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Summary. Previous calculations of the velocity distribution function for a star
cluster scenario of a class of core-envelope type static, stable, massive equilibrium
configurations, capable of giving high internal gravitational redshifts, have been
extended to show that positive distribution functions can be obtained for these
objects by suitably altering the envelope equation of state, without affecting the
overall structure significantly. Limits on the central redshift obtainable from such
configurations, subject to conditions of pulsational stability and positivity of the
distribution function, have been obtained. Finally, the relevance of the new
composite configurations as models for high redshift quasi-stellar objects (QSOs)
is discussed.

1 Introduction

Supermassive objects with large gravitational redshifts, in addition to their intrinsic theoretical
importance, are of great interest in the astrophysical scenario as possible models for objects such
as quasars (quasi-stellar objects or QSOs). In a series of papers previously (Das & Narlikar 1975
(Paper I); Das 1975, 1976 (Paper II), 1979) spherically symmetric, static, bound, core
envelope-type massive configurations in stable equilibrium had been considered as models for the
QSO0s. It was shown that these models could provide an adequate interpretation of the observed
large emission and absorption redshifts as well as various other physical properties of the QSOs
without making undue demands on the equations of state.

In Paper II, while considering a star cluster scenario for these models, on the lines of the
original cluster model suggested by Hoyle & Fowler (1967), an attempt was made to calculate the
velocity distribution function for these models using a method due to Fackerell (1968). It was then
noted that the distribution function became necessarily negative over a part of the phase space for
all the models. But since this negativity occurred only near the surface it was conjectured that with
a suitable modification of the equation of state near the surface the distribution function could
perhaps be made positive throughout which is a necessary criterion for any physical object. The
present paper provides an explicit detailed verification of this conjecture and also discusses the
relevance of the new configurations as models for QSOs.

We start with a brief sketch of the original model in Section 2. In Section 3, we shall outline the
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earlier calculations of the distribution function done in Paper II. The proposed modifications of
the equations of state, derivations of the new equations and the results of numerical computations
will be given in Section 4. Finally we shall discuss the significance of these models in Section 5.

2 The original model

We consider a static, spherically symmetric configuration of mass M and radius R (in
Schwarzschild coordinates) in hydrostatic equilibrium. Unless otherwise mentioned geometrized
units (speed of light c=1, gravitational constant G=1) will be used throughout.

Outside the body (r>R) we have the well-known exterior Schwarzschild solution, viz.

ds2=(1— M )dﬂ———‘ﬁ——
r (1-2M/r)

Inside the body (r<R) we write the line element in the form

—r(d6P+sin? 0 d¢?). 1)

ds*=exp (v) d—exp (A) dr*—r* (d6*+sin’ 6 d¢?) ()

where

exp (—/1)=(1— m), 3)
r

and m(r) is the mass within a radius r given by
m(r)= f 4rr’o(r) dr. 4)
0

The energy momentum tensor T is

Ti= diag(—p, —p, —p,0) (5

where pressure p, mass-energy density g, v and A are functions of r only.
Following Bondi (1964) we introduce two dimensionless variables u and v defined by

u(r)= _m_fr_)_, v(r)=4rrp(r). (6)

The field equations can then be cast in a particularly convenient form in terms of « and v. Given
an equation of state p=p(p) these can be solved to obtain v as a function of « and represent the
given sphere by a v(u) curve in the (u, v) plane.

It is seen that ~ ¢f. Bondi (1964) and Paper I for greater details — the hyperbola

H=2v—(u*+6uv+v?)=0 @)

divides the interior into two parts, H>0 and H<O0, such that different conditions apply if the
redshifts are to be maximized. Hence, as in earlier papers, we assume different equations of state
in H>0and H<0 with the transition taking place on H=0. We designate H=0 as the core, H<0 as
the envelope and the values of various physical quantities at the centre, at the core-envelope
interface and at the surface of the sphere are denoted by the subscripts ¢, b and s respectively. The
class of models put forward in Paper I, Das (1975), Paper II and Das (1979) has the following
core—envelope combinations.

core: isothermal p=ko  (k<1).
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Envelope: limiting adiabatically stable
d 1
L= (1sn<k. @®)
dp n

Numerical computations are necessary to determine the march of various dimensionless
physical variables such as v, u, v, p/p., 0/0. and a={|(4n/3)o.}xr and to calculate the
gravitational redshifts z., z, and z; of light leaving respectively from the centre, the
core—envelope boundary and the surface and received by a remote observer, for a specified pair
of equations of state that is for a given pair of values of n and k. The dimensionless quantities can
be scaled once the value of the total mass M or the radius R or the central density g, is specified.

3 Distribution function (previous calculations)

In this section we shall summarize the results of the earlier calculations of the distribution
function (for details see Paper II).

For a star cluster scenario of our model we assume that the constituent stars are either neutron
stars or white dwarfs of identical proper masses (for an assumed total cluster mass
M~5%10'M,). Then our model is a collisionless, spherically symmetric system with isotropic
pressure and non-vanishing pressure gradient at the surface with all the ‘particles’ (i.e. stars)
having the same proper mass. For such a system the distribution function F(x) depends only on
the energy of a particle and for the models considered is given by (Paper II equations (B5) and

(B6))

Core:
A (1-nk) _ 1+k <-<k+1)>/<k<"+1>>xk(n+1) (1-3k)(1-k)(1+k)
W= @ {(l—nk) (1~nk) 25
dy (n=3)(n-1)(n+1)
X‘/X_J’x \/y(1+3k)/k'_(y_x) + 2
o f WM) o= D \/ (=)D \/——}
X Sx<x,, x=1 9)
envelope:
_ (=nk) ((n- 3)(n (n +1)
e (n+1) Qb{ j \/y‘"”) (y—x)

—(n+1) \/

where x=[exp (v)/exp (v;)] is the square of the energy of the particle measured in units of its
energy at the surface and 9, =0p/0..

It is seen that

1. For k=5 and hence for n<3, since n<k™!, F(x) is negative throughout.

2. Even for k<14, F(x) will become negative as x—1 that is near the surface, due to the negative
term —(n+1)yx/(1—x)* in (10) which will dominate as x—1. This in fact is true for any
configuration with non-vanishing density or equivalently non-vanishing pressure gradient at the
surface.

+(n 5)(n+1) \/———} Xp=<x<Xg (10)
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Hence we cannot have star cluster scenario right up to the surface. However, explicit numerical
computations show that for k<% and n=5 F(x) becomes negative only in the outermost parts of
the envelope. Hence, it was conjectured in Paper II that the negativity could possibly be avoided
by letting 0—01in a suitable manner in the outer parts of the envelope. We proceed to do this in the
next section.

4 Distribution function with a polytropic patch-up
4.1 DERIVATION OF THE FORMULAE

In our attempt to remove the negativity of F(x) we replace the adiabatically stable equation of
state with a polytropic equation of state in the outer parts of the envelope. This particular choice is
motivated by the facts that relativistic polytropes have been extensively studied so that their
properties are well known (see e.g. Tooper 1964) and they are often used as models for
supermassive objects.

We thus have from a point d(r,<ry<R) outwards in the envelope

p=K‘0(1+1/m)‘ (11)

where m=1 is the polytropic index. The constant K can be determined by demanding the
continuity of p and g at the point d.

Making use of the relevant equations given by Fackerell (1968) for the distribution function for
a polytropic sphere (Fackerell equations (92)-(97)) we obtain, after a somewhat lengthy
calculation the following expressions.

Core:

{=(k+1)}/{k(n+1)} - —
Fo)= (1-nk) _ {( 1+k ) Kt D) =301k (1+4)

(n +1) 1-nk (1—nk) 213

(% ly
X \x f —_—
\/y(1+3k)/k, (y_x)

(n=3)(n—1)(n+1) \/ J’ } +(k_ﬁg)_m@_d
2 % Jy(””’ (y=x) oa) 2

\/‘f x (1—=y2)™=2 (3(m+1)2—(10 m?+17 m+6)y*+(8 m>+10 m+3)y2A}
) (m+17 \y>-(—)

(1-nk) _
+ (n+) { +1) \/ +(n 5)(n+1) \/——}

(xSx<xp=<x4<x,). (12)

Envelope (unpatched part)

B (1-nk) [ (n=3)(n—1)(n+1) — [* kpg
i 9"[ 2 “L Jy("”’ (- x)] ( )

y 91& j 1=y {3(m+1)>~(10 m*+17 m+6)y*+(8 m?+10 m+3)y>4} p

(M1 V- (y—x)
(1-nk) _
) "{ D \/

S+ (=5)(n+1) \/ } (ro=x=<xg<x). (13)
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Envelope (patched polytrope part)

(" ([ m 2y
F(X)_( 04 ) Qd{ 1—x (m+1) 6ml} " ( 0d )

04 — {*(A=y*)™ 2 (3(m+1)>—(10 m*+17 m+6)y*+(8 m*+10 m+3)y?4}
X _\/x J’ 2 3 dy
. (m+1)? Jy*-(y=x)

2
(xa=<x<x,) (14)

where A=1/{2(m+1)}, 8 is the Kronecker delta symbol, the suffix d denotes the values of
variables at the point d and py=pd/p., 04=04/0., €tc.

For the usual complete polytropic spheres there are two free parameters K and m to be chosen
in (11). Here the constant K is to be determined by the condition of continuity of p and o at the
point d. We may adopt one of the following two approaches to determine m.

(a) Fix the value of m by imposing some suitable constraints on the composite model.

(b) Choose an arbitrary value of m and solve the equations of relativistic stellar structure again.

A constraint that the redshifts of the composite model be the same as those of the original
model was imposed and calculations of F(x) from equations (12)—(14) were done if the derived
value of m was equal to or greater than unity (Das 1976a). Numerical computations for the range
of the models k~'=4(1)10 and n=3(1)(k"'—1) and (k~'—1) (0-1) (k~'~0-1) showed that in
general a m=1 polytropic patch-up was not possible. In the very few cases where m=1 polytropic
patch-up was possible F(x) became negative over an intermediate range of x in the envelope. Of
course this does not mean that such a composite model is impossible since the calculations do not
exhaust all possible core—envelope combinations for k<Y3. But it seems unlikely. In fact, in
principle itis not necessary to restrict ourselves to k<<!/3 for the composite models. But obtaining a
positive distribution function with k=3 (n<3) is even more unlikely as can be seen from an
inspection of equations (12)—(14).

The method (b), however, yields several models with positive distribution functions. The
relevant calculations are as follows:

Following Tooper (1964) we introduce a variable 8 for the polytropic part such that

0=04 0", and p=004 6"V,
where

a——'l—vi and 64=1. (15)

Q4
The metric coefficient exp (v) for the polytropic part is then given by
o \Xm+D)
1+08)

exp (v)=exp (va) ( (16)

(Tooper equation (2.18)).
In analogy with equations (2.22)—(2.26) of Tooper we introduce two new dimensionless
variables

n=A-r

and

3

=

= m(r),
4 04 "
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where
47 g4
A= e 17
(m+1) o

In our notation we have

35
w= {\/ﬁg} au=Cj au (say),

and

3 0d
n= { \/m} a=C,a(say). (18)

The relativistic stellar structure equations can then be written in terms of 6, # and w as

9 (w+o n° 8"t D)(1+06) (19)
dy P {1=20 (m+1) (w/n)}

The metric coefficient exp (v) is given by equation (16) for the polytropic part of the envelope and
by relevant equations of Paper I for the adiabatically stable part of the envelope and the core. In
particular we have

C2 Wg
exp (vo)=(1-2 u))={1-2——1|,
Cl s

exp(v) __ exp(w)
(140D {(1+k(pa/ga) Y

exp (Va)=

(1+K)- Py }-2“"*“

exp (vp)=exp (va) { k(n+1) pa+(1—nk) py

and

exp (vo)=exp (vp){(Bp) */**1}. (20)
The redshifts are given by the usual expressions

(1+2z)=exp (=v/2), 1)

since x=exp (v)/exp (vs) F(x) can be computed using (12)-(14).

4.2 NUMERICAL COMPUTATIONS

The following procedure was adopted. For a given original model (n, k) and polytropic index m, a
series of points g; in the envelope were chosen (a,<a;<a). The polytropic patch-up was done
from each point g; in the envelope. The pair of ordinary first-order linear differential equations
given by equation (19) were numerically integrated using Runge-Kutta method with the
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following boundary conditions.
0=04=1, w=w4=Ciaguy at n=n4=Ca,, 0=6,=0 at n=n, (surface of the object).

The metric coefficient exp (v) was evaluated as indicated above and F(x) was computed
numerically using equations (12)—(14). The new values of physical parameters such as redshifts
Z., Zp and z, and radius a; were also calculated. The range k~'=4(1)10 and n=3(1) (k"'-1)
(k~1=1) (0.1) (k~*-0.1) with polytropic index m=2, 2.5, and 3 was investigated. As remarked
upon earlier, cores with k=4 and envelopes with n<3were not considered since the possibility of
getting a positive F(x) is smaller for such cases.

4.3 DISCUSSION

The main conclusions of the numerical computations may be summarized as follows.

1. For a majority of models with k™'>5, n=5 the distribution function F(x) remains positive
throughout for the entire range of integration x.<x<I1.

2. The radius of a composite model is much larger compared with the radius of the original
model.

3. The values of surface redshift z; are much smaller and those of the central redshift z, and
core-envelope boundary redshift z;, are marginally larger compared with their values for the
original model.

4. Differences in the old and new values of physical parameters diminish as the polytropic layer
is made thinner.

These general trends can be observed from the values of the redshifts and radii given in Table 1
for the composite model k~*=10, n=9, m=3 with polytropic patch-ups of different thicknesses as
well as for the original model k~'=10, n=9.

It is interesting to compare the properties of the composite models with those of the complete
polytropic spheres discussed by Tooper (1964) and Fackerell (1968). For a given polytropic index
m and ‘relatively parameter’ o, which we here define as the ratio of the pressure and the energy
density at the centre of the object, from relevant equations of Tooper (1964) we have

(as)Tooper={ Y, ﬁ;—l)_o} &

and

(u's)'l‘ooper=(7 (m+ 1) 2 ;gl) > (22)
1

Table 1. Variation of redshifts z., zy, and z;
and the radius @, with the m=3 polytropic
layer thickness parameter x4 (larger x4
indicates thinner layer) for the model with
core p=p/10 and envelope dp/dpo=1/9. The
original values of the same variables are
given in parentheses.

X4 0.51 057 0.67 0.80 0.89
Zs 0.04 005 0.06 0.11 0.15
Zp 0.57 0.57 0.55 053 0.52
Z; 094 094 090 0.8 0.88
as 10.47 9.86 6.33 3.56 2.78

(25s=0.20, z,=0.52, z.=0.88, 4,=2.20)
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where the values of dimensionless radius &; and dimensionless mass function v(&;) have been
tabulated by Tooper. [Note that v(&;) is not the v(r) defined in equation (6).]

The Tooper model corresponding to our k=%10 core has 0=0-1. From table 1 and table 2 of
Tooper this has, for m=3, exp (v.)=0.4075, §,=6.826 and v(&;)=1.078. Substitution in equation
(22) yields

2.=0.5665, a,=2.4925 and z,=0.06986.

Comparing with the corresponding values for the composite model k~'=10, n=9, m=3 with the
thinnest polytropic layer x4=0.89 from Table 1 it is seen that the redshifts obtained from the latter
are significantly higher whereas the radius is marginally larger. These trends are observed for the
entire range of models considered.

For a given m, o can take any value from 0 to m/(m+1) at which the speed of sound at the
centre equals that of light (Tooper 1964). But in order that the distribution function be positive
throughout, the condition 0<o,<m/(m+1) must be satisfied (Fackerell 1968). For example for
m=3, 0,=0.166989 (=) (Fackerell 1968, Table 2). Our calculations show that for m=3 positive
distribution function can be obtained even for cores with Y6<k<!5. Thus the composite models
can admit marginally stiffer equations of state for a given polytropic index.

5 Composite configurations as models for quasars

In the earlier papers in this series it has been shown that the original core—envelope configurations
were fairly successful as central gravitational redshift models for high redshift quasars. In this
section, we discuss the relevance of the composite configurations developed above as models for
quasars.

As seen above, the requirement of positivity of the distribution function puts an upper limit on
the stiffness of core-equation of state, viz. the core must have p<g/5, i.e. k<V5. However,
stability considerations of the original models against small radial perturbations show that — cf.
Paper II for details — for each k there exists a n=ng(k)<k ™! and a corresponding central redshift
value z.={z.(k)}s such that all models with a core k and envelopes with n=ny(k) and
z.={z.(k)}« are unstable against radial pulsations. Thus the stability requirement puts upper
limits on the values of n and the central redshift z. for a given k. While a similar rigorous analysis
of the pulsational stability of the composite configurations is still under progress, preliminary
results show that the above conclusions remain unchanged if the polytropic layer is kept
sufficiently thin so that the overall structures are not disturbed significantly.

Taking k= Vs as the maximum permissible stiffness of the core we have from Table 1 of Paper I
ng(¥6)=5.1 and {z.(¥)};=1.50. Thus the maximum admissible central redshift is 1.50.

If we assume that the total redshift z of a QSO has a cosmological component z.,, and a
non-cosmological, i.e. gravitational, component z,(=z.) we have

(1+Z)=(1+Zcos)' (1+zg) (23)

Since galaxy redshifts up to z=1 are known (the largest known galactic redshift to dateis z=1.172
for the radio source 3C 427.1) and the cosmological nature of galaxy redshifts is fairly well
established it is reasonable to put z.,s<1. From equation (23) we then obtain, for z,<1.5, z=<4.
Thus the maximum total redshift of a stable relativistic cluster is around 4.

It is interesting to note that this limit provides a natural explanation for the observed decrease
in space density of quasars with z=3.5. It is well-known that quasars are plentiful for redshifts as
large as 3.2 but there is a sharp decrease in the space density at 3.7<z<4.7 (Osmer 1982). In fact it
was nearly a decade after the discovery of OQ172 with z=3.53 (Wampler et al. 1973) that a quasar
with a higher redshift PKS 2000-330 with z=3.78, was discovered (Peterson et al. 1982). If the
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observed paucity is real, on the basis of cosmological interpretation of quasar redshifts, it would
imply that the quasars were formed at epochs when the cosmic scale factor was about one-fifth of
its present value and became suddenly visible in an interval of a few hundred million years.
However, there are difficulties associated with this interpretation (see e.g. Osmer 1982). In the
light of the models discussed in the present paper we put forward the hypothesis that the limit on
the internal gravitational redshifts imposed by the equations of state manifests itself as the
observed upper bound for quasar redshifts.

6 Conclusions
The main results of the present paper may be summarized as follows:

1.The negativity of the Boltzmann distribution function of the stars in a star cluster scenario for
the original core-envelope type configurations can be removed by altering the equation of state
near the surface to a polytropic one, without disturbing the overall structures significantly.

2. The requirement of positivity of the distribution function puts an upper limit on the stiffness
of the core equation of state, viz. p<g/5.

3. The maximum central redshift that can be obtained from these configurations, compatible
with the dual requirements of stability against radial pulsations and positivity of the distribution
function, is around 1.5. Consequently the maximum total redshift is around 4, provided the
cosmological component is not more than 1.

It is not our aim to claim that the models discussed here are necessarily correct. What the
present work demonstrates is that it is possible to construct physically plausible configurations
with large central gravitational redshifts which can account for many properties of the high
redshift quasars. Contrary to the general belief we feel that the cosmological nature of quasar
redshifts has not yet been established beyond doubt. Non-cosmological redshift models, such as
the gravitational redshift models discussed here, hence merit serious consideration and further
investigation.
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