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Abstract 
The cascading characteristics of the invariants of 2D and 3D hydrodynami- 
cally turbulent media are well known. Analogous to the 2D case, here we 
set up a variational principle for the 3D case by invoking the differential 
decay rates of its invariants, the total energy and the mean square helicity 
density. Analytical solution of the equation so obtained for the velocity 
field is presented for a special case. 

1. Introduction 

There is a considerable experimental and observational evi- 
dence that self-organization of flow into large structures is 
not precluded by turbulence and strong nonlinearities. Self- 
organization is a process by which nonlinear interactions 
between small fluid elements result in the formation of large 
ordered coherent structures. 

Hasegawa [l] has described the general features of a 
system capable of exhibiting self-organization. The system is 
described by a nonlinear partial differential equation with 
dissipation. The system has two or more quadratic or higher 
order conserved quantities in the absence of dissipation. If 
the spectral behaviour of these invariants in the inertial 
range is such that one of them transfers towards large 
spatial wales and the other to small spatial scales, they 
would have differential dissipation rates when the dissi- 
pation is introduced. 

The formation of large scale structures is a consequence 
of an inverse cascade of energy. Kraichnan [2, 31 suggested 
that the formation of large-scale structures in two- 
dimensional incompressible turbulence is due to an inverse 
cascade driven by negative viscosity instabilities. 

The self-organization processes in two-dimensional 
hydrodynamic turbulence has been studied by Rhines [4], 
Bretherton and Haidvogel [5], Hasegawa [6] and by 
Woltjer [7], Taylor [8], Montgomery et al. [SI, Mathaeus 
and Montgomery [lo] in magnetohydrodynamic turbu- 
lence. An excellent review on self-organization process in 
continuous media has been presented by Hasegawa [l]. 

The importance of mean square helicity as an invariant 
and its role in inverse cascade in three-dimensional turbu- 
lent fluids has been brought out by Levich and Tzvetkov 
[11] in the context of the Earth’s atmosphere. Recently 
Frisch et al. [12] and Sulem et al. [13] discussed the gener- 
ation of large scale structures in three-dimensional flows 
lacking parity-invariance, in terms of kinetic a effect. 

A model of solar granulation through inverse cascade has 
been presented by Krishan [14]. Granules are cellular veloc- 
ity patterns observed on the solar surface, believed to be 
manifestations of convective phenomenon occurring in the 
subphotospheric layers. The formation of these cellular pat- 
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terns on all scales has been interpreted to be the result of 
self-organization processes occurring in the turbulent 
medium of the solar atmosphere. The presence of very large 
structures in the Universe like the Grea’t Wall indicate the 
existence of a hierarchy of well-ordered coherent formations 
up to the very large scales of a few hundred Mpc (Huchra 
and Geller [ 151). Krishan and Sivaram [ 161 have explained 
the clustering of galaxies on several scales by inverse 
cascade in a turbulent medium. 

In this paper, we set up a variational principle connecting 
the invariants E (energy) and I (mean square helicity 
density) for a three-dimensional incompressible ’fluid follow- 
ing the arguments given in Hasegawa [l]. The resulting 
variational equation is highly nonlinear and hence closed 
form solutions are hard to obtain. However, we present a 
closed form solution of the equation under some simplifying 
but physically realizable situations. 

2. Derivation of the variational equation 

Large helicity fluctuations present in a turbulent medium 
play an important role in the inverse cascading processes. 
The helicity density y, a measure of the knottedness of the 
vorticity field, is defined as y = 0 (3, (3 = V x 0, where V’ 
and (3 are the velocity and vorticity, respectively. The quan- 
tity I defined as 

I = (y(x)y(x + r)) d’x, (1) s 
where ( ) denote an average over an ensemble, is an invari- 
ant of an ideal 3D hydrodynamic system in addition to the 
total energy E. By assuming a quasi normal distribution of 
helicities, the invariant I can be expressed as 

I = C1 [E(k)]’ dk, (2) I 
where C1 is a constant and E = E(k) dk is the total energy 
density. 

The inertial range for the energy invariant can be shown 
to be 

E(k)  cc k-’/’ and E oc (3) 

E(k) cc k-’ and E cc log L(t)/l, (4) 

and for the I invariant to be 

where L(t) is the largest length scale excited at time t (Levich 
and Tzvetkov [ 113). Hasegawa [ 11 formulated a variational 
principle using the two invariants, the energy and entrophy 
of a 2D system. Along the same lines, we set up a varia- 
tional equation using the invariants “I” and “ E  of a 3D 
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system to get: 

S (V 6)’ d3x - 16 V2 d3x = 0. ( 5 )  s s s p a 6)CSO * 6 + Y Sib] d3x - 1 0 * SO d3x = 0. 

Here 1 is the Lagrange multiplier. 

(6) s 
It can be shown that 

O . s 6 = S O * 6 + V . [ S t x P ] .  

Equation (6) then becomes: s (t 6)2[SP 6 - 1O/2@ * 6 ) ]  d3x 

+ (O * 6)[V (SO x P)] d3x = 0. (7) s 
Manipulating the second integral, eq. (7) can be written as 

+ (O 6XSO x P) ds = 0. i, 
Applying the boundary condition that 6 ii vanishes on 

the boundary S, eq. (8) reduces to 

26qP 06) - 19 - Y x V ( 0  c3) = 0. (9) 
The corresponding equation for a two-dimensional 

system with entropy and energy as its invariants is 

V x V x 0 - a V = O .  
This is a linear equation whose solution can be written 
down immediately. However, eq. (9) is highly nonlinear and 
more difficult to solve. 

The self-organized state described by eq. (9) should be i 
stationary solution of the Navier-Stokes equation (withou 
dissipation and gravity) 

(10) 

VP av - 
- + ( V * V ) O =  -- 
at P 

3. Solution of the variational equation for a special case 
3.1. Quasi two-dimensional case 

The largest dimension of fully 3D structures is given by the 
ratio I / E 2  = L = L,, where L, is the characteristic vertical 
scale. When the correlation length of helicity fluctuations 
reaches the limit L,, it can grow only in the horizontal 
plane. Another consequence of the growth of the correlation 
length is that the velocity and vorticity become aligned, 
which reduces the nonlinear term (0 * v)O = V x @ x 6) 
of the Navier-Stokes equation and thus retards the flow of 
energy to small spatial scales. With the growth of corre- 
lation length only in the horizontal plane, the system 
becomes more and more anisotropic. In these circum- 
stances, the vertical component of velocity becomes inde- 
pendent of (x, y ,  z) and the horizontal components V, and V,  
independent of z, leading to = (V x O)x,y = 0. The 

invariant I becomes 

I = ~<(V,o,)’) dx dy dz 

L,(Vf)k2Vfk-2 ot V f  = kE(k) CC L2’3, (13) 

and from I = J I (k )  dk, one finds 

I (k )  a k - 5 / 3  
Thus I (k )  spectrum for the quasi 2D case, coincides with the 
energy spectrum of 2D turbulence E(k)  a correspond- 
ing to the inverse cascade. 

We assume the velocity field to be 

0 = W X ( X ,  Y), V,b, Y ) ,  KI 
where V ,  is a constant. The variational equation can be 
recast 

(v2 + $)OH = 0 

where fi, = (V, V,) and V2 = a2/ax2 + a2/ax2. 
The solution satisfying eqs (12) and (16) is given by 

V ,  = P cos 2 n x  cos 2nY 

V,  = P(b/a) sin 2nX sin 2nY (17) 

Here P, a, b are constants. X and Y are given by X = x/a, 
Y = y/b.  

The equation for the vorticity 6 can be derived by taking 
the curl of eq. (1 1) with dissipatation as 

(18) 
a6 - + (0 * v)6 = (6 v)o + VV26 
at 

For a quasi 2D situation, O and 6 can be expressed by a 
scalar stream function as 

0 = -v+ x 2 + v,2 
6 = v”2 (19) 

Here 2 is the unit vector along the z direction. In terms of +, 
eq. (18) can be written as 

a 
- v2+2 + { - v+ x 2 + v, 2} V(V2+2) - vv4+ = 0. at 

+(x, Y, t )  = $[I + exp { -vAt}] cos 2 n x  sin 2 n ~ .  

(20) 

An exact solution of the above equation can be written as 

(21) 
re $, a, b are constants. A = 1/Vf. V, V,  and o can be 

w T itten as 

V, = P[1 + exp { -vAt}] cos 2 7 ~ ~  cos 2 n ~  

V ,  = P(b/a)[l + exp { - vk}] sin 2nX sin 271Y 

o = &[I + exp {-VAC}] cos 2 7 1 ~  sin 211.. (22) 

In the limit v --f 0, the solution (22) represents the self- 
organized solution (17) of the variational equation for the 
quasi two-dimensional case. 

Figure 1 presents the 3D plot of the velocity V = (V,” 
+ V ;  + Vf)1’2, corresponding to the solution (17) for 

(P/V,) = 0.7 and b/a = 0.6 as a function of X and Y. The 
maxima and minima of the velocity are attained at the 
boundaries, the maximum values at the corners of the cells, 
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Fig. 1. 3D plot of the velocity profile corresponding to the solution (17) 

while the minimum are at the mid points of the boundaries 
of the cell. 

4. Conclusions 

In conclusion we have shown that though the variational 
equation for a fully 3D system does not admit closed form 
solutions easily, owing to the highly nonlinear behaviour, it 

does exhibit analytical solutions 
physically realizable situation. 

for a simplified though 
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