition
amplitude 3.33 4.70 2.94 1.28

Expt. 3.36�0.16� 4.67�0.08� 3.03�0.08� 1.36�0.04�
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that the accuracy of the wave functions in the large radial
distances from the nucleus is well described and is better
than 1%. The E2 electric quadrupole amplitude for the
6s1/2→5d3/2 transition as shown in the previous paper15 is
also well within the experimental bounds. The results of the
HPNC matrix elements as deduced from the relativistic CC
calculations of the hyperfine constants are also accurate.16

The error in E1PNC can be estimated either by comparing
with measured quantities �E1 transition amplitudes, excita-
tion energies, and hyperfine constants� or by looking at dif-
ferent contributions to E1PNC in the framework of the method
used. Here we consider the second approach. The error aris-
ing from all the intermediate states not included in the
present calculation �two hole two particle states� is likely to
be smaller than the total contribution from the continuum
states �9p−29p� which is about 3%. Contributions from the
Breit interaction to E1PNC in Ba+ was found to be less than
0.1% �Ref. 17� at the DF level and about the same for the
relativistic CC calculation. The contributions from the QED
effects are likely to be even smaller and can therefore be
neglected in the present work.

IV. CONCLUSION

We have calculated E1PNC for Ba+ using an ab initio
approach which takes into account the contribution of the
important intermediate states, i.e., 6p−8p� 1

2 , 3
2

�, by relativis-
tic CC theory and the rest by the DF approximation. It is
evident from our calculation that the dominant contribution
comes from the �5p66p� 1

2
�� intermediate state. The good

agreement of the relevant excitation energies, electric dipole
transition amplitudes, and hyperfine constants of the relativ-
istic CC calculations with the corresponding measured val-
ues suggests that our calculated PNC transition amplitude is
reliable.
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