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Summary. A simple maximum entropy method algorithm for
deconvolving polarized images obtained from synthesis obser-
vations has been described here. A general purpose Fortran pro-
gram is also developed. It is demonstrated that although the a
priori positivity condition is imposed on the total intensity im-
age only, the polarized component images also get improved
remarkably.
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1. Introduction

Polarization measurements on the radio astronomical sources
have provided a new dimension in the understanding of the
astrophysical processes responsible for the cosmic radiation. The
radio sources in the sky exhibit a wide variety of polarization
characteristics. For example, the extended non-thermal emission
from our galaxy, and localized emission from certain objects like
supernova remnants show a low degree of linear polarization,
whereas some radio sources like flare stars, Sun, Jupiter etc.
exhibit a high degree of circular polarization and a very little or
no linear polarization. To study the astronomical objects in de-
tail high resolution polarization observations are required. The
aperture synthesis technique has been extended for obtaining
high resolution polarized images of the brightness distribution
in the sky. Each interferometer pair used for synthesizing an
aperture acquires four correlation coefficients corresponding to
the four Stokes parameters of the brightness distribution. If all
the four correlations are measured for all interferometer pairs
one obtains identical spatial Fourier coverage or identical syn-
thesized beam for all the Stokes parameters. However, due to
practical reasons there could be cases when all four correlations
could not be measured over all interferometer pairs. This gives
different spatial coverages and therefore different synthesized
beams for different polarization components. Due to different
convolving beams for the four Stokes images it is not unlikely to
encounter a situation when some features in the observed image
exhibit greater than 1009 polarization which by definition would
be unacceptable. This situation is similar to the one in the simple
intensity imaging where, due to improper and finite sampling of
the Fourier plane, the observed image has negative excursions.

The deconvolution method CLEAN, proposed by Hogbom
(1974) has become a popular technique to take away the inter-
ference due to the sidelobes of the synthesized beam from the
observed image. The initial version of CLEAN was suitable only
for deconvolving the well-isolated point-like sources. However,
with subsequent modifications CLEAN has become a routine
technique for deconvolving all types of brightness distributions.
Indeed, the performance of the method depends to large extent
upon how empty a given field of view is.

Presently, due to lack of any other technique, CLEAN is
applied to the polarized images also (Hogbom and Carlsson,
1974). The four Stokes images are CLEANed independently with
their respective synthesized beams. However, since the perfor-
mance of the method deteriorates for extended complex distri-
butions, even after CLEANing, the images do not guarantee the
two essential conditions namely, the total intensity is positive
definite at every point of the map and the degree of polarization
is less than unity. Solar astronomers in particular would be well
aware of the limitations of CLEAN, as invariably they encounter
situations where the degree of polarization is greater than unity
in CLEANed maps.

The Maximum Entropy Method (MEM) uses a radically new
approach for reconstructing synthesis images (Burg, 1967). Apart
from the fact that MEM is an unconventional nonlinear tech-
nique and has a better mathematical formulation, there is a pro-
vision to incorporate the a priori knowledge about the image in
the MEM. In the past, MEM has been applied successfully to
the total intensity images. Many efficient algorithms have been
developed in different fields (Gull and Daniell, 1978; Willingale,
1981, Skilling and Bryan, 1984; Cornwell and Evans, 1985). How-
ever, MEM has not been applied to the polarized images so far.
The measure of the entropy of a polarized distribution was de-
rived by Ponsonby (1973) for In B — form of entropy which sub-
sequently has been generalized by Nityananda and Narayan
(1983) for any arbitrary entropy function. Although, MEM was
thought as an alternative to CLEAN for polarized images al-
most a decade ago, and few computer simulations of the method
with polarized maps were presented recently (Narayan and
Nityananda, 1984), until now no detail formulation and algo-
rithm of the method has been presented. In this paper we present
a detail formulation of MEM for the polarized images. We also
give a simple numerical implementation of the method. By simu-
lated examples we demonstrate the characteristics of the method.
The main advantage of MEM over CLEAN is that it treats all
the four Stokes images simultaneously and imposes the essential
conditions on the reconstructed image automatically.
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2. Entropy of a polarized image

A polarized brightness distribution in general can be represented
by a two-by-two matrix as

[I(x,y) +0xy) U,y + iV(x, y)]
U(X, y) - iV(x, y) I(X, y) - Q(x’y)

where (x, y) are the spatial image coordinates and I,Q, U, V are
the four Stokes parameters. As a general case the polarization
characteristics of the brightness distribution are space variant
and I,Q, U, V are arbitrary functions of (x, y). The space variant
degree of polarization can be defined as

[Q%(x,y) + U(x,y) + Vi(x,y)]"?
I(x,y)

Following previous authors (Ponsonby, 1973; Nityananda and
Narayan, 1983; Gull and Skilling, 1984) the entropy of an ar-
bitrary polarized distribution is equal to the sum of the entropies
of the two orthogonal polarization components of the polarized
image. Since the eigen values of the polarized brightness matrix
B(x, y) essentially indicate two orthogonal mutually incoherent
polarized components, the entropy of the polarized brightness
distribution B(x, y) is equal to the sum of the entropies of the
two eigen values of matrix B(x, y), giving

E(x,y) = f[A:(5 0] + f[A:(x, )] ©)

where 1,(x,y) and 1,(x,y) are two eigen values of the matrix
B(x,y) and f is the entropy function. For Burg’s definition of
the entropy, the function f(¥) = Iny whereas from information
theoretic definition of the entropy f(¥) = —¢/ Iny.

It is worth mentioning here that as far as the image pro-
cessing is concerned, MEM has been justified on purely heuristic
grounds. Recent work (Nityananda and Narayan, 1982; Cornwell
and Evans, 1985; Shevgaonkar, 1986b) clearly indicates that the
entropy of an image is some measure of goodness of the image
and is just a mean of providing the a priori knowledge about
the true brightness distribution. The present pragmatic view of
MEM predicts a variety of entropy functions which are capable
of giving more or less similar reconstructions. Therefore apart
from the two entropy functions mentioned above, one could also
have a power law form (f() = y™) of entropy. The value of m
is such that the second derivative of f(i) with respect to ¥ is
less than zero and the third derivative of f() is greater than
zero (Nityananda and Narayan, 1982). However, it should be
noted that the former condition on f(i)) is the uniqueness con-
dition and should be strictly satisfied whereas the latter condition
can be relaxed depending upon the type of brightness distribution
(see Shevgaonkar, 1986b).

Integrating Eq. (3) over the image the entropy of the bright-
ness distribution B(x, y) is

1
B(x’y) =3

: 1)

d(x,y) =

@

E = [[{/Thi0e )] + f[halx )]} dxdy @
or
E= f f tr [ £{B(x,)}] dx dy ©)

Equation (5) is similar to the expression obtained in the past
by Nityananda and Narayan (1983).

3. MEM for polarized images

If p'(u,v), p%u,v), p¥(u,v) and p¥(u,v) are the spatial visibility
functions or Fourier transforms of I, Q, U and V respectively, the
spatial autocorrelation matrix or the visibility matrix of a po-
larized brightness distribution can be written as

1] p'(u,0) + pUu,v)  p%(u,v) + ip"(u,v)

p(u’ U) =3 U, .V T Q (6)
20p%w0) — i¥w ) pl) — P2 0)

where (u, v) are the spatial coordinates and the brightness matrix

B(x, y) is related to the visibility matrix p(u,v) through a Fourier

transform relationship i.e.,

B(x, y) — Z Z p(u’ v)e—iZn(ux+vy) (7)

Due to finite and non-uniform sampling of the synthesized
aperture, the visibility matrix p is unknown over certain position
of the uv-plane. The maximum entropy method tries to estimate
the unknown p’s such that the entropy integral in Eq. (5) is
maximized, or in other words MEM generates that image for
which the derivative of E with respect to unknown p’s is zero.

Substituting Eq. (7)in (5) and differentiating with respect to the
unknown autocorrelations we get the gradient of the entropy as

JE af(B) op .
k, — — . . i2m(ux + vy)
gluy) = op*(u, v) f f “[ 0B 9p* ¢ dxdy  (®)

superscript k could be any one of I,Q,U or V.

From Eq. (8) it is clear that the gradient of the entropy with
respect to the unknown visibilities can be obtained just through
a Fourier transform and therefore it appears straightforward to
implement an iterative gradient technique to maximize the en-
tropy. However, to compute the gradient, the first step would
be to find the §f(B)/0B which is slightly cumbersome as B is
a two-by-two matrix. A simple elegant way of computing the
derivative of f(B) with respect to B is as follows.

Let us split the brightness matrix B(x, y) into four two-by-two
matrices having elements 0 or +1 as

10 1 0 0
T R ) ) R B PR F

1
+inJO[_? o] ©)

Without losing generality, the factor 4 in Eq. (1) has been
dropped out for simplicity.
If we now define a unit vector n as

_ Q.U,7) 1
n= (n15n2>n3) = (Qz ¥ Uz + V2)1/2 = ﬁ(Q; U’ V) (103')
and a vector a = (o, ®,,03) where
1 0 01 0 1
= = =i 10b
231 I:O _1], ?) l:l 0:|, o3 lI:_l 0:| (10b)

the brightness matrix B can be expressed in terms of n and « as
B=1I[I +da-n] 11

where, I is a two-by-two unit matrix. I and I should not be
confused.
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The advantage of Eq. (11) over the matrix notation is that
due to the simplifying property of (« - n) i.e.,
(@-my=1
=a-n

if r is even
if r is odd,

the derivation of gf(B)/dB is less cumbersome.

The basic trick is to first find an expression for df(B)/JB as-
suming B is a scalar quantity and then using Eq. (12a,b) separate
the coeflicients of unit matrix I and (« - n). The coefficient of the
unit matrix represents the gradient of the entropy with respect
to the Stokes parameter I. Similarly the coefficients of the three
terms of (« - n) give the derivatives of the entropy with respect
to Q, U and V respectively.

To explain the technique more clearly let us take the well-
known entropy function InB. Then assuming B is just a scalar
variable

1L N
a—B—-Bl—I [I+da n]

(12a)
(12b)

(13)

Since the degree of polarization d < 1 and |« - n| = I, the bracket
in Eq. (13) can be expanded binomially to give

B
_6{;(13)=1‘1[I—d(a-n)+d2(a-n)2—'“] (14)
Using identities (12a,b) relation (14) can be simplified to
@=I"I[I—d(a~n)+dzl—~'.] (15)
B
Separating terms of I and (« - n) we get

B I .
af( )= __ d(a n)2 (16)
B I(1-4d%* I1-4d%

Substituting Eqs. (16) and (6) in (8) the component of the Trace
along the Stokes parameter I is

_ 6f(B). op| 2
tr; = trI:—(3B @p':| =7 1

where D is the determinant of the brightness matrix = (/2 —
QZ _ U2 _ VZ)

Similarly the trace components along Stokes parameters
Q. U,V are

(17

mm,ap] "

2
troy,y = tr [W 39007 =~ D Q,U,7)

Expressions (17) and (18) are similar to the ones obtained by
Ponsonby (1973) for computing the gradient of the entropy of
a polarized distribution.

Following similar steps as mentioned above the components
of the trace for other entropy functions like —BInB or B™ can
be derived. The formulation of the method for other entropy
function is desired as depending upon the type of distribution
other functions may be superior to the In B entropy function.

For f(B)= —BInB,

try=—2—1InD (19a)
and
U, V), (I1+2
- _ 19
tro vy 5 In > (19b)

where ~ = (Q* + U? + VY2
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The constant —2 in Eq. (19a) gives a uniform value over the
image which, when Fourier transformed, contributes only to the
zero lag spatial autocorrelation or the integrated power of the
brightness distribution. Since the integrated power of the image
has to be kept unchanged the constant —2 can be dropped from
Eq. (19a) for the computation of the gradient.

Finally let us write the expression for the trace for entropy
function f(B) = B™. For power law form of entropy we get

try ="+ 5Pt (- D (20)
and
trouy = 212 {(d+2r = -z (20b)

Knowing the trace the gradient of the entropy can be computed
through a Fourier transform of the trace.

4. Numerical implementation and results

We now describe the numerical implementation of the method
formulated in the previous section. Since the computation of
the entropy gradient requires only one Fourier transform opera-
tion we have adopted the gradient technique for the entropy
maximization.

To start with we have measured visibility coefficients p*(u, v¥)
(k=1,Q,U,V) corresponding to the four Stokes parameters
1,0, U, V respectively over a limited spatial region, and we want
to estimate the value of p*(uf,v%) over an unmeasured region,
satisfying the condition that the integral (5) is maximized and the
measured quantities are unchanged, i.e.,
ot o) = [ Blx, yJereb=+o dx dy 1)

field
w=—M —M+1,...0,..., M
f=—N¥ —N*+1,...0,...,N*
are exactly fitted to the measurements. (1, v¥) is the location of
the ith visibility coefficient of the kth Stokes parameter. M* and
N* defines the maximum extent of the measured Fourier coverage
for the kth Stokes parameter. This generalization relaxes the
requirement that the Fourier coverages are identical for all the
four Stokes parameters. The integral in Eq. (21) is over the total
solid angle observed by the primary beam of the synthesizing
elements.

We start with a trial polarized image which is usually the
same as the one obtained by direct Fourier transform of the
measured visibility coefficients. The unmeasured visibility coeffi-
cients are assumed to be zero. In practice the integrations are
replaced by discrete summations over a grid of N, x M, points
where N, and M, are chosen to be binary numbers to implement
conveniently the Fast Fourier Transform (FFT). Using Eq. (8)
the gradient of the entropy is computed. Without disturbing the
measured visibilities the unmeasured visibilities only are shifted
in the direction of the entropy gradient giving

p‘l;+ l(u?s Uf) = p;((uf’ Uf) + xg?(u?y Uf)

The suffixes jand (j + 1) represent the values of the corresponding
parameters in jth and (j + 1)th iteration. x is a suitable constant
which can possibly be chosen by the following criterion.

22

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987A%26A...176..159S

rT987ARA - _I76. ZI5950

162

Let us first displace p* by a small amount 4 in the direction
of the gradient g%. Let the gradient of the entropy at the shifted
point be g¥. If the entropy E is a quadratic function of p* a
choice of

A(gh)?

SN 23)
@ =g & (

will bring the entropy E to the maximum along the search direc-
tion g. However, since E is not a quadratic function in general,
a value of x decided by Eq. (23) may provide inadequate or ex-
cessive shifts. The excessive shifts can unnecessarily drag the solu-
tion away from the true solution and therefore it is advisable to
put an upper limit on the choice of x.

An improvement over the simple gradient method is the con-
jugate gradient method due to Fletcher and Reeves (1964). In this
method the search direction depends not only upon the current
gradient but also upon the previous search directions. In this
method the shift in jth iteration is made along the conjugate
gradient direction given by

g’
@=¢+{f}'@ﬂ

k
-1

(24)

The unmeasured visibility coefficients after jth iteration are mod-
ified to

Py =Pk + yegh (25)
Using the property that at the maximum of the entropy the
conjugate gradient is orthogonal to the gradient and therefore
the dot product of the two vectors g* and cg is zero, an optimum
value for the shift constant y can be obtained. Fourier transform-
ing the modified unmeasured visibility coefficients we obtain a
new image which will be the trial model for the next iteration.
The iteration continues till a satisfactory convergence is reached.
Here, the square of the gradient of the entropy has been used
to decide the convergence.

Although the numerical implementation of the algorithm ap-
pears straightforward there are certain practical difficulties. It can
be seen very easily that entropy of a polarized brightness dis-
tribution given by Eq. (5) is defined only for those distributions
which satisfy two essential conditions namely I > 0 and d < 1.
The entropy becomes imaginary if any of these conditions is not
satisfied. Although, this means that the maximization of the
entropy automatically imposes the essential conditions on the
image, it becomes impossible to implement the method since in
the initial stages of iteration the images invariably give imaginary
entropy.

To get over this difficulty, one way is to clip those points in
the distribution which violate the essential conditions (Cornwell
and Evans, 1985). This scheme does not have any hold on the
quality of the reconstruction and one always obtains the same
good or bad reconstruction. The other way (Bhandari, 1978;
Nityananda and Narayan, 1982) is to add a suitable floating
constant ¢ temporarily to the total intensity image such that the
essential conditions are met. In this paper we have adopted the
later scheme. The choice of ¢ decides the sharpness of the features
in the reconstructed image and therefore depending upon the
image enhancement requirement the value of ¢ can be chosen.
However, we have chosen a value of ¢ such that the ratio of the
maximum to the minimum unpolarized intensities in the image
is of the order of 100. It should be noted that the reconstruction

does not depend very critically upon the choice of ¢ provided it
is not too small or too large. As the reconstruction progresses
and the negative excursions are reduced the value of the floating
¢ reduces rapidly. At the end of iterations the small left out
value of ¢ is subtracted from the zero spacing visibility coefficient.

The algorithm has been satisfactorily (flow diagram Fig. 1)
tried on variety of brightness distributions. Some of these are
presented here. It is observed that the method generally converges
in 20-30iterations i.e., the square of the entropy gradient becomes
smaller than 107 ° of its initial value. The main improvement in
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Fig. 1. Flow diagram of the maximum entropy method algorithm for
polarized images
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Fig. 2. True partially polarized brightness
distribution. The four images indicated by
LI,Q,U,V correspond to the four Stokes pa-
rameters of the brightness distribution. Con-
tours are at 5, 10, 20, 30, 40, 60, 80, 100%, of
the total intensity peak (100 units)

the image takes place within first few iterations only. The gradient
of the entropy decreases very slowly after the first few iterations.
Therefore the algorithm should have a provision to view the map
periodically, say after every five iterations. If the improvement
in five iteration is not significant the user may terminate the

Fig. 3. Synthesized Fourier coverage. The visibility coefficients have been
sampled only over hatched region. In the empty region the visibility
coefficients are completely unknown

iteration forcibly. All the three forms of entropy are tried and
found to give more or less similar results. However, it is seen that
the solution is relatively stable for the —BIn B form of entropy
than for the others.

Figure 2 shows true maps for four Stokes parameters 1,0, U, V
and the observed Fourier coverage is shown in Fig. 3. This type
of Fourier coverage is commonly observed from a synthesis tele-
scope like the Very Large Array (VLA) (Thompson et al., 1980)
for a source at negative declinations. For this Fourier coverage
the synthesized beam has a very poor resolution in the horizontal
direction of the map. Convolution of the true maps (Fig. 2) with
the synthesized beam gives the observed maps as shown in Fig.
4. Tt can be seen clearly that apart from the distortion of the
central source the source in the left bottom corner is indistin-
guishable from the spurious features. Figure 5 shows the MEM
reconstructed maps after 30 iterations using the In B-form of
entropy. The reconstructed images are quite an improvement
over the observed low resolution images. It is remarkable that
although there is no explicit constraint like the positivity on the
polarized components the images of Stokes parameters, Q, U, V
are also improved appreciably.

Another example is of a bright active region on the Sun ob-
served at 2cm wavelength using the VLA in the C-configuration
(Shevgaonkar and Kundu, 1985). Due to large Faraday rotation
in the outer corona of the Sun linear polarization (if at all it is
there) is generally averaged to zero over the observing bandwidth
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Fig. 4. Observed maps of the four Stokes im-
ages for the Fourier coverage in Fig. 3. Con-
tours are at 5, 10, 20, 40, 60, 80, 100%; of the
total intensity peak (37 units)

Fig. 5. MEM reconstructed polarized images
after 30 iterations. Entropy function is In B.
Contours are at 5, 10, 20, 40, 60, 80, 100%, of
the total intensity peak (86 units)
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Fig. 6a and b. Total intensity (I) and circular polarization (V) maps of a solar active region at 2cm wavelength for full day synthesis using the
Very Large Array. In the circular polarization map dotted lines indicate left handed whereas solid lines indicate right handed polarization.
Contours are drawn at equi-intensity interval
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Fig. 7. Simulated Fourier coverage having four sectors. Data has been
sampled over the hatched regions only.

(Kundu, 1965), and therefore one essentially observes the circular
polarization only. Full-day synthesis data were used to obtain
the maps of the solar active region. To remove the effect of the
non-uniform uv-coverage of the VLA, the maps were first decon-
volved using CLEAN. The deconvolved total intensity and
circular polarization maps (shown in Fig. 6) are taken as the
model maps for generating the visibility data for trying our al-
gorithm. The maps are Fourier transformed to give the visibility
function over a rectangular grid of 64 x 64. Assuming that the
visibility function could not be observed in the four sectors of
the rectangular grid of 64 x 64 (Fig. 7) the visibility coefficients
over those four sectors are forced to zero. The Fourier transform
of the truncated data provides the distorted images as shown in
Fig. 8. Using the distorted images as the first trial model the
MEM maps are reconstructed (Fig. 9). From the comparison of
Fig. 6 and Fig. 9 it is convincing that the estimation of the un-
measured visibility coefficients using MEM can provide a recon-
struction which is very close to the image obtained by actually
measuring all the visibility coefficients.

For comparison’s sake the CLEANed maps are also shown in
Fig. 10. A loop gain of 0.3 and 300 iterations are used to get the
CLEAN maps. It is clear that in the MEM maps the features
are quite resolved whereas in the CLEAN maps although the
sidelobes are suppressed the features are relatively blurred.

5. Treatment of noise

In a practical system the presence of noise is inevitable and there-
fore the measured quantities have an accuracy of the order of
noise only. In the above formulation of MEM we see that during
iteration the measured visibility coeflicients are rigidly unaltered.
However, in the presence of noise the measured visibilities could
be modified within the error-bar of the noise. In other words the
method should be modified to take into account the reliability
of the measured visibility coefficients.

If we assume a zero mean gaussian noise with standard devia-
tion ¢* (k represents the Stokes parameters I, Q, U, V; in general,
¢* can be function of baseline), the constraints given by Eq. (21)
should be modified to

1 kO _ k)2
Rﬁz{i—rﬁ} <l k=LQUV (26)
0

o

where N¥ are total number of measured visibility coefficients for
kth Stokes parameter. p*° and p* are actually measured and
estimated visibility coefficients respectively.

Following previous authors (Ables, 1974; Wernecke and
D’Addario, 1977; Willingale, 1981), for noisy data the constrained
maximization of the entropy E can be changed to unconstrained
maximization of an objective function given as

1 PO — pk)2
F=E—-1) /) {\——— 27
;mz{w 7
where 1 is a Lagrange multiplier which decides the weightage
given to the maximization of the entropy relative to the observa-
tional constraints. The gradient of the objective function F with
respect to the visibility coefficients is then given by

oF 24 (p*0 — p*
k= _"_ — gk R 5
G g NE { 2 (28)

=3

The algorithm given in Fig. 1 can be directly used for the
noisy data with the gradient g* replaced by G*. A good discussion
on how to choose the Lagrange multiplier has been presented in
the past by Wernecke and D’Addario (1977). However, in practice
the value of 4 is chosen by trial and error to get the best results.
If the data is good, it is appropriate to choose a value of 4 which
gives equal weightage to the two terms of Eq. (28).

The extension of MEM to noisy data, although looking
straightforward, it has been pointed out in the past (Bryan and
Skilling, 1980; Nityananda and Narayan, 1982) that the least —
square data-fitting technique given above introduces a system-
atic bias in the reconstruction. The bias is independent of the
actual noise in the observation. The later authors argue that to
avoid the systematic bias in the reconstruction, the measure-
ments, although corrupted by noise, must be fitted exactly. How-
ever, one may note that exact fitting of the noisy data may not
give a reconstruction which satisfies essential conditions like the
positivity and the degree of polarization less than unity. In fact
for noisy data the least-squares technique along with the use
of relative entropy (Cornwell and Evans, 1985; Shevgaonkar,
1986a,b) of the kind B1n (B/B,) with reasonably simple but cor-
rect default image B, may provide much superior results.

6. Conclusion

A simple MEM algorithm for polarized images has been de-
scribed here. The satisfactory application of the algorithm to
polarized synthesis images has also been presented. Due to prac-
tical limitations when the visibility coefficients for the four Stokes
parameters cannot be sampled over identical apertures, the in-
dependent CLEANIng of the four Stokes images does not guar-
antee the essential conditions on the images (i.e., the intensity is
positive definite and the degree of polarization is less than unity).
The maximum entropy method treats all the Stokes images
simultaneously and imposes the essential conditions automati-
cally. For complex and extended structures MEM seems to be
more promising compared to CLEAN. This holds also for wide
field mapping, as pointed out by Cornwell and Evans (1985),
since MEM is more computer efficient compared to CLEAN;
the method certainly has a bright future.
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Fig. 8a and b. Distorted total intensity and circular polarization images due to truncated Fourier coverage. Contours are drawn at equi-intensity
interval
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Fig. 92 and b. MEM reconstructed total intensity and circular polarization maps after 30 iterations. Entropy function is In B. Contours are drawn
at equi-intensity interval
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Fig. 10a and b. Independently CLEANed total intensity (I) and circular polarization (V) images after 300 iterations each. Loop gain is 0.3.
Contours are drawn at equi-intensity level
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