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Summary. Tensor virial equations are used to investigate the dynamical evolu-
tion of a cluster of mass points characterized by a spheroidal (homogeneous
or heterogeneous) distribution of matter and an isotropic distribution of
velocities. It is known that if the total energy of the system is positive, it will
disperse to infinity. We show that in the case of negative total energy, the
system executes finite amplitude oscillations between oblate and prolate
shapes.

1 Introduction

Chandrasekhar & Elbert (1972) used tensor virial equations to discuss the dynamical evolu-
tion of spherical and spheroidal clusters of mass points. Later, Binney (1978) investigated
the equilibrium structure of elliptical galaxies in which departures from sphericity are
attributed to rotation and anisotropy in velocity distribution.

In this paper we re-examine the dynamical evolution of a spheroidal cluster of mass
points. In Section 3 we discuss the case of a homogeneous spheroid, and in Section 5, a
heterogeneous spheroid.

2 The tensor virial equations

Following Chandrasekhar & Elbert (1972, Paper I), we consider a cluster of mass points
(galaxies or stars) which is initially spheroidal (either oblate or prolate) with semiaxes

@1 =a, and a3, and a given total energy E. The system is governed by the virial equations (cf.
Chandrasekhar 1964)

1 d?
S ar Ly =2Ky + Wy (1)
and
1 d?
Ec;i l33=2K33+ W, ~ (2)
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where K;; =Ty + A Il;; denotes the total kinetic energy tensor, and various symbols hav
their usual meaning.

We shall suppose that at all times the distribution of velocities is (locally) isotropic so tha

11=Kn=K53="K (3
From equations (1) and (2) we obtain the equilibrium condition (¢f. Binney 1978)
2Ky —2K53= | Wiy | — | Wasl (4
or
2Ty — 2Ts3) + (g — Ms3) = [ Wyy | — | Wasl. (5

One can see from equation (4) that isotropic velocity distribution is not consistent witl
the cluster being aspherical and in equilibrium. We now discuss the dynamical evolution of .
spheroidal cluster.

3 Homogeneous spheroids

If we consider homogeneous spheroids, equations (1) and (2) reduce to (cf Paper I
equations 44 and 45).

d’a3 20E GM as
—= (‘ A+2— 4 (6
dt? 3M a; \as ay
The results are shown in Figs 1-3.
d’a5 20E GM [ a, as -
———+ﬁ(4—A14A3) (7
dr* 3M  a; \ a3 a;
We now make the substitutions
ay = apz, a3=ai(1-y)=a3z*(1-y),
@ \V?
r = toT with to = ( ) N
2GM
3GM?
Q=E/IWO‘ with WO=_‘#. (E
5 dg

Note that W, is the potential energy of a sphere of radius a,. The quantities z and Q define
here are related to z and Q of Paper I (equations 46 and 50) by zpper 1 = 2> and QOpaper1 = 1/(4€
With the substitutions (8), equations (6) and (7) take the form

2,2 l
— =20+ — (¢
o 0 2Zfl(y)
and

a?2 2dz dy 20 1 L. a
z— —_— == +—

dr? dr dr 7 2V

where (cf. Paper I)

3 4y —
A=V Y

3S(y), (1
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9 4y -9y +9
LO=\—-3)VI-y———50), (12)
y
sin”!\/y y=0
vy
S(y)= 13
- — y<O0.
V-

In case of a spherical distribution of matter, equation (10) is identically satisfied, and
equation (9) reduces to the spherical case of Paper I.

A comparison of equations (9) and (10) with the corresponding equations (48) and (49)
of Paper I shows that the rhs of the latter should be multiplied by E/|E|. Thus equations
(48) and (49) of Paper I can be used only when F is positive; the system then disperses to
infinity. If the total energy of the system, E, is negative i.e. Q < 0, equations (9) and (10)
above should be used.

4 Results

We have numerically solved equations (9) and (10) for various negative values of Q and with
the boundary conditions

dz dy
z =1,y =yo(assigned), —=-—=0atr=0. (14)
dt dt

Q=-0.50

0 1 | | | J I ] ] ] J |
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0
t

Figure 1. The evolution of homogeneous spheroidal clusters. The ordinate z (=g, /a,) is the semiaxis of the
circular equatorial section and the abscissa measures the time in the units of ¢, = (¢} /2 GM)"'*. The curves
are labelled by the values of Q to which they belong. The curves are identical on the scale of the figure for
various values of y,,.
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Figure 2. The evolution of homogeneous spheroidal clusters. The ordinate y is a measure of the eccentr
city (e*) positive for oblate spheroids and negative for prolate spheroids. The abscissa measures the tim
in the same unit as Fig. 1. The curves are labelled by the values of Q and y, to which they belong.
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Figure 3. The evolution of homogeneous spheroids with zero initial kinetic energy. (A) depicts tl
behaviour of the two semiaxes z and z (1 — y)"?, while (B) the behaviour of the eccentricity as the syste
evolves. The curves are labelled by the values of y, to which they belong.
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Fig. 1 shows the behaviour of z with time. For a given Q, the curves are almost identical
(on the scale of the graph) for various y, and correspond to the solution

T= “1—(Q22 tz-Q-1D)"+——_ cos™ (2QZ ' 1) ,
(-0 2(-0)** 20+1
obtained analytically for a spherical system (yo = 0) (cf. Paper 1, equation 34). The period is

7 (— Q) ¥% and the amplitude, |2 + 1/Q].

Fig. 2 illustrates the behaviour of y for Q=—0.25 and — 0.50. In both the cases, y
oscillates approximately with the period 7 (— Q)2 Initially oblate systems (y > 0) become
prolate (¥ < 0) and then again oblate. Similarly initially prolate systems become oblate and
then prolate in a time ~ 7 (— Q) 2.

Fig. 3A depicts the behaviour of the two axes z and z (1 — y)¥2 for systems with zero
kinetic energy initially. It is seen that the smaller of the two axes always collapses to a point.
The behaviour of y for such systems (Fig. 3B) shows that the initial oblateness or prolateness’

of the system is enhanced as it evolves. This result is in agreement with that of Lin, Mestel &
Shu (1965).

(15)

5 Heterogeneous spheroids

We now consider the dynamical evolution of a heterogeneous spheroidal system whose
density distribution is of the form

p(x)=p.(1—m?), a7

where

3
m*=Y
i=1

In equations (17) and (18) p, is the central density and » a non-negative number increasing
values of which indicate greater central concentration. Such distributions have been used in
the study of galaxies by Perek (1962) and Kerr & de Vaucouleurs (1956). The case v =0
corresponds to the homogeneous systems of Section 3. Since equidensity strata for such a
distribution is similar to and concentric with the bounding ellipsoid we can use the results of
Roberts (1962) to obtain expressions for the moments of inertia and potential energy
tensors. For the function F (m?) we have

F(m*) = flz p(m?)dm®= Vp:1(1 —m?)’ L, (19)

m

N_ l "‘>-<N

(18)

~

and
1 Vo T(p+1
f (1~m2)"dm=——-@——l)— (20)
0 2 T(p+1+7,)
we obtain
1 C(v+1)
M=27a,a,0a F(m*) dm =naja,a [ ﬂ—_], 21
123'[) (m*) 1230c\/F(V+2+,/2) (21)
1 1
Iij=27ra1a2a3a,?8ij f F(mz)mzdm=§Ma,?5ij¢(v), (22)
/o
1 3 G 2
W,-]-=—7T2Ga1a2a3a,?A,-6,-j f [F(m2)]2dm=— —'"’—-'—al?Aiai]'\}/(V), (23)
0 10a1a2a3
13
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where
v) = 24
o) 2v+5 (
5 C+2+)T1* T@Qv+3)
(@)= - [ ] — (25
3+1/al T@+1) FQrv+3+Y,)

and the A; are the index symbols defined in Chandrasekhar (1969). The functions ¢ (v) anc
¥ (v) are measures of the difference of the moment of inertia and potential energy tensors o
a distribution with parameter .» from that of a homogeneous ellipsoid with the same mas:
and semiaxes. These functions are tabulated in Table 1 for a few values of ».

One can see from Table 1 that spherical configurations with » =1 have potential energy
equal to that of a polytrope of index n =1. Similarly »=4, » =12, v =55 have potentia
energies in fair agreement with the values for polytropes of indices # = 2, 3 and 4 respectively

We now assume that the distribution (17) continues to be maintained as the systenr
evolves i.e. » and hence ¢(v) and ¥ (v) are independent of time. Substituting equations (22
and (23) into equations (1) and (2) we get

da? 20E GM gl/(V)(al
_ Lo “

as .
= A +224 ) 26
d* 3Mo() a ¢®) ! 3 26

as ai

d%a3 20F GM ¢ (v a a ‘

= + w()(4~1A1~—3A3). Q7
dt* 3M¢o(v) a o)\ a3 a,
Once again we write
@ =ayz and a3=a}(1-y)=d3z2(1 - y), (28
but now define our unit of time by

23 by 12
t=toT where 1,= o o (29
2GM Y (v).
and let
) 3 GM? ,
O=E/| W, with Wo=—g——tlz(v). (30
do

Thus W, is the potential energy of a sphere of radius a, and density distribution parameter »
With these definitions equations (26) and (27) reduce to

T 0L ro) (31
= +— 1),
dr? 2z '
Table 1.
v o) V(@) Vo) y @)
0 1.00 1.00 1.00
1 0.714 1.19 1.0055
2 0.556 1.36 1.014
4 0.385 1.65 1.024
12 0.172 2.50 1.037
55 0.0435 5.03 1.050
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d*y*  dz*dy 1

2 —
‘ ar* i dr dr 20y 2z (7 (32)
where f1(y) and f,(y) are just the functions defined by equations (11) and (12). These
equations are identical with those in Section 3 whose conclusions therefore also apply to
heterogeneous systems.

Thus heterogeneous ellipsoids with positive energies also expand and are eventually
dispersed. Those with negative energies oscillate both in size and in eccentricity with a
period ~ 7(— Q) ¥2. The time-scales however, are different for different central concentra-
tions as a consequence of the presence of the parameter v in the definition (29) of ¢,.

With a view to comparing systems with different central concentrations we denote by
1§ and Q(”) the values of 7o and Q for a system with the density parameter ». Since

o (v 0O E
,m=/Jth ) - = 33
S W)S ¢ V) W1y ) )
where
2
w9=~§GM (34)
5 ao

we have for the period

PO = POy )Vo ). (35)

From Table 1 it is seen that ¥ (v)\/¢ (v) varies very little over a very wide range of v. There-
fore we can conclude that systems with the same value of E oscillate both in size and eccen-
tricity with approximately the same period whatsoever their central concentration.

The amplitude of the oscillation is given by
| W

E

l2 ()| . (36)

+ 5(;5 = i 2+
As can be seen from this equation when Q(”)< — Y, the amplitude decreases with increasing
v while it increases with increasing » when 0®)> — Y.

6 Conclusions

We have discussed the dynamical evolution of a spheroidal cluster of mass points (homo-
geneous or heterogeneous) characterized by an isotropic velocity distribution. It is known in
the case of a homogeneous spheroid that if its total energy is positive it will expand and
disperse to infinity. We have demonstrated that this is true of heterogeneous spheroids also.
We have also shown that if the total energy is negative, the cluster, whether homogeneous
or not, executes finite amplitude oscillations between prolate and oblate shapes, with a
period that isindependent of the central concentration and depends only on the total energy.
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