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Abstract. Inclusion of radiative heat transport in the energy equation for a
slender flux tube leads to oscillations of the tube. The amplitude of the
oscillations depends on the radius.of the tube when lateral heat exchange
alone is considered. Longitudinal heat transport has a greater influence on the
evolution of the instability than lateral heat exchange for the particular value
of tube radius considered in the calculation. Heat transport is seen to reduce
the efficiency of concentration of magnetic fields by convective collapse in the
case of polytropic tubes.
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1. Introduction

The general behaviour of convectively unstable fluids in the presence of magnetic field
and heat diffusion has been well studied in the past on the basis of linear theory. For a
Boussinesq fluid Chandrasekhar (1961) showed that whenever the electrical resistivity 5
was greater than the heat diffusivity x, convective instability sets in as a monotonically
growing instability at a critical value of the Rayleigh number R ). This value increases
with magnetic field, thereby demonstrating the stabilizing influence of the field. In
stellar interiors, the radiative heat diffusivity is generally much larger than the electrical
resistivity of the fluid. In such a situation, Chandrasekhar (1961) proved that
overstability could set in at a Rayleigh number R which is less than R®), the critical
Rayleigh number for onset of overturning convection.

The effect of compressibility on the instability for an ideally conducting fluid was
studied by Kato (1966). In the case of an inviscid Boussinesq fluid, Kato (1966) showed
that any arbitrary adverse temperature gradient led to overstability, irrespective of the
value of the magnetic field. When compressibility is included, a regime of damped
oscillations exists whenever the magnetic field is greater than a critical value. Thus, for
weak magnetic fields in non-resistive inviscid fluids, convective instability always sets in
as an overstability. Kato’s analysis, being a local analysis, could not take boundary
conditions into account. The classification and behaviour of the linear modes of a
polytropic fluid with vertical magnetic field and imposed boundary conditions have
been explored in detail by Antia & Chitre (1979). They found that convective-slow
modes would be overstable for weak magnetic fields, while at moderate values of the
magnetic field, overstable fast modes would dominate the spectrum. Moreover, the
growth rate of both series showed a maximum with respect to the horizontal wave
number, thereby indicating the suppression of instability on small length-scales. For
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horizontally structured magnetic fields, Roberts (1976) has demonstrated the existence
of overstable modes.

All the above results lead us to expect similar oscillatory convection for slender
magnetic flux tubes as well. The linear stability of slender radiating flux tubes has not
been explicitly studied although Webb & Roberts (1980a, b) have considered the spatial
and temporal damping of optically thin disturbances in slender flux tubes. In this paper
we first derive the energy equation for a slender optically thick flux tube (Section 2). We
then investigate, albeit in a restricted sense, the linear stability of such a tube in
Section 3. The initial and boundary conditions are spelt out in Section 4. We then
describe the results of a few nonlinear calculations in Section 5 and discuss these results
in Section 6.

2. The Basic Equations

The equations of continuity and motion for a slender magnetic flux tube are (Roberts &
Webb 1978):

0 d '

E(p/BHE(pU/B):O’ 1)

0 dv 10p

EU-F -a-+;-a—+g O (2)
= 8n(p, — p). (3

The complete energy equation in the presence of non-adiabatic terms is given by

(o))

+(y—-1)V-F =0, 4
where F= —-KVT (5)
with K =pC,x (6)
and x = 166T3*/3xkp, (7

where p, p, v, B, T are the pressure, density, velocity, magnetic field and temperature
inside the tube, p, is the presSure outside the tube, F is the radiative heat flux, K is the
radiative heat conductivity, y is the heat diffusivity, « is the Rosseland mean opacity and
o is the Stefan—Boltzmann constant. Equations (5) through (7) are valid for an optically
thick tube in the ‘diffusion’ approximation.

For thin tubes the lateral exchange of heat is important as can be seen from the
magnetostatic models of Spruit (1977). When such a lateral exchange of heat is
considered, one can no longer neglect the radial dependence of the dynamical variables
as was done previously for the adiabatic flow (Venkatakrishnan 1983; hereinafter
referred to as Paper I). We shall now follow Roberts & Webb (1978) to further simplify
Equation (4). If A is the scale length of variation of the tube radius along its axis, then
we shall consider terms of zero order in (#/A) in Equation (4). The first two terms

reduce to
Jd 0 yp 0 3}
(5; +U£>p-—( )(at+05—)p+0(r/A), (4a)

© Indian Academy of Sciences ¢ Provided by the NASA Astrophysics Data System


http://ads.ari.uni-heidelberg.de/abs/1985JApA....6...21V

B DSV

[I9BBIAGA. - -

Convective instability in flux tubes. 11. 23

vide equation (A10) of Roberts & Webb (1978).

The evaluation of the zeroth order of the third term in (4a) needs some consideration.
For this, let us assume the following profile for the radial dependence of temperature,
viz.

T=T,@)+T,)(r/AN)+T,)(r/AP + ... 8)

After substituting Equation (8) in Equations (3) and (5), and multiplying the resulting
equation by r/A, we have upto first order in r/A,

oo _(1=1\[ KL (K 0K op T
(y—)V-F= ( A? )[(r/A)+( % aT)JtTZ Az( oz ) }
+K(4T2+A2(z:1; )]+0(’/A)' ©

From Equations (4), (4a) and (9) we have

() (2o (2) 2 o2
(e

262T
+K\{ 4T, +A e +0(r/A) = 0. (10)
Equating the coefficients of each power of r/A to zero, we have
(» —DKT/A* =, (11)
and
a0 w\(d @ y—1 0Ty
(&roz )= (5) 5oz o= () K (e w32
0K 0K dp 2 aaf T\ _
N
Finally, by setting T =T; at r = 0 we have
T, =T, (13)
and by setting T =T, at r = ry, we have
T, = (T,~T;)(A/ro)%, ; (14

where r, is the radius of the tube and 7, and 7, are the temperatures outside and inside
the tube respectively. Substituting Equations (13) and (14) in Equation (12) we have
finally,

0 0 yp \[ @ 0 T,-T.\ o7,
(E*”EE)" ( )(aﬁ 5‘)" “"’[ {( 2 ) azz}
| 0K 0K dp 6T
(Faa)z) ] s
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The first term on the right hand side of Equation (15) represents the lateral influx of
heat from the surroundings. The second term represents the longitudinal diffusion of
heat while the last term arises because of variations of the heat conductivity with
temperature and pressure. In what follows we will present a restricted linear stability
analysis of a slender flux tube in the presence of lateral heat exchange alone and with
constant diffusivity y. We shall then numerically study the effect of lateral heat
exchange, with constant conductivity K, on the nonlinear evolution of convective
instability. We will next include longitudinal heat transport with constant K and finally
consider a case of variable heat conductivity as well.

3. Linear stability of slender radiating flux tubes

The linearized version of Equations (1), (2), (3) and (15) are

1/0 dpo 0 0B, _
Bo(até + —— i 6) B2<6 6B+61 % )—0, (16)
i<Sv+i(5 +6pg =0 17
Po ot oz D T+90pg =
and
0 YPo @ dpo  ¥YPo dpo
Zop -0 ° fo _ fFo *Fo
<6t P Po 6t6p)+5v( dz p, dz
2 oT dT, \/JK o
_(y_l){K(5z—26T_4E)+(_d7)(_8; 5;51)
oK ¢ K 0
+ﬁ—56T) Eg—éT} ( (18)
where

oT =Ty (0p/po —9p/po), 6B = —4ndp/B,

and J represents a perturbation of a variable whose zero order is represented by a
subscript ‘0”. In the presence of lateral heat transport alone, Equation (18) becomes

0. o0 d _ ypodpo
<6t5p Po at‘s")””(dz”" po dz
= —4(y—1)KoT /r2. | (19)

We further write K = p,C,x where  is the radiative diffusivity and assume that y is
constant. Then the final energy equation is

g0 1 Yo \[( O 1 dpo o d '\ _
<6t+r>6p ( )<6t+ >5p+5v<dz E&p =0, (20)

T =ri/4y.

where
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-We impose the following boundary conditions,

ow=0 atz=0 and z=d. (21)
Furthermore we choose perturbations of the form
q(z, t) = §(2) exp(ot).

Substituting this form of the perturbation in Equations (16), (17) and (20), and
eliminating ép, ép and 4 B, we obtain

d? d
27 (Po0) +a; 3 (90 80) + ao(po ) = O, 22
where}
L L(T=1 1 b0
Y"A\L T "2 o+1/yt
a=i 1 000 o+1/t g ﬁ+a+l/t
T A2I\2 o+1/yt J\yo+1/t yg\ 2  o+1/yt
gdo
x( a+1/yr>]
where

So= (E_—") and A= 2T,/g.
I'y _

Let us assume isothermal stratification, in which case the coefficients in
Equation (22) would become independent of z, admitting solutions of the form
A, exp(k,z) + A, exp(k,z). Substituting this form into the boundary conditions yields
the dispersion relation

b4a4+b363+b262+b10+b0 = O, (23)

where
by = Bo+2(1+0d0); bz =2e(1+3d0)(Bo+do+2);

2.2
bz = —I:l+50(1+Bo)—{‘2%311—+%+82(1+60)2(2+ﬁ0)}],
2,2
b, = —3(1+50)|:50(1+ﬁ0)+%—27;—2n:|;

1 2n%n?
bO = —82(1 +60)2(—1—6' <+ ——BT—>;

where n is the order of the harmonic, ¢ = (A/gt%)!/2, B, is the ratio of gas to magnetic
pressure, 8, = (I —y)/I'y is the superadiabaticity and d is the length of the tube. We see
that Equation (23) is of fourth degree in ¢. It must be mentioned that Webb & Roberts

(1980a) obtained a third degree polynomial for an unstratified tube and fourth degree
polynomial for a stratified tube (Webb & Roberts 1980b). They have not commented on
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Table 1. Frequencies and growth rates of
slender radiating flux tube.

Bo = 6-0 50 = 0.3

d £ Re(o) Im(o)

0.05 0.0017 1.4454
0.10 0.0018 1.4545
0.15 —-0.0009 1.4685
0.20 —0.0069 1.4862
0.25 —0.0162 1.5063
0.30 —-0.0287 1.5281
0.35 —0.0438 1.5508
040 -0.0614 1.5741

0.05 —0.0592 0.1120
0.10 —0.0945 0.1970
0.15 —0.1268 0.2509
0.20 —0.1584 0.2926
0.25 —0.1899 0.3264
0.30 —0.2214 0.3543
0.35 -0.2527 03777
0.40 —0.2841 0.3973

3.65

the extra mode. An inspection of Equations (16) through (20) shows that the fourth
mode arises out of stratification and nonadiabaticity. Following the nomenclature of
Defouw (1970) we shall call this mode as the thermal-convective mode. In the limit s < 1
the roots of Equation (23) separate clearly into thermal and dynamical modes. It can
also be shown that in such an eventuality overstability is possible only if the equilibrium
state is adiabatically stable and that for adiabatically unstable states the thermal effects
only modify the growth rates.

For finite values of ¢, such a demarcation of the modes is not obvious. Table 1 shows
the complex roots determined numerically in the case of finite ¢ for two values of d
corresponding to an adiabatically stable and unstable state respectively. Overstability is
seen only for the adiabatically stable state. The growth rate increases with increasing ¢
and then decreases for large value of ¢ The frequencies of the overstability are not
sensitive to the value of &. However, the frequencies in the nonadiabatic case must
decrease as the equilibrium approaches a neutrally stable state in the adiabatic limit and
thus the period of oscillation must be dependent on the magnetic field of the tube.

However, this limited study does not include the case of unequal zero-order
temperatures inside and outside the tube. It is quite possible that unequal temperatures
might lead to overstability even when the equilibrium is adiabatically unstable, by the
excitation of new modes which are suppressed in the case of equal temperatures.

4. Initial and boundary conditions for the nonlinear
calculations

Equations (1), (2) and (15) form a system of hyperbolic partial differential equations
provided we treat the derivatives of temperature as source terms. Thus the problem is
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an initial value problem requiring specification of the initial conditions. We chose the
initial conditions, in the case of constant conductivity K, as a polytropic stratification

with
r—-1
T,=T,(z=0)— (——I—,—->z,
T=T,
p oc TT/C=1)
and

B = (8mp/Bo)'/%.

Practical computational considerations require the imposing of boundary conditions
at finite values of z. We chose the following boundary conditions:

p=p(t=0) at z=0
and

P =p(t—At)—gv(t—At, z=d){p(t—At, z=d)

—p(t—At,z=d—Az)} at z=d.

The lower (z = 0) boundary condition implies that the radius of the tube does not
change in time while the upper boundary condition implies that there is no lateral leak
of matter at the top. This has been explained in Paper I. Sometimes more boundary
conditions become necessary whenever some characteristic emanating from the
boundary fails to communicate with the interior. The additional boundary conditions
used in such cases were
p(t’ 0) = P(t —At, O)
and
p(t, d) =2p(t,d — Az)— p(t, d — 2Az).

It must be remarked here that the density boundary condition at z = d is different from.
that used in Paper I where it was '

p(t,d) = p(t —At, d).

The introduction of the new density boundary condition saved the calculations from
the numerical breakdown of zero pressure encountered in Paper L.

The calculations were performed in terms of dimensionless units which are described
in Paper I and which essentially use the base pressure as the unit for gas and magnetic
pressure, the base density and temperature as the units for the corresponding variables,
the sound speed at the base as velocity unit, the pressure scale-height at the base as unit
of length and the free-fall time over this length as the unit of time.

5. Results )

The convective instability will be a maximum in a region few hundred kilometres below
the photosphere where the superadiabaticity is large. In this region the radiative
diffusivity ranges from 2.33 x 10'°cm?s~! at a temperature of 1.003 x 10*°K to
3.504 x 10'2cm?s~! at the photosphere (Spruit 1977). We have, however, first
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considered a constant radiative conductivity representing a ‘mean’ value, in order to
understand the physical effects produced by heat diffusion. We shall also briefly
describe results of a single calculation involving a variable diffusivity at the end of this
section.

5.1 Effect of Lateral Heat Exchange

The results were all obtained in dimensionless units with the reference units that were
defined in Paper 1. In those dimensionless units, the radiative conductivity was 0.001
which is representative of a layer ~ 200 km below the photosphere. Since the term
representing lateral heat exchange in Equation (15) depends inversely on the area of
cross-section of the tube, we shall first look at the effect of tube radius on the
development of the instability.

Fig. 1 shows the time variation of longitudinal velocity at z = 0.48 for g, = 6.0, for 4
values of r,, the tube radius. We see an oscillatory behaviour for the velocity. The
oscillations have nearly the same period of =~ 12 units for all values of. r,. The
amplitude seems to be large for ry = 0.5. For smaller values of r, we find that after
some time the gas pressure inside the tube exceeds the external gas pressure making the
magnetic field vanish in the slender flux tube approximation. Thus, the calculations
could not be extended for these cases. Fig. 2 shows the behaviour of §, the ratio of gas
pressure to magnetic pressure inside the tube, at z = 0.48 as a function of time for
different values of ry. The behaviour of § is essentially similar to that of velocity except

0.3
/.4-'.\,
2k £y
0.2 1.1 ,%
Lo
Flod
\.
\
>
‘o-0-1
Q
Iy
>
-0.4
-0.5 | { |
0 10 20 30

Time

Figure 1. Time dependence of velocity at z = 0.48 in an ‘open’ tube, for f, = 6.0 and different
values of radius r,, laterally exchanging heat with its surroundingsf
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8
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71- -—==-rg=0.5
evessscee r°= 1.0 II\
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| ' | _ i
0 10 20 30
Time

Figure 2. Variation of § with time in the tube considered for Fig. 1.

for the phase. We notice transient intensification of the field to values of g as low as 1.0.

The stabilizing influence of the initial magnetic field can be seen in Fig. 3. Here the
velocity at z = 0.48 in a tube of radius r, = 0.5 is plotted as a function of time for
different values of §,. There is no discernible change in the period of oscillations but the
amplitudes are considerably affected as can be seen from the low values for f, = 4.0
compared to those for larger §,.

5.2 Effect of Longitudinal Heat Transport

Let us now consider the effect of longitudinal heat transfer with constant heat
conductivity on convective instability. We, therefore, retain only the first two terms on
the right-hand side of Equation (15). In a rigorous sense, the character of the system of
differential equations changes here from hyperbolic to parabolic due to the appearance
of the second derivative of temperature. We shall, however, continue to regard the
system as hyperbolic and treat the derivatives of temperature as ‘source’ terms. These
source terms were calculated on the previous time-line using a standard IBM
subroutine for numerical differentiation. Such a procedure does not cause serious
problems as long as the thermal conductivity is small. Figs 4 and 5 show the temporal
behaviour of velocity and plasma-f in a tube with B, = 6.0 and 4.0 respectively, with r,,

= 0.5. One notices three facts, viz. the presence of overstability, the smaller period of
oscillation and the greatly diminished amplitude of oscillation as compared to the case
with lateral heat exchange alone. Compared to this, the differences between the case of
lateral heat exchange alone and the adiabatic case are rather small. This indicates that
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Figure 3. Dependence on §, of the time development of velocity in a tube of radius ry = 0.5.
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Figure 4. Time dependence of velocity (dashed curve) and § (solid curve) at z = 0.48 in an open
tube with heat transport and with 8, = 6.0. )

longitudinal heat transport has a greater effect on the convective instability of a flux
tube with r, = 0.5. However, one cannot predict the relative importance of longitudinal
heat transport on thinner tubes. In the context of solar photospheric magnetic fields, it
is also interesting to see that intensification of such tubes by convective instability with
heat transport would most probably be transient and would be accompanied by only
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Figure 5. Time dependence of velocity (dashed.curve) and f (solid curve) at z = 0.48 in an open
tube with heat transport and with f, = 4.0.

small and oscillatory flows. Here the calculations were not continued beyond ¢ ~ 30
and, therefore, we do not know the saturation amplitudes of the overstability. However,
t = 30corresponds to ~ 1000 s for tubes with base temperature 7, = 10* K. Therefore,
other processes such as granulation might interfere with the development of the
overstability within this time.

5.3 Effect of a Variable Heat Conductivity

Below the solar photosphere the heat conductivity is not constant but varies by a few
orders of magnitude as mentioned earlier. In order to study such a situation we need to
first calculate a static equilibrium model for the environment of the flux tube with such
a variable conductivity. For this we first calculated the opacity by obtaining a least-
squares fit for the relation

K = Ko (p/po) (T [To)", 4

using Spruit’s (1977) values for x, p and T. Here, p, = 3.126 x 10° dyncm 2 and
T, = 1.003 x 10* K corresponding to a depth of 1.779 x 102 km in the model. We
obtained

v=12 and pu= —065.

From Equations (6), (7) and (24) one can write K as a function of p and T. Further, we
simultaneously solve the static energy equation

dr dr
N 5
K+ Ko(dz )0 25)
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Figure 6. Initial hydrostatic state for a tube’s environment (p,, Tg) where heat transport is solely
by radiation with opacity varying as k = ko (T /To)*2 (p/po) %

and the equation of hydrostatic pressure balance,

dp pg
dz &1’ (26)
using an Adam’s predictor-corrector algorithm to obtain the equilibrium state which is
given in Fig. 6. One should notice that the thickness of the layer between temperatures
10* K and 0.6 x 10* K in Fig. 6 is smaller than the corresponding thickness in Spruit’s
model because we have entirely ignored the convective transport of heat.

We can now calculate the initial state of the tube from the equilibrium state of its
environment using the condition of horizontal pressure balance and by assuming
T, =T, (see Roberts & Webb 1979). In this particular case we chose f, = 6.0. This initial
state was perturbed with a small initial velocity perturbation and the evolution of the
flow was studied using the complete energy Equation (15). The development of the flow
at two spatial points is shown in Fig. 7. There is once again oscillatory behaviour with a
larger frequency and smaller amplitude as compared to the cases of constant
conductivity. This calculation does not have direct relevance to the solar convection
zone because of the neglect of convective transport in the environment of the tube.
However, the general trend of oscillatory behaviour is seen even for this case. Another
interesting feature of this calculation is the systematic flattening of the spatial profile of
temperature gradient with time as seen from Fig. 8. However, one does not know from
a single calculation whether the general tendency of heat transport is to smoothen out
the variations in the temperature gradient.

6. Discussion
All these results, though not exhaustive, indicate that the general behaviour of
convectively unstable flux tubes, in the presence of heat transport, is oscillatory. The

change of period of oscillation on introducing longitudinal heat transport could be due
to the excitation of a new mode or a new harmonic. The further decrease in period for
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the case of variable conductivity could perhaps be due to the shorter length of the tube
considered. ,

Linear theory predicts both overstable fast modes and monotonically growing
convective modes for sufficiently weak and laterally unstructured magnetic fields. The
main result of the present work is to demonstrate that when nonlinear effects are
considered, the interaction of convection and overstable modes leads to a net
oscillatory behaviour within slender flux tubes.

Furthermore, the intensification of the field is also trans:ent and much reduced as for
example in the case of f, = 4.0 with longitudinal heat transport. On the other hand, it
was seen that in the adiabatic case (Paper I) an ‘open’ flux tube with , =4.0 and a .
smaller initial superadiabatic gradient attained an intense steady state with f; ., ~ 1.0
and downflow velocity ~0.8 at z = 0.5. Thus, the heat transport has a stabilizing
influence apart from imparting an oscillatory behaviour. Furthermore, tubes with g,
= 6.0, which corresponds to the ‘equipartition’ field concentrated by convective eddies,
are also not seen to collapse to very intense states in the present calculation. .

Thus the mechanism of concentration of flux tubes by convective collapse seems to
become somewhat inefficient when heat transport is also included. Obviously it will be
necessary to consider a realistic stratification for the initial state of the tube before one
can confirm this fact and before one starts a search for alternative mechanisms of tube
concentration. The use of realistic initial states would also help in the prediction of
exact periods and amplitudes of the radiatively driven oscillations,* which will have
important observational implications.

Acknowledgément

The author thanks Dr. M. H. Gokhale for numerous discussions. The use of an
interpolation programme developed by Mr. A. V. Raveendran and of a programme to
solve ordinary differential equations using Adam’s predictor-corrector algorithm
developed by Mr. P. M. S. Namboodiri is also gratefully acknowledged.

References

Antia, H. M., Chitre, S. M. 1979 Solar Phys., 63, 67.
Chandrasekhar, S. 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford.
Defouw, R. J. 1970, Solar Phys., 14, 42.

Hasan, S. S. 1984, Astr. Astrophys., (in press).

Kato, S. 1966, Publ. astr. Soc. Japan, 18, 201.

Roberts, B. 1976, Astrophys. J., 204, 268.

Roberts, B., Webb, A. R. 1978, Solar Phys., 56, 5.

Spruit, H. C. 1977, PhD Thesis, University of Utrecht.
Venkatakrishnan, P. 1983, J. Astrophys. Astr., 4, 135 (Paper I).
Webb, A. R,, Roberts, B. 1980a, Solar Phys., 68, 71.

Webb, A. R., Roberts, B. 1980b, Solar Phys., 68, 87.

* Recent results for solar flux tubes laterally exchanging heat with their surroundings (Hasan 1984) do show

overstability similar to the polytropic tubes, but vertical transport of heat is yet to be considered there.

© Indian Academy of Sciences ¢ Provided by the NASA Astrophysics Data System


http://ads.ari.uni-heidelberg.de/abs/1985JApA....6...21V

