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Abstract. Minimum-relative-entropy method (MREM) has been pre-
sented as a solution to the missing short-baseline problem in the synthesis
observations. It is shown that a measure of distance between the prior
model and the image in the plane of pixel brightness is an adequate measure
of relative entropy. The method has been further extended for polarization
observations and the potential of the method against the conventional
MEM has been demonstrated by simulated examples.
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1. Introduction

In radio astronomy, looking at the need of large-field mapping, the maximum-entropy
method (MEM) has received a new impetus over the last decade (Gull & Daniell 1978;
Cornwell & Evans 1985). Application of the method to a variety of images in astronomy
as well as in other fields like picture processing and medical science has clearly
demonstrated the potential of the technique. However, one must accept the fact that to
make the method work the problem should be well-posed. In practice one observes that
it becomes difficult to obtain useful reconstruction of an image if the measurements are
too noisy or too sparse. For example, we see that the extended sources are not very
faithfully reconstructed if the spatial Fourier coverage (also called uv-coverage) is not
compact (Nityananda & Narayan 1982; Narayan & Nityananda 1984). Here, by
compact we mean a uv-coverage which is uniformly sampled with the Nyquist rate
around the origin of the uv-plane.

In the past, the maximum-entropy-method has been presented as a general technique
devised for estimating the unmeasured visibility coefficients from the knowledge of the
measured ones (Nityananda & Narayan 1982; Shevgaonkar 1986b). The method does
not make any assumption regarding the spatial domains of the measured and
unmeasured visibilities. It is assumed that the measurements are performed over an -
arbitrary spatial region and we are interested in predicting the visibility coefficients over
another region using entropy of the image as a measure of goodness of the image.
However, if we look at the visibility function carefully, we note that the method cannot
provide faithful reconstruction for any arbitrary kind of data. For an observation
where the visibility coefficients are measured over a compact uv-coverage, all extended
as well as localized sources have their respective contribution in the measured data. On
the contrary, if the observations do not contain shorter baselines, the very extended
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sources are completely missing in the observed data. The extended distributions, which
are neither totally missing nor completely sampled, are mainly the source of
degradation of the observed image. The presence of improperly sampled largescale
structures is manifested in large negative bowls in the observed image. The very
extended features whose visibility function lies completely within the unmeasured
central region of the uv-plane, do not give any indication of their existence and one
would never know what is actually missing from the observed data. Here we are not
interested in reconstruction of these largescale structures, as their presence or absence
does not make any difference in the quality of the reconstruction. In this paper we are
concerned about those extended distributions whose visibility function is partly
sampled and which manifest themselves in the negative bowls. The MEM, as presented
in the past, due to its inherent nature of reconstructing flat background and sharp
peaks, although a useful technique for improving resolution, faces serious difficulties in
reconstructing extended sources observed with non-compact uv-coverages.

Aperture synthesis telescopes, while generally providing a uniform sampling of the
visibility function, often leave an unsampled hole near the origin of the uv-plane. The
zero-lag visibility coefficient or the integrated power of the brightness distribution can
be obtained (although not very easily) from any of the synthesizing elements, but the
other short spacings still remain unmeasured. A method for estimating the visibility
function over short baselines is highly desired from the view-point of mapping
largescale structures with synthesis telescopes.

Although the conventional deconvolution method CLEAN (Hoégbom 1974) is
capable of removing the effect of sidelobes from the observed maps, it finds difficult to
take away the negative bowls around the extended sources. A modified version of
CLEAN called ‘window CLEAN’ (Schwarz 1978), by putting a CLEANing box around
the positive source within the negative bowl, may relatively improve the quality of the
reconstruction by forcibly discarding the presence of the extended negative features.
However, practitioners of CLEAN would agree that the method does not do a very

- good job for reconstructing largescale structures.

In the past, few proposals have been made towards estimation of the short-baseline
visibilities from synthesis data (Rots 1979; Ekers & Rots 1979; Braun & Walterbos
1985). The method suggested by Rots (1979) is a data fitting technique using the
positivity constraint on the image. This technique requires a precise knowledge of the
source parameters which could possibly be available only for simple distributions, and
therefore the method is not quite suited for complex distributions. The method
presented by Braun & Walterbos (1985) is based upon a direct nonlinear fit of the
missing Fourier coefficients to the isolated map plane response. In any case, to obtain
an equally good quality image of the compact sources along with the extended ones, the
map ultimately has to be deconvolved with the point spread function. Therefore it appears
that the most efficient way would be to obtain a proper deconvolution method which itself
is capable of estimating lower as well as higher spatial frequency visibilities.

- We present here a possible application of the minimum-relative-entropy method for
the estimation of the visibilities over short baselines. We show that the distance between
the image and the prior model in the plane of pixel brightness can provide a good meas-
ure of relative entropy i.e., entropy of the image with respect to the entropy of the prior
model. We further generalize this definition of relative entropy for the polarization
images and by simulated examples we show that the method works very promisingly
for complex extended images observed with limited information over short baselines.
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2. Concept of relative entropy

The concept of relative entropy (also called ‘cross entropy’) was first proposed by
Kullback in 1959. The concept has been subsequently promoted in various forms by
others (Hobson & Cheng 1973; Johnson 1979) and has been successfully utilized by
radio astronomers (Gull & Skilling 1984; Cornwell & Evans 1985) to obtain reliable
deconvolution of real synthesized images. The relative entropy is a generalization of the
entropy that applies in cases where a prior image By, that estimates the image Bisknown
in addition to the measurements and other constraints like positivity.

Shore & Johnson (1980), using consistency arguments, have shown that in the
presence of prior knowledge about the distribution one must minimize the relative
entropy defined by a unique function given as

. = [[ Bin(B/B,) dxdy (1)

where x, y are the image coordinates. On the other hand, Cornwell & Evans (1985) treat
relative entropy as a measure of distance of reconstructed image B from an a priori
expected image B,,. Following this concept it is possible to obtain a variety of functions
which will define an equally good measure of distance between B and B,. However, a
function F (B, B,) which defines a good measure of distance between two images B and
By, and can be used as a relative-entropy function must possess certain basic
characteristics. /

(1) Firstly, since the true brightness distribution is positive definite, the entropy
function should impose positivity on the reconstructed image. In other words the
entropy function should explicitly be definable for positive brightness only.

(2) Secondly, as has been argued in the past (Nityananda & Narayan 1982), for any
kind of extrapolation of the visibility function and for obtaining a translation-invariant
reconstruction, the entropy function should provide a nonlinear image transfer
function, or in other words the first derivative of the function should be a nonlinear
function of the brightness. _

(3) Thirdly, it is desired that the entropy function should be such that one obtains a
unique reconstruction for a given measurement and a given biasing image i.e., the
entropy function should possess a single minimum in the acceptable range of
brightness.

Itisimmediately clear that the scalar distance between two images defined by the sum
of the squares of the pixel differences cannot be taken as a measure of relative entropy,
as it obtains only a linear-image-transfer function which, as pointed out above, is not -
adequate for extrapolation of the visibility function. Also, the scalar distance
minimization does not impose the positivity on the reconstructed image.

As a next immediate choice the scalar distance between some function of the pixel
brightness of the image and the prior model as given below

F(B, Bo) = [f(B)—f(Bo)]* @

can be tried for defining relative entropy. The choice of fshould be such that F satisfies
the three above-mentioned conditions. The first two conditions can be easily achieved
by choosing fas one of the simple entropy functions like InB, — B In B, or in general B®.
The third, minimality condition requires that the second derivative of F(B, B,) with
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respect to B must be greater than zero for all positive values of B giving

2
B ~1BOT} > 0 G2
or '
0? or\?
(1@ -eo) Zh+(Z) >0 ED

Now since all conventional entropy functions f have 8%f/0B*> <0 (Burg 1975;
Nityananda & Narayan 1982), Equation (3b) can be rewritten as

(0f/0B)* '
f(B)+ 3%aB? < f(Bo)- 4)

Therefore for a given prior model a unique reconstruction is possible only if Equation
(4) is satisfied for all possible values of B.
Let us now verify which of the conventional entropy functions satisfy Equation (4)!
For entropy function f(B) = In B the uniqueness condition (4) reduces to

InB-—1<InB, (5a)
or
B< eBo . (Sb)

where e is the exponential constant. Equation (5b) indicates that only those points
which have B < eB, in the image will be biased towards B, whereas the others will not.
In other words this means that the a priori known model distribution should not be too
different from the observed distribution. This is quite an undesirable requirement of the
entropy function In B. On many occasions when the prior model is not available, a
choice of uniform B, will violate condition (5b) at many locations in the image and one
will not get a good reconstruction. The relative entropy using f(B) = In B can be made
to work by choosing a prior model which satisfies Equation (5b) but has features of

, required B,. The model image B, can then slowly be modified towards the required B,
as the iteration progresses. One of the simplest schemes is to add a suitable constant to
the image as well as to the required prior model such that Equation (5b) s satisfied at all
points of the image. As the iteration progresses the value of the constant is gradually
reduced and ultimately a reconstructed image is obtained which is closest to the
required prior model.

So, it appears that f = In B can be a correct choice (although with little modifications)
to define the relative entropy as in Equation (2).

Other well-known function — Bln B when substituted in Equation (2) gives two
solutions namely B=e"' and B = B,. Since both solutions could very well be
acceptable, the uniqueness criterion is not fulfilled and therefore f(B) = — Bln Bis not
acorrect function to define a relative entropy of kind given by Equation (2). It should be
noted that in the case of f{B) = In B, although mathematically there are two solutions
(i.e, at B= B, and B = ), for all practical purposes there is only one solution at
B = B,. Solution B = o0 is automatically discarded since no observational data would
support it.

Another entropy function is a power-law function of kind f(B) = B®, where s is a
suitable power-law index. For this function the uniqueness condition (4) can be
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written as
25— 1\~

This function also gives one solution at B = B, regardless of the choice of s.
However, one may get an additional solution at B = 0 or B = o0 depending upon the
value of s. If we choose the power-law index s such that the second solution lies at B

= oo, forall practical purposes the function has single solutionat B = By. This, in other

words, puts a condition on s to be less than unity. Further, to satisfy the condition given
by Equation (6) for all positive values of B, the point at which the second derivative of
F(B, B,) with respect to B is zero, should be pushed to infinity giving s = 1/2. These
arguments clearly indicate that the relative entropy defined by Equation (2) using f(B)
= B'/? is always concave for any positive value of B and therefore, always biases the
solution toward B = B,. It appears that this form of relative entropy should be as good
as the one obtained from information-theoretic arguments (Shore & Johnson 1980;
Guil & Skilling 1983). This point should be verified by actually reconstructing images
with two types of entropy functions.

3. Minimnm relative entropy method

We are given a set of measured visibility points p(u;, v;);j = — K to K and an a priori
known model distribution B,. We want to estimate the unmeasured visibility
coefficients such that the measurements are unchanged and the relative entropy integral
given by Equation (2) is minimized. The measured visibility coefficients are related to
the true brightness distribution By, (x, y) through a Fourier-transform relationship,
ie.,

P (u0;) = H Byrue (x, )exp[2mi(uix +vp)]dx dy, j=-KtoK (1)
field
and the observed image

B(x, y) =Y p(uj, v)exp[—2mi(y;x +v;)] j= —KtoK. (8)

Substituting Equation (8) in (2) and differentiating with respect to the unmeasured

visibility coefficients p (u;,v;) we get the gradient of the entropy with respect to the

unmeasured visibility coefficients as

JE 0
m = JT[f(B) —f(Bo)]a—gexp[ —2mi(ux + vy)ldxdy.  (9)

g(ujv;) =
Knowing the gradient of the entropy through a Fourier transform, the conjugate
gradient method can be implemented quite easily as has been done in the past
(Shevgaonkar 1986a, b; Nityananda & Narayan 1982). However, the choice of model
distribution has to be made before we proceed for gradient computation.

Simple considerations tell us that at least the integrated power of the model
distribution should be equal to that of the observed image. Also, if we do not have any
a priori knowledge about the distribution, an obvious choice would be to distribute
the total power uniformly over the entire field of view (see also Cornwell & Evans 1985).
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One can also use a low-resolution image of the brightness distribution as a biasing
model. However, it should be mentioned that none of these choices work satisfactorily
for estimating the visibilities over short baselines and one has to provide a model which
is neither present in the data nor present in the built-in nature of the MEM.

In the simulations presented here it is assumed that some a priori information is
available only for the part of the sources in the field of view. First, a model distribution
is generated for the partially known sources. The integrated power in the generated
distribution py(0,0) is computed. The difference between the actually measured
integrated power p(0,0) and p, (0, 0) is then uniformly distributed over the field of view
of the model map.

Since entropy can be defined only for positive images, during initial stages of
iterations, when there are large negative bowls, the entropy of the image becomes
imaginary. For computational convenience a constant intensity is temporarily added to
all pixels of the image such that the image becomes positive definite. This operation is
called the FLOATing of the image and it has been discussed and used successfully in the
past (see Nityananda & Narayan 1982; Shevgaonkar 1986a, b). The value of the floating
constant decides (although not very crucially) the degree of nonlinearity in the
reconstruction. '

It is obvious that the floating of the image in turn modifies the integrated power or
the zero-lag visibility coefficient temporarily. As the integrated power of the image is
modified the integrated power of the model image should also be changed accordingly.
To equate the integrated power of the model image to that of the brightness
distribution, the same floating constant is added to the model map also. Apart from this
floating, the maps have to be further floated to satisfy the condition given by Equation
(5) if In B function is used to define the relative entropy.

As an example we have taken an extended source (Fig. 1) as the true image. If this
source is observed with a uv-coverage as in Fig. 2 one obtains the observed image as in

Figure 1. True image of an extended brightness distribution. Contour interval = 13.8 units.
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empty reglon the visibility coeﬂiclents are completely unknown. The origin of the uv—coverage or
the integrated power of the distribution has also been measured.

~ Fig. 3. One should note that apart from the four missing sectors in the uv-plane the
measurements leave a big hole around the center of the uv-coverage. From Fig. 3.itcan -
be seen clearly that due to missing short baselines the map has a large negative bowl
around the true position of the source. Just to emphasize the inadequacy of the existing
MEM or use of relative entropy with flat model for estimating short baselines, the
MEM with a uniform B, has been tried on the observed image. The reconstructed
image has been shown in Fig. 4. It is clear that the MEM without a prior model or a
flat default image could not give a faithful reconstruction.

Minimum-relative entropy method using relative entropy function F(B, By) =
(In B—1n B,)* has been tried on the image shown in Fig. 3 and found to give quite
satisfactory results. A simple circular Gaussian source (Fig. 5) is chosen as a model
image. It should be noted that the model distribution does not have any direct similarity
to the true source except that it tells that the source is of extended nature. The size of the
gaussian is roughly decided by the expected source dimension and the height of the
gaussian is decided by the equality of the total integrated powers in the model and
the observed distribution. The reconstructed image as shown in Fig. 6 is a remarkable
improvement over the image obtained by simple MEM (Fig. 4). The stability of the
reconstruction against the choice of the model is tested by choosing model gaussian
sources of different sizes and intensities located at slightly shifted locations. The
reconstruction seems to be fairly stable against the choice of the initial model. However,
following scheme may be useful in deciding the first-order biasing model.

As we have already mentioned in the introduction, our main objective is to
reconstruct those distributions which are responsible for the large negative bowls in the
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Figure 3. Image mapped by the uv-coverage in Fig. 2. Contour interval = 5.9 units.

Figure 4. MEM reconstructed image after 30 iterations. Entropy function is In B. Contour
interval =7.9 units.

image. It can be seen easily that the partly missing largescale structure should have a size
which is larger than the inner rim and smaller than the outer rim of the negative bowl.
Therefore, a first-order prior model can be taken as a gaussian distribution of width
equal to the mean diameter of the negative bowl. As the reconstruction progresses and
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Figure 5. A circular gaussian source used as a default image to define the relative entropy.
Contour interval = 16.8 units.

Figure 6. MREM reconstructed image after 20 iterations. Relative entropy function is (In B
—In B,)?. Contour interval = 12.6 units.

the missing largescale structures are more clearly visible, the default image should
subsequently be modified.

Other relative entropies Bln (B/B,) and (B'/? — BA/?)* have also been tried and
found to provide reconstruction of the same quality as per our expectation. A
comparison of the three relative-entropy functions is given in the next section.
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- 4, Minimum-relative entropy method for polarized emission

The maximum entropy method has been formulated and successfully applied to the
polarization images (Ponsonby 1973; Nityananda & Narayan 1983; Shevgaonkar
1986b). It has been shown that although the a priori positivity constraint is applied only
to the total-intensity image, the polarized component images also get reconstructed
remarkably well. Here we seck a possibility of successful application of the minimum-
relative-entropy method to polarization images. We will confine our formulation to
three relative entropy functions, namely B1n (B/B,), (In B —1n B,)? and (B!/2 — B}/?).

A partially polarized brightness distribution B can be elegantly represented by the
Stokes parameters I, Q, U and V. Parameter I represents the total intensity, Q and U
together represent linear polarization, and ¥V represents the circular polarization. These
Stokes parameters are related to the visibility functions p/, p€, pU and p¥ through
Fourier-transform relationship similar to that given by Equations (7) and (8).
Following previous authors (Ponsonby 1973; Nityananda & Narayan 1983; Gull &
Skilling 1984; Shevgaonkar 1986b) the entropy of an arbitrary polarized distribution is
equal to the sum of the entropies of the two orthogonal polarization components 4,
and 4, of the polarized image. It is shown in the past (Ponsonby 1973) that the two
orthogonally polarized components 4; and 4, are equal to I(1 +d)/2 and I(1 —d)/2
respectively. Here d is the degree of polarization and is defined as

d=(Q*+ U+ V)21 (10)

Now if F(B, By) is the relative entropy function, where B is the image and B, is the
biasing model, the relative entropy of a polarized brightness distribution B with respect
to the prior model B, can be written as

Erp = .ij(B9 BO) dx dy = J:[LF(XI,AIO)+F(AZ, /120:‘ dXdy ’ (11)

Suffix 0 indicates the corresponding value for the model distribution. Differentiating
Equation (11) with respect to the unmeasured visibility coefficients p*(u¥,v%) (k=
L, Q, U, V) we get the gradient of the entropy as

OE OF (B, B
g, ) = 5 pk(u;?," 5 FT[ (Ek_O)]‘ 12

Therefore, for computation of the entropy gradient we require derivatives of F(B, B)
with respect to the four Stokes parameters. The term inside the bracket in Equation (12)
can be split into two parts as

aF(..B’ BO) - aF‘()“l’ '110)+6F()'29 2’20)

ok ok ok (13)
Equation (13) can be re-written for different Stokes parameters as
OF (B, By) _0F(Ay, 41o) | OF (A3, A20)
ol - o4 T o4 (142)
and .
aF(ﬁ’EO) — (Q’ U’ V) aF(j’l’ Alo) _6F(2'2! A’ZO) (14b)
Q.U V) z ol 0k [

where £ = (Q*+U?+ V3?2 = Id.
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Now, substituting for 4,, 4,, 4,,, 4,, and desired relative entropy function F(B, B,)
in Equations (14a, b) we can obtain elegant expressions for 6 F/dk.

(i) For F(B, Bo) = Bln (B/B,) we get
oF

i 2+ 1In(D/Dy) (ISa)’

and

oF QU ¥)

where D = 1> -%2 = | —Q? - U? — V?and x = (I + Z)/(I — X), and suffix 0 indicates
the corresponding value for the model distribution B,,. .

(i) For F(B, By) = (In B—In B,)* we get

oF 1

37 = p 1 (D/Do)—dIn (x/x,)] (16a)
and 4

oF , U’ V 1
o= _© v )[ln(D/Do)—Eln(x/xo)]. (16b)

(iii) Finally, for F(B, Bo) = (B'/? — BY/2) we derive

OF I —3 )2

Fiin _(_(%_T_f)q%/‘z‘(xl/2+x(l,/2) (17a)
and

OF  (Ip—Zo)'"

Xélz)(Q’ g’, V)

(xl /12 _ (17b)

oQ,U, V) (I+X)?

By Fourier trahsforming Equations (15a, b), (16a, b) or (17a, b), we can compute the
entropy gradient (g*(u¥, v%)) with respect to the unmeasured visibility coefficients
p*(u}, v¥). Knowing the gradient of the entropy, a simple-gradient or conjugate-
gradient method can be implemented easily (for details see Shevgaonkar 1986b) for
minimizing the relative entropy. To test the algorithm let us take the total intensity (I)
and circular polarization (V') maps of a solar active region at 6 cm wavelength
(Fig. 7a, b) (Shevgaonkar & Kundu 1985) observed with the Very Large Array. To
demonstrate the strength of the method we have assumed here that the measured up-
coverages are not identical for the two component images I and V. The total intensity
map has a uv-coverage with four sectors and a central annular rectangle as shown in
Fig. 2. We assume that the circular polarization measurement could be performed
reliably only over the central annular rectangle, and for long baselines in the four
sectors the polarization measurement is heavily affected by the instrumental errors and
therefore it has been treated as unmeasured. It should be noted that the uv-coverages
for both I and V have a large hole around the origin of the uv-plane. The synthesized
beams corresponding to the two uv-coverages are convolved respectively with true total
intensity and circular polarization maps (Fig. 7a, b) to get the observed dirty maps as
shown in Fig. 8a,b.

Before we go to the minimization of relative entropy the choice of model polarized
brightness distribution has to be made. A prior model for the intensity distribution
could be obtained from other independent observations. However, the polarization
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Figure 7. (a) True total intensity I and (b) circular polarization V images of a solar active
region at 6 cm wavelength. Contour interval = 10.0 and 6.0 units respectively for I and ¥ maps.
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Figure 8. (a) Observed total intensity I and (b) circular polarization ¥ maps.

model is not that readily available. To justify this statement let us ‘take a concrete
example.

Suppose we are observing a flaring event on the Sun. The event is visible over a wide
range of frequencies i.e., from X-rays to the radio. The radio data is capable of showing
polarization whereas the optical or X-ray emission does not contain any information
regarding the polarization. One can use the X-ray or optical image as a model for total
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intensity image but the polarized emission is still unmodelled. If we use one of the
synthesizing elements to obtain zero-lag visibility coefficient, at most we can get the
integrated power in each polarization component.

As discussed in Section 3, in the absence of any prior knowledge about the image, the
integrated power in each polarization component should be distributed uniformly over
the entire field of view. This could be a suitable scheme provided all the four Stokes
parameters are assumed to have flat default images. However, if we take a non-uniform
total-intensity model and a flat polarization model, it is quite likely, especially on the
edges of the source, to encounter an awkward situation of having a degree of
polarization greater than unity in the model distribution. We have found that the best
way is to give the polarization model as a scaled version of the total-intensity model.
The scaling constant is decided by the relative integrated powers in the polarization
components and the total-intensity distribution.

A distribution as in Fig. 9 has been chosen as a default model to define the relative
entropy. The reconstructions for three entropy functions after 20 iterations are shown
in Figs 10-12. It is clear that all the three relative entropy functions give more or less
identical reconstructions. The strength of the method is quite apparent from the choice
of non-identical uv-coverages for different polarization components and from the
selection of polarization model as a scaled version of the total-intensity model. From
the variety of examples given above it is convincing that the relative-entropy functions
which do not have their origin in the information theory are also capable of providing
good image reconstruction.

i

5. Conclusion

In synthesis observations one commonly encounters situations where the short
baselines are inadequately sampled. As a result, the extended distributions are poorly’

L ANALERE S S BN NN DRI B N NN U SN SN NS SR SEN SN S SN SN SN SN NN (N N SR B N BN
- -
- u
- ~
- -
- -
- s
- .
- -
- ~
- -
o -
- -
- -

F VS WU T N TSNS U TN TSN T U Y Uy U N N AN TS N T N N W SO S IR A S N 1

Figure 9. An elliptic gaussian source used as a default image to define the relative entropy.
Contour interval = 15.0 units.
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Figure 10. MREM reconstructed images after 20 iterations. Relative entropy function is
Bln (B/B,). Contour interval = 11.8 and 2.4 units for I and ¥ maps respectively.
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Figure 11. MREM reconstructed images after 20 iterations. Relative entropy function is
(B'/? — B}/?)*. Contour interval = 11.8 and 2.4 units for ] and ¥ maps respectively.
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Figure 12. MREM reconstructed images after 20 iterations. Relative entropy function is
(In B—1n B,)?. Contour interval = 9.2 and 2.2 units for I and ¥ maps respectively.
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mapped. Minimum-relative-entropy method (MREM) has been presented as a possible
scheme for reconstructing extended sources mapped with sparsely sampled short
baselines. It is shown that as far as image reconstruction is concerned a measure of
distance between the image and the prior model in the plane of pixel brightness is an
adequate measure of relative entropy. The reconstructions obtained using this non-
information-theoretic definition of the relative entropy have been compared with that
obtained by minimizing the entropy B In (B/B,) which has a firm information-theoretic
base. It has been argued that for estimation of the short baseline visibilities, a flat
default image is not sufficient and one must provide a prior model which is neither
present in the measurements nor in the inherent properties of the MEM.

The method has been generalized for partially polarized images. It is argued that in
the absence of a prior model for the polarization components, one must choose a
default image which has constant degree of polarization over the field of view. The
potential of the method has been demonstrated by choosing non-identical uv-coverages
for different polarization components.
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