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Abstract-The analysis is carried out for mixed convection about inclined surfaces in a saturated porous 
media incorporating the variation of permeability and thermal conductivity due to packing of particles. 
Similarity solutions are obtained, for two cases, namely (i) uniform wall temperature, (ii) linear variation of 
temperature with distance from the leading edge, for both aiding and opposing flows. It is found that the non- 
dimensional parameters Gr/Re’ and a’/Re control the flow. The variation of permeability increases heat 
transfer rate for all values ofo2/Re. Applications to convective flow in aliquid dominated geothermal reservoir 

are discussed. Criteria are given for flows which are purely forced, purely free and mixed. 

1. INTRODUCTION 

IN RECENT years, the requirements of modern 
technology have stimulated interest in fluid flow studies 
which involve the interaction of several phenomena. 
One such study is related to the combined forced and 
free convection boundary layer flow about inclined 
surfaces. Sparrow et al. [l] treated the above problem 
by a similar solution approach and later it was extended 
by Gebhart [2] for arbitrary values of wedge angle and 
wall temperature distribution. 

The convection problem in a porous medium has 
important applications in geothermal reservoirs and 
geothermal energy extraction. Cheng and Lau [33 and 
Cheng and Teckchandani [4] obtained numerical 
solutions for the cpnvective flow in a porous medium 
bounded by two isothermal parallel plates in the 
presence of withdrawal of the fluid. Recently a number 
of papers [S-S] have appeared on the combined free 
and forced convection in a porous medium involving 
horizontal surfaces. Cheng [9] has investigated the free 
and forced convection about inclined surfaces in a 
porous medium using the Darcy equation. All the 
above-mentioned studies treat the permeability and the 
conductivity or thermal resistance of the medium as 
constants. However, porosity measurements by 
Schwartz and Smith [lo], Tierney et al. [ll], and 
Benenati and Brosilow [12] show that porosity is not 
constant but varies from the wall to the interior due to 
which permeability also varies. Chandrasekhara et al. 
[ 13-153 have incorporated the variable permeability to 
study the flow past and through a porous medium and 
have shown that the variation of porosity and 
permeability have greater influence on velocity 
distribution and on heat transfer. 

The aim of the present investigation is to study 
the combined forced and free convection about 
inclined surfaces embedded in porous media, using 
the generalised momentum equation (after 
Chandrasekhara and Vortmeyer [16] and Choudhary 
et al. [ 171) which accounts for the no-slip at the wall, 
incorporating the variation of permeability and 
thermal conductivity. 

It is found that similar solutions exist when both wall 
temperature distribution of the plate and the free 
stream velocity vary according to the same power 
function of x, the coordinate in the free stream 
direction. The non-dimensional parameters which 
control the flow are Gr/Re’ and u’/Re. Numerical 
solutions are obtained, for uniform wall temperature 
and for linear variation of temperature with distance 
from the leading edge, for both aiding and opposing 
flows. Variation of permeability and thermal resistance 
increases the heat transfer rate markedly. 

2. ANALYSIS 

The physical model consists of a wedge configuration 
shown in Fig. 1 (a) and (b) where x and y are the 
Cartesian coordinates along and perpendicular to the 
direction of free stream velocity. To seek similarity 
solutions, we impose that the free stream velocity and 
the wall temperature vary as 

and 

U, = Ax"' (1) 

T, = T, &BY. (2) 
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NOMENCLATURE 
A constant defined in equation (1) u, free stream velocity in x direction 
B constant defined in equation (2) u velocity in x direction 
b ratio of thermal conductivity of the V velocity in Y direction 

solid to the liquid, b = kJk, W constant defined in equation (15) 
C specific heat of the convective fluid X coordinate along the inclined 

c f friction coefficient defined in equation impermeable surface 

(38) Y coordinate perpendicular to the 
C,, C, constants defined in equations (15) and inclined impermeable surface. 

(17) 
d constant defined in equation (30) Greek symbols 
d* constant defined in equation (29) R(Y) equivalent thermal diffusivity 

f dimensionless stream function defined EO equivalent thermal diffusivity at the 

in equation (17) edge of the boundary layer 

Gr local Grashof number, B coefficient of thermal expansion 

Gr f l&l IT,- %I @ 
6, thermal boundary layer thickness 

V2 
E(Y) porosity of the saturated porous 

medium 

9, gravitational acceleration in the x so porosity of the saturated porous 

direction medium at the edge of the boundary 

h local heat transfer coefficient layer 

K(Y) permeability of the porous medium ? dimensionless similarity variable 

KO permeability of the porous medium at defined in equation (15) 

the edge of the boundary layer e dimensionless temperature defined in 

k(Y) thermal conductivity of the saturated equation (16) 

porous medium a constant defined in equation (17) 

m constant defined in equation (1) IJ viscosity of the convective fluid 

n constant defined in equation (2) V kinematic viscosity of the convective 

Nu local Nusselt number, Nu E hx/k, fluid 

P pressure P density of the convective fluid 

Pr Prandtl number, Pr E v/a,, 
; 

local porous parameter, CT = x/JK, 

Q total surface heat transfer rate defined stream function. 

in equation (44) 

9 local heat transfer rate Subscript 

Re local Reynolds number, Re = U,x/v co condition at infinity 

T temperature W condition at the wall. 

Flows are designated as aiding flows for which the analysis of the problem we assume that 

buoyancy force has a positive component in the 
direction ofthefree stream velocity. Flows for which the 

(i) 

buoyancy force has a component opposite to the free 
stream velocity are designated as opposing flows. For 

(ii) 

the physical model presented in Fig. 1, the aiding case 
will require T, - T,, > 0 (B > 0) and the opposing case 

(iii) 

will require T, - T, < 0 (B < 0). For the mathematical 
(iv) 

the convective fluid and the porous medium are 
everywhere in local thermodynamic equilibrium, 
the temperature of the fluid is everywhere below 
the boiling point, 
permeability and thermal resistance are functions 
of the vertical coordinate, y, 
Boussinesq’s approximation is valid. 

Flglo Flg.1 b 

FIG. 1. (a) and (b). Physical model. 

Under these assumptions, the boundary layer 
equations have the form 

au av - ax +-=o 
aY 

(3) 

dp a2u pu 
o= -~-P&+P(-~ (4) 

a2T &z(y) aT ug+vg=a(Y)~+-- 
ay ay 

(5) 
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and 

P = P,C1-BV-x41 (6) 

where p is the dynamical viscosity, K(y) is the 
permeability of the medium and a(y) = KCy)/pc is the 
thermal diffusivity. The third and fourth terms of 
equation (4) represent the viscous resistance term and 
the Darcy resistance term, respectively. The boundary 
conditions for the problem are 

U=V=O;T=T, at y=O 
(7) 

U=U,; T=T, at y=co. 

The continuity equation (3) is satisfied by defining the 
stream function + such that 

v=ag 
ay 

v= _!z. 
ax 

(8) 

The pressure gradient dp/dx appearing in equation (4) 
is evaluated from the free stream momentum equation 
neglecting dpldy, 

~+p,&fXU,=o (9) 
0 

where K, is value of K(y) at y = co. Incorporating 
equation (9) in (4), we have 

O=gJ(T-T,)fXU,-x+vE 
0 K(Y) ay2’ 

(10) 

The momentum (10) and energy (5) equations expressed 
in terms of $ become 

O=S,WT--T,)+$U,--~~+~~ (11) 
0 

a+ az- a* aT ----_ 
ay ax ax ay = a(y)7 + 

;; Fg. (12) 

The boundary conditions in terms of I,+ are 

a$ a* o - --= 
?$- ax 

I 

aty=O (13) 

T= T, 

ati + U - 
ay a7 T+T, as y-+co. (14) 

To seek similarity solutions for equations (11) and (12) 
we define the following variables, after Sparrow et al. 

Cl1 
f/ = C,yP (15) 

T-T, 
&i+) = ~ 

L--T, 
(16) 

f(v) = & (17) 
2 

where C,, C,,1 and w are constants yet to be 
determined. Substitution of equations (15H17) in 
equations (11) and (12) leads to 

0 = g,@(?#?x” + + Ax” - -!L 
0 K(~I) 

xf’CIC,x”+w + vf”‘Czx’C:x3’+’ (18) 

f ‘r&x w-l+l_f~@xw-i+l 

= a(rf)P -2 + 0 
2 

yg. (19) 
2 

Equation (19) will be independent of x provided 

w-l+1 = 0, i.e.2 = w+l. (20) 

Further we observe from equation (18) that the third 
and the fourth terms are matched when I = 1 and w 
= 0. This, in turn, leads to the relation n = 1 and m = 1, 
if the equation (18) is to be independent of x. The above 
discussion shows that the free stream velocity and the 
surface temperatures cannot be varied arbitrarily when 
similar solutions are sought. Using the above relations 
for the exponents n, m and I, equations (18) and (19) 
reduce to 

0 = g,ge(~)B++&f’C,C,+vf”C,C: (21) 
0 

Wrl) C 1 nf'e-If@= a(q)0’$ +B’-- 
dv C2 

cm 

2 

where the primes represent the differentiation with 
respect to q. Following Sparrow et al. Cl], we find that 
C,, C2, q, J U and V satisfy the following relations : 

c, = &4/v)“2, c2 = (Av)l’2 (23) 

4 = +(Y/x)(~,xlvP2 (24) 

f = ~/(U,vx)"' (25) 

+y (26) 

V= ~vU,/~)"~C~f'(l--)+f(1+m)]. (27) 

We also note that for I = 1, n = 0 and m = 0 the 
constants C,, C2 take the values 

c, = f(A/vx)“2. c2 = (A/x)“2 (28) 

leading to the same relations for q,A U and V as given in 
equations (23H27). Thus for the present problem, the 
similarity solutions exist when the exponents n and m 
havevalues(a)l = l,n = 1 andm = l,(b)1 = 1,n = 0 
and m = 0. 

Following Chandrasekhara et al. [ 143 we allow for 
the variation of K(q) and a(q) in the form 

K(u) = K,(l +d*e-“) (29) 

a(q) = aO[~O(l/de-q)+b{l--EO(l+de-‘J)}] (30) 

where d* and d are constants, ao, K, and ~~ are the 
values of the diffusivity, permeability and porosity, 
respectively at the edge of the boundary layer, b is the 
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ratio of the thermal conductivity of the solid to the 
conductivity of the fluid. Using the above relations, the 
governing equations (21) and (22) finally take the form 

(31) 

2Pr[mYD -fR’] 

=[EC(1+de-~)+b~l--F,(f+de-~))]8” 

-t-[bs,de-q-&od e-“10 (32) 

where 

local Grashof number; Re = U&v, local Reynolds 
number; u2 = x2/Ko, local porous parameter; Pr 
= v/a,, Prandtl number. The plus and minus signs in 
the third term ofequation(3l)corres~nd toaidingand 
opposing flows, respectively since the Grashof number 
as defined in equation (31) is always positive. 

The boundary conditions (13) and (14), with the help 
of equation (26), become 

f(0) = f’(0) = 0; e(0) = 1 

f’-+2,H+O as q-+co. 
(33) 

As we see from equations (31) and (32), the problem 
involves four parameters, i.e. Gr/ReZ, a2/Re, Pr and 
exponent m. The magnitude of Gr/Re2 gives the rela- 
tive importance of forced and free convection in 
determining the combined flow. For small values of this 
parameter, forced convection will dominate, while for 
large values, free convection becomes important. The 
ratio a’/Re tells us about the relative importance of 
viscous and Darcy resistance terms on the combined 
flow. It is interesting to note that the inclusion of the 
viscous resistance term in the governing equations 

leads to Gr/Re’ as the controlling parameter of the 
combined flow while in Cheng’s [9] Darcy flow, GrfRe 
is the controlling parameter. Equation (31), in the 
absence of the viscous resistance term and for constant 
permeability, reduces to the similar form given by 
Cheng [9] for f’ since Gr/a2 in the present case 
corresponds to Gr in Cheng’s case and, further, for 
a2/Re = I, Pr = I and b = 2, the values of Gr/Re in 
Cheng’s [9] case and Gr/Re2 in the present case 
correspond to each other. 

3. RESULTS AND DISCUSSION 

Equations (31) and (32) with boundary conditions 
(33) are integrated n~eri~ally by Runge-Kutta 
Predictor-Corrector scheme with systematic guessing 
of the derivativesf”(0) and Q’(O) using the automatic 
initial value technique [14]. The above method is 
accurate and fast converging compared to the shooting 
technique. 

The solutions are obtained, for different Prandtl 
numbers and form = 0 and m = 1, i.e. for uniform wall 
temperature and for linear variation of temperature 
with distance from the leading edge, for both aiding and 
opposing flows. For the purpose of numerical 
integration we have assumed d* = 3, d = 1.5 and 
E,, = 0.4 after Chandrasekhara et af. [14]. The 
temperature and velocity profiles are presented in Figs. 
2 and 3 for a wide range of the parameter GrjRe’ and for 
particular values of a’/Re. The following discussion is 
confined to uniform wall temperature since a similar 
trend is observed for the case m = 1. It is seen from Figs. 
2 and 2(a) that the velocity profiles satisfy the no-slip 
condition and are different from the velocity profiles 
obtained by Cheng. As Gr/Re2 is increased, the velocity 
profiles become sharply peaked near the wall indicating 
the influence of free convection in modifying the flow 
field from pure forced convection flow to pure free 
convection flow. The temperature profiles are 

0 
0.0 0.5 1.0 1.5 2.0 2.5 

‘1’ 

(a) 

6.0 
t 

1.0 1.5 2.0 

‘1 

(b) 
FIG. 2(a) and (b). Values off’ vs 9. 
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‘1- 

FIG. 3. Values of 0 vs. 1. 

presented in Fig. 3. The profiles display a simple shape 
which is found in thermal boundary layers of the pure 
forced and pure free convection flows. 

The results which are of greatest practical interest in 
geothermal application are heat transfer rate, shear 
stress and boundary layer thickness. We first consider 
the heat transfer rate. The expression for the local 
surface heat flux is given by 

4=-kT 
[ 1 ay y=. 

= kfTw- Tm) @/28’(q 

2x 

Using the definition of heat transfer coefficient and 
Nusselt number 

h=4 
T,- T,' 

NU =$. 

We obtain the expression for the dimensionless heat 
transfer in the form 

Nu 
~ = -f@(O). 
Re'/* 

The wall’s shear stress and friction coefficients are 
defined as 

au 
‘5w = p [ 1 ay y=. 

(37) 

30 

10 

B 
6 

5, 

6. 

3. 

2, 
1 

I III I I I I 

0.1 0.2 0.304 1.0 2.0 4.0 6.0 6.010 

Gr’“/ Re 

FIG. 4. Heat transfer and friction factor results, (aiding flows). 

The dimensionless shear stress, from equation (37), is 
written as 

c,Re”* = if”(O). (38) 

The numerical values off”(O) and Q’(O) corresponding 
to different values of GrlRe* and o*/Re are given in 
Tables 1 and 2. We observe that f?‘(O) has higher values 
for a given value of a*/Re compared to Cheng’s [9] case 
of constant permeability. In Fig. 4 we have plotted both 
dimensionless heat transfer and shear stress as 
functions of Gr’l*/Re for aiding flows together with the 
asymptotes representing pure forced convection and 
pure free convection. 

The expressions for these asymptotes are 

4Nu 
- = 2.448 
Re’l* I forced convection (39) 

2qRe”* = 5.4 1 

4Nu 
- = 1.98 (Gr”*/Re)“* 
Re”* 

I 

free convection. (40) 

2c,Re’/’ = 4.335(Gr’/2/Re)112 

Table 1. Values off”(O) and [-0’(O)] for aiding and opposing flows, b = 2 Pr = 0.7 

dIRe= l,m=O d/Re = 100, m = 1 d/Re = 1,m = 1 dfRe= l,m=O 
(aiding flow) (aiding flow) (aiding flow) (opposing flow) 

Gr/Re* f”(0) [-0’(O)] qT Gr/Re* f”(0) [-0’(O)] Gr/Re’ f”(0) [-0’(O)] Gr/Re2 f”(0) [-0’(O)] 

100 137.49 3.145 0.5 100 128.07 3.731 100 123.02 4.179 0 5.40 1.225 
50 81.06 2.617 0.62 50 99.99 4.337 50 74.09 3.573 0.16 5.39 1.224 
20 40.29 2.210 0.75 20 84.91 4.802 20 39.21 2.915 0.25 5.12 1.183 
10 24.79 1.949 0.85 10 80.91 4.316 10 25.42 2.678 0.36 4.71 1.148 
4 14.83 1.659 1.10 0 75.98 2.200 2 12.56 2.598 
1 8.19 1.512 1.15 0 7.45 1.173 0.50 3.92 0.825 
0.64 1.34 1.500 1.16 
0.36 6.71 1.470 1.17 
0.25 6.41 1.441 1.18 
0 5.40 1.225 1.31 
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Table 2. Values off”(O) and [-0’(O)] for aiding flows, b = 2 

d/Re = 1, m = 0, Pr = 1.0 d/Re = 1, m = 0, Pr = 3.5 
Gr/Re2 f’(O) C-w91 GrJRe2 f “(0) c - @Ku 

100 82.64 5.641 100 96.00 4.732 
50 49.466 4.825 50 57.58 4.037 
20 25.82 4.00 20 29.78 3.334 
10 16.43 3.565 10 18.674 2.960 
4 9.83 3.255 4 10.899 2.685 
0 5.701 2.650 0 5.862 2.186 

The heat transfer prediction based on asymptotes 
would be in maximum error of around 25% which 
occurs near Gr”‘IRe = 1.35. 

We can also establish the criteria for pure mixed 
convection applying the 5% deviation rule suggested 
by Sparrow et al. Cl], leading to the following 
subdivisions : 

0 < Gr/Re’ < 0.18 forced convection 

0.18 < Gr/Re2 < 25 mixed flow (41) 

25 < Gr/Re2 free convection. 

The results for the opposing flow situation are 
represented in Fig. 5 for isothermal boundary 
conditions which show that at small values of Gr”‘/ 

Re, the curve approaches the forced convection 
asymptotes. The friction factor is very much reduced 
as Gr’l’/Re is increased and finally leads to flow 
separation at still higher values of Grli2/Re. 

We now consider an expression for the thermal 
boundary layer thickness. If qr is the value of q at the 
edge of the boundary layer, i.e. the value of 0(q) has a 

value 0.01, we have 

(42) 

The above discussions are confined to the case 
Pr = 0.7. A similar kind of behaviour is also observed 
for other values of Pr. The values off”(O) and 0’(O) for 
Pr = 7.0 and 3.5 are shown in Table 2. 

In geothermal applications, the quantity of interest is 
the total surface heat transfer rate, Q, which for a flat 
plate with length Land width Scan be computed from 
the relation 

Q = S 
s 

Lq(x)dX (44a) 
0 

Q= & [A/v]“‘[ -@(o)]IP+ l)‘2 W4 

In order to have an idea of order of magnitude of 
various physical quantities involved in geothermal 
application, we consider a heated isothermal im- 
permeable surface (m = 0) 1 km x 1 km embedded in an 
aquifer where a pressure gradient exists. If the 
temperature ofthe impermeable surface and the aquifer 
are at 215 and 15°C respectively, then we find that the 
value of Q is 130 MW for the following values of the 
physical quantities: B = 1.8 x 10-4”C, pr = lo6 g 
cm-“,K = 10-r’ m2, p = 0.27 g s- ’ m- ‘, k = 0.58 cal 
s-‘“C-’ m-l and U, = 1 cm h-r. Whereas, in the 

case of Cheng [9] it is 45 MW. 

The values of qr for m = 0 and for selected values of 
Gr/Re2 are presented in Table 1. The variation of Re”’ 

6T/x with respect to Gr’12/Re is shown in Fig. 6 for 
aiding flows in which the expression for the free 
convection asymptote is given by 

6TRe1,2 = 10.0 
(Gr/Re”a)“2’ m = ” (43) 

X 

4. CONCLUSIONS 

The problem of mixed convection about inclined 
surfaces in a saturated porus media incorporating the 
variation of permeability and thermal conductivity is 
analysed by a similarity solution approach. The 
analysis is based on the boundary layer approxim- 

GG”/Re 

FIG. 5. Heat transfer and friction factor results, (opposing 
flows). 

5.0 
AIDING FLOWS 

0.4 0.6 0.81.0 

Gr “4 Re 

FIG. 6. Dimensionless boundary layer thickness, vs. Gr”*/Re. 



Influence of variable permeability on convection 205 

ations and neglecting the component ofbuoyancy force 
normal to the inclined surface. The problem admits 
similarity solutions for M = 0 and m = 1. The variation 
of permeability and, in turn, the conductivity of the 

8 
’ 

medium brings about an increase in the heat transfer 
rate which is large for large values ofa’/Re. The velocity 
profiles exhibit skewing near the boundaries due to the 9. 

Brinkman resistance term and are different from those 
obtained by Cheng [9] for pure Darcy flow. 10. 
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INFLUENCE DE LA PERMEABILITE VARIABLE SUR LA CONVECTION MIXTE AUTOUR 
DES SURFACES INCLINEES DANS DES MILIEUX POREUX 

R&m&-L’analyse concerne la convection mixte autour des surfaces inch&es dans des milieux poreux en 
incorporant la variation de permeabilite et de conductivit6 thermique due g I’entassement des particules. Des 
solutions similaires sont obtenues pour deux cas, B savoir (i) temperature uniforme de paroi, (ii) variation 
linbairede tempCratureavecladistanceau bordd’attaque,$lafoispour desi?coulementsfavorableset opposis. 
On trouve que les parametres adimensionnels Gr/Re’ et a’/Re contralent I’bcoulement. La variation de 
permCabilitC augmente le transfert thermique pour toutes les valeurs de a’/Re. Des applications a I’icoulement 
convectif dans une rbservoir gkothermique saturk de liquide sont disc&es. Des c&&es sont donnb pour des 

Bcoulements qui sont purement for&s, purement naturels et mixtes. 

EINFLUSS DER VERANDERLICHEN PERMEABILITAT AUF DIE MISCHKONVEKTION 
UBER GENEI~TEN OBERFL~HEN IN POR~SEN MEDIEN 

Zusammenfassung-Die Untersuchung wird fiir Mischkonvektion an geneigten Ober%chen in einem 
gescttigten portisen Medium durchgefiihrt, wobei die Permeabilitat und die Wlrmeleitfihigkeit in 
Abhiingigkeit der Packungsart variiert wurden. Fiir zwei FBlle wurden Ahnlichkeitslijsungen ermittelt : 
(i) einheitiiche Wandtemperatur, (ii) lineare ilnderung der Temperatur mit der Entfernung von der 
Anstriimkante, und zwar fiir aufwlrts- und abwlrts-gerichtete StrBmungen. Es wurde herausgefunden, dal3 
die dimensionslosen Parameter Gr/Re’ und a’/Re die Strijmung kennzeichnen. Eine Anderung der 
Permeabilitlt bewirkt eine Zunahme des Wlrmetransportverm6gens fiir alle Werte von a’/Re. Anwendungen 
fiir eine konvektive Striimung in einem geothermischen Sammelbecken mit iiberwiegendem Fliissigkeitsanteil 
werden diskuti:rt. Kriterien werden fiir Striimungen aufgestellt, welche vollstiindig erzwungen, vollstlndig 

natiirlich und gemischt sind. 
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BJIMIfHIlE M3MEHEHWII IIPOHHQAEMOCi-H HA CMEUIAHHYIO CBOEO~HYK) 
II BbIHY~~EHH~ KOHBEK~HK) Y HAKJIOHHbIX nOBEPXH~E~, 

~OME~EHHbIX B ~OP~~bIE CPEAbl 

Amrramw--QoseneH aHami3 cb4emaHHoii XOHBeKlwni y HaKflOHHblX IIOMelLleHHbiX B noplicTyKI 

cpeny nosepxHocTeii np~ H3bfeHetm npoHHuaehiomi H Tennonpoeomomi cpenbl H3-3a pa3nwwoii 

~~OTHOCT~y~~KOBKH~a~~U.~O~y~eHbIaBTOMOAeAbHble~lueHH~~~ AByX CJIyqaeB: (i)OJ@iOMepHOir 

-feMnepaTypu cremti H (ii) nmieZiHor0 83t.feHeHm Teimepa-rypbl c paccromsehi 0~ nepeAHeri K~OMKH 

KaK llpH CIlyFHblX, TaK B IIpOTiiBOTO'iHblX Te'leHHIIX. HairAeHO, qT0 IlapaMeTpaMH, OIJ~AeJIWOWiMH 

TeqeHHe,~~~w~c~ 6e3pa3MepHbte KpmepeH ~rlRe’~~~lR~. ~~HH~M~H~H~~H~~HNu~~MocTH cpenb~ 

OTMeYaeTCIT pOCT K~TeHCHBH~~ TeIlJlOile~HOCZi llpH BCeX 3HaSeHHIIX llapaMeTpZ3 C'/f?e. Pe3yJIbTaTbl 

aHaJiH3a iiCllOJlb30BaHbl JIJIS OllRCaHHl KOHBeKTHBHOfO TeqeHHX B reOTepMaJlbHOM pe3epByape, B 

OCHOBHOM SanOJ,HeHHOM 2KBAKOCTbIO. npHBeAeHbl KpHTepHH A."Il OllWCaHHll SHCTO BbIHy)l(,l,eHHbIX, 

'iHcT0 CB060AHbIX H CMeUlaHHbIX Te'ieHEiii. 


