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NONLINEAR RESPONSE OF SLENDER MAGNETIC FLUX
TUBES TO EXTERNAL PRESSURE FLUCTUATIONS
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Abstract. The effect of applying external pressure fluctuations on slender flux tubes is studied as a nonlinear
initial value problem. Large amplitude velocity oscillations are seen to be produced when the frequency of
the imposed fluctuations matches the natural frequency of the tube. Radiative cooling does not significantly
damp these resonantly built-up oscillations. The absence of observational evidence for such a resonant
response of the tubes is used to put a constraint on the length of tubes.

1. Introduction

The solar photosphere supports a wide variety of dynamical phenomena, e.g., granu-
lation, oscillations and waves. There are also intense magnetic flux tubes which will be
acted upon by the pressure fluctuations caused by these various kinds of dynamical
processes. Several questions arise in connection with the understanding of the actual
nonlinear response of the tubes to such external pressure fluctuations. The first question
concerns the efficiency of this process for generating fluid motions. The second concerns
the nature of the resulting flow, viz., whether it is oscillatory or not, and if not, whether
the flow is predominantly upwards or downwards into the Sun. A third question
devolves on the role of radiative processes in damping the flow.

Answers to these questions exist in the literature mostly on the basis of linear theory.
These will be enumerated in Section 2.

2. Results from Linear Theory

A rigorous analysis of the response of a flux tube to external pressure fluctuations
requires the separate solutions of the wave modes within the tube and in its environment.
Boundary conditions must then be applied at the interface of the tube and its surround-
ings to evaluate the degree of coupling of the tube’s motions to the external pressure
perturbations. However, for periods of these fluctuations larger than the time taken for
a fast magnetosonic wave to cross the tube, one can conveniently consider the external
pressure fluctuations to act as forcing terms in the differential equation representing the
vertical motions of gas within the tube. Using such a forcing term, Roberts (1983)
showed that the frequency response of the resulting motion tends to infinity when the
period of the external fluctuation matches the time taken for a tube wave to traverse one
wavelength of the fluctuation. As a result, one can expect that if a broad spectrum of
waves squeeze the tube, then the resulting motion of the gas in the tube would contain
only the ‘resonant’ or matching frequencies. If the tube is further constrained by
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boundary conditions at its base and top, then a further screening of frequencies would
result.

The above result of a resonance was obtained under adiabatic conditions. However,
for short period waves, radiative relaxation becomes important near the temperature
minimum. Webb and Roberts (1980) considered the propagation of non-adiabatic
waves within slender flux tubes and showed that non-adiabaticity leads to spatial
damping of these waves. Thus one would expect a decrease of the relative amplitude
of such waves with increasing height. However, application of external pressure
fluctuations to such waves modulate the spatial form of their amplitude leading to an
increase of relative amplitude with height (Roberts, 1983). What is not known from such
linear analysis is the absolute amplitude of the motions. In what follows we shall attempt
to estimate what amplitudes would result from a given amount of pressure fluctuation,
the nonlinear response to different frequencies of the fluctuation, as well as the effect
of radiative losses on the finite amplitude motions produced by the fluctuations.

It could be argued that since the pressure fluctuations in the photosphere arise out
of subsonic velocity fields, nonlinear effects could be neglected. This is not true if one
considered the long time behaviour of the tubes. Nonlinear effects sometimes generate
persistent, albeit small, unidirectional accelerations which do not cancel out if integrated
over one wave period (Hasan and Venkatakrishnan, 1980). Furthermore, resonant
interactions could lead to large amplitude motions. In a recent numerical study of the
time-dependent nonlinear response of tubes to external turbulence (Venkatakrishnan,
1984) it was shown that resonant response exists and only non-resonant interactions
lead to non-oscillatory flow in the tubes. The present paper describes these results as
well some additional results of extending the previous calculations to longer times and
of including the radiative exchange of heat by the tubes with their surroundings.

3. The Basic Equations

The equations for a slender magnetic flux tube were first rigorously derived by Roberts
and Webb (1978). These were later on extended for inclusion of radiative heat transport
in optically thin tubes (Webb and Roberts, 1980) as well as in optically thick tubes
(Venkatakrishnan, 1985; Hasan, 1985). In the present case, we shall confine our
attention to optically thin tubes assuming small optical thickness for the upper
photospheric tubes. The complete set of equations then is:

0 0
5;(0/3) + % (pv/B) =0, | ) (1)
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Pz, 1) =p.(2) + p,. (2 1), (5)

where p, is assumed to be one of the two following forms:

P., = P., €xp (—z/H) sin wt . (6a)
and

De, = P, sin kz sin wt . (6b)

In the above equations pis the density; p, the pressure; v, the velocity; B, the magnetic
field; and T, the temperature within the tube. Outside the tube p, is the gas pressure,
composed of a static part p, and a fluctuating part p, . This fluctuating part is assumed
to be either the two forms in Equation (6) representing spatially evanescent and
oscillatory disturbances respectively. 7, is the ambient temperature of the gas sur-
rounding the tube and 7 is the timescale for radiative relaxation.

These equations form a system of hyperbolic partial differential equations and can,
therefore, be cast into characteristic form. The characteristic equations are:

d
dp + pCrdv = (¢ + p)dt, along d—Z =v+ C, (7
t
and
dz
dp - S?dp= Qdt, along d—=v, (8)
) t
where

Cy=S8%4%/(S* + 4%);  A*>=Bl4np;  S? = yp/p;

c;(a a) cz
e =—|—+v—|p.+—0; = -g;
A% \ot (3zp S? g

(y-1

Q = pC(T, - T).

These equations can now be integrated using a suitable algorithm. In this paper a
backward marching algorithm was used (cf., e.g., Zucrow and Hoffman, 1976).
4. The Initial and Boundary Conditions

To start the integration of Equations (7) and (8) one must specify the variables at some
reference time ¢ = 0, say. For this we assumed an initial polytropic state in hydrostatic
equilibrium and also in thermal equilibrium with the surroundings. In this case the only
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parameters describing the state are I', the polytropic index, and f, the ratio of gas pressure
to magnetic pressure. The initial state at ¢ = 0 is thus

T = T,,(1 - F;Fl i) . (A= RT,g), (9a)
p = p(TIT) D, (9b)
P = R0, To(plps)" (9¢)
B = (8np/p)'?, (9d)
p. = p(1+1/B), (9e)
p. =p(1+1/B), (9)
T.=T, (%)

where T, and p, are the temperature and density at the base of the tube.

For ¢ > 0 one requires boundary conditions to be applied at the bottom and top of
the tube. However, the number of boundary conditions is determined by the number of
characteristics communicating from the interior to the boundary. In the present calcu-
lations we choose the following boundary conditions:

piz=0;0= %p,T,
and
p(z=d;t)=2p(z=d—Az;t)—p(z=d—2Az;t).

Whenever auxilliary boundary conditions become necessary due to failure of the
v-characteristics to reach the boundary then the following density boundary condition
was used:

p(z=050=p,
or
pz=d;0)=2p(z=d - Az;t) — p(z =d - 24z; 1),

where Az is the spatial step size.

5. Results

As mentioned in the previous section, we assumed an initial hydrostatic equilibrium with
a polytropic stratification and space independent f. The time dependent calculations
were performed only for a single value of f = 2.0. In the solar photosphere, this value
of fcorresponds to ~ 1800 G which is approximately the value of the field within intense
magnetic flux tubes. Since the magnetic field imparts a kind of ‘rigidity’ to the associated
fluid, weaker fields would imply a ‘softer’ equation of state for the tube and, therefore,
one would expect smaller values for the resulting longitudinal flow as compared to the
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response for a tube with stronger fields. We chose the value of the polytropic index
I’ = 1.1 for matching with the Harvard—Smithsonian reference atmosphere (Gingerich
et al., 1971) for the first 500 km above the photosphere.

The form of the external pressure fluctuations given in Equations (6) was chosen to
simulate both spatially evanescent fluctuations characteristic of the granulation as well
as spatially oscillatory fluctuations characteristic of waves and oscillations. The ampli-
tude of the pressure fluctuations was chosen to be 19, representing 49, variations in
the intensity caused by the corresponding changes in temperature.

The time dependence of the longitudinal velocity near the midpoint of the tube
(z = 0.48) is shown in Figure 1 for evanescent perturbations with three values of the
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Fig. 1. Time-dependence of gas velocity along the tube seen at z = 0.48 for exponentially decaying external
pressure fluctuations. The time unit in this and other figures corresponds to one free fall time over one scale
height which is the unit of length. The velocity is given in terms of the sound velocity at the base of the
tube.

scale length H (in units of the pressure scale height at the base of the tube). It is evident
from the figure that the response is more vigorous for the case of H = 1.0, than for the
other two cases. It is worth mentioning here that H = 1.0 corresponds to that case where
the decay length of the fluctuations is closest to the distance travelled by a tube weve
during one period of the fluctuation.

It is also worth noting that the response for H = 0.01 and H = 0.1 has a tendency
to lag behind the forcing frequency. A consequence of this lagging is seen in the spatial
velocity profiles for the case of H = 0.01 (Figure 2). We see that the node in the profile
at £ = 1.00 does not exist for ¢ = 2.95 and ¢ = 4.90. Thus the possibility of maintaining
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Fig. 2. Spatial profiles of the velocity for H = 0.01 at various intervals of time as marked in the figure.

unidirectional flows for longer times exists in the case of pressure fluctuations confined
to the base of the tube. However, the magnitude of such flows is seen to be rather small.

The maximum response to a spatially oscillatory fluctuation also occurs when the
wavelength of the fluctuation matches the distance travelled by a ‘tube wave’ within one
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Fig. 3. Time-dependence of velocity for spatially periodic external pressure fluctuations, for unit length of
tube and the spatial periodicity double this length. The different values of w/kC; are: 10.0 (full line), 1.25
(dashes), 1.0 (dots), and 0.2 (dash dot).
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period of the fluctuation. This is seen in Figure 3 where the time-dependence of
longitudinal velocity is plotted for different values of w/kC, where w is the frequency
and k the wavenumber of the external perturbations, C, being the phase velocity of tube
waves. A clear increase in the response is seen for w/kC, =1 as compared for
w/kCy = 0.1 and w/kC; = 10.0, respectively.

The question that next comes to mind is whether boundary conditions affect this
resonance. In Figure 3, the wavenumber was chosen as n/d where d is the length of the
tube. To settle this question, further computations were performed where the wave-
number was chosen to be 27n/d. Figures 4(a—c) show the spatial elocity profiles for
w/kC, = 0.1, 1.0, and 10.0, respectively. Again, it is clearly seen that maximum response
occurs for w/kC; = 1.0. Furthermore the computations were extended to larger
durations than those depicted in Figure 3. Thus the resonance seems to persist for long
times.

Finally, let us consider the role of radiative processes in damping the resonance.
Figure 5 represents the time-dependence of the velocity for zero damping (1/7= 0 in
Equation (5)) at three spatial points (z = 0.0, 1.5, and 3.0) for a tube of length d = 3.0
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Fig. 4a. Fig. 4b.
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Fig. 4(a—c). Spatial profiles of the velocity for unit length of tube and equal length of spatial periodicity
for the cases (a) w/kC, = 0.1, (b) w/kC, = 1.0, and (¢) w/kC, = 10.0.

(base pressure scale heights) with wavenumber of external fluctuations = 2n/d and
frequency = 27C,/d. It is seen that there is an increase of amplitude with height which
is probably related to the decrease of gas density with height. Figure 6 shows a similar
time-dependence, but now for a fixed spatial position z = 1.5 and for different values
of cooling time 7= 1, 3, and oo, respectively. There is evidence for some damping of
motion for 7 = § as compared to T = co, while there is not much difference in amplitude
between the motions for T = % and 7 = 1. Another effect produced by the radiative term
is to introduce a phase lag between the forcing term and the response.

6. Discussion

The main results of this paper are that (a) resonance does lead to large amplitude
motions within slender magnetic flux tubes and (b) radiation does not seem to signifi-
cantly damp these large amplitude motions if the cooling time is shorter than the period
of external fluctuations. On the other hand, the only direct observations of vertical
velocities within magnetic elements (Giovanelli et al., 1978) show neither such large
amplitude motions nor any evidence for shocks at least within ~ 500 km above the
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Fig. 5. Time-dependence of velocity at z = 0.0, 1.5, and 3.0, respectively, for length of tube d = 3.0 and

wavelength = 3.0 at the resonant frequency.
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Fig. 6. Time-dependence of velocity at z = 1.5 for d = 3.0, wavelength = 3.0 and three values of cooling
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photosphere. The only dominant period of oscillations detected in these observations
was 5 min. Clearly these observations represent, if not anything else, the response of
tubes to the pressure fluctuations produced by those five minute oscillations whose
horizontal wavelengths are comparable to the tube’s cross-section. Evidently such
oscillations would have to be of very high degree. If the tubes have an effective length
larger than the halfwidth of the eigenfunction of the oscillation, then the interaction
would be resonant. Otherwise the interaction would be nonresonant and weak. The fact
that the observed amplitudes are not unduly large cannot be explained away as due to
radiative damping since we have seen that radiation does not significantly damp the
resonance when the cooling time is considerably shorter than the period of the
fluctuations. Furthermore, the narrow bandwidth of the five minute oscillations pre-
cludes the dilution effects of larger bandwidths (Spruit, 1982) on the resonance. Thus,
one can perhaps conclude that the observed interaction was nonresonant and, therefore,
the tubes must be shorter than the scale length of the eigenfunction.

The absence of smaller periods in the observations of Giovanelli ez al. (1978) (whose
presence can be expected from resonant interaction of the tubes with shorter waves)
could have been due to a variety of reasons. One such reason might have been the lack
of sufficient spectral and temporal resolution and the consequent inclusion of the shorter
scale velocities into the so-called microturbulence. Another reason could be that these
short periodic acoustic fluctuations do not cause enough amplitude of pressure fluctu-
ations on the tubes owing to their incoherent nature. A third reason could be the dilution
of the resonance by a broad spectrum of waves being incident on the tubes (Spruit,
1982). In this connection, it may be relevant to mention that direct launching of short
period waves along tubes (as opposed to the indirect creation of waves by lateral
squeezing considered in this paper) leads to shocks only at higher levels in the
atmosphere an account of the distendibility of tubes as well as radiative damping
(Herbold et al., 1985). Thus even such waves would have escaped detection in the
Giovanelli et al. (1978) experiment.

In summary, the present paper shows that persistent nonlinear resonant response to
pressure fluctuations is possible for slender magnetic flux tubes. Radiation does not
seem to significantly damp the resonance for forcing periods much larger than the
cooling time. Thus the absence of observational evidence for resonant interaction
between the narrow band five minute oscillations and the tubes seems to indicate that
the tubes are shorter than the extent of the eigenfunction of the oscillations.
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