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Abstract—The analysis is carried out for mixed convection about inclined surfaces in a saturated porous

media incorporating the variation of permeability and thermal conductivity due to packing of particles.

Similarity solutions are obtained, for two cases, namely (i) uniform wall temperature, (ii) linear variation of

temperature with distance from the leading edge, for both aiding and opposing flows. It is found that the non-

dimensional parameters Gr/Re? and ¢2/Re control the flow. The variation of permeability increases heat

transfer rate for all values of 2/Re. Applications to convective flow in aliquid dominated geothermal reservoir
are discussed. Criteria are given for flows which are purely forced, purely free and mixed.

1. INTRODUCTION

IN RECENT years, the requirements of modern
technology have stimulated interest in fluid flow studies
which involve the interaction of several phenomena.
One such study is related to the combined forced and
free convection boundary layer flow about inclined
surfaces. Sparrow et al. [1] treated the above problem
by asimilar solution approach and later it was extended
by Gebhart [2] for arbitrary values of wedge angle and
wall temperature distribution.

The convection problem in a porous medium has
important applications in geothermal reservoirs and
geothermal energy extraction. Cheng and Lau [3] and
Cheng and Teckchandani [4] obtained numerical
solutions for the convective flow in a porous medium
bounded by two isothermal parallel plates in the
presence of withdrawal of the fluid. Recently a number
of papers [5-8] have appeared on the combined free
and forced convection in a porous medium involving
horizontal surfaces. Cheng [9] has investigated the free
and forced convection about inclined surfaces in a
porous medium using the Darcy equation. All the
above-mentioned studies treat the permeability and the
conductivity or thermal resistance of the medium as
constants. However, porosity measurements by
Schwartz and Smith [10], Tierney et al. [11], and
Benenati and Brosilow [12] show that porosity is not
constant but varies from the wall to the interior due to
which permeability also varies. Chandrasekhara et al.
[13-15)have incorporated the variable permeability to
study the flow past and through a porous medium and
have shown that the variation of porosity and
permeability have greater influence on velocity
distribution and on heat transfer.
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The aim of the present investigation is to study
the combined forced and free convection about
inclined surfaces embedded in porous media, using
the generalised momentum equation (after
Chandrasekhara and Vortmeyer [16] and Choudhary
et al. [17]) which accounts for the no-slip at the wall,
incorporating the variation of permeability and
thermal conductivity.

Itis found that similar solutions exist when both wall
temperature distribution of the plate and the free
stream velocity vary according to the same power
function of x, the coordinate in the free stream
direction. The non-dimensional parameters which
control the flow are Gr/Re? and ¢?/Re. Numerical
solutions are obtained, for uniform wall temperature
and for linear variation of temperature with distance
from the leading edge, for both aiding and opposing
flows. Variation of permeability and thermal resistance
increases the heat transfer rate markedly.

2. ANALYSIS

The physical model consists of a wedge configuration
shown in Fig. 1 (a) and (b) where x and y are the
Cartesian coordinates along and perpendicular to the
direction of free stream velocity. To seek similarity
solutions, we impose that the free stream velocity and
the wall temperature vary as

U, = Ax" 1)

and

T, = T, + Bx". 2
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NOMENCLATURE

A constant defined in equation (1) U, free stream velocity in x direction
B constant defined in equation (2) U velocity in x direction
b ratio of thermal conductivity of the |4 velocity in y direction

solid to the liquid, b = k /k; w constant defined in equation (15)
C specific heat of the convective fluid x coordinate along the inclined
¢ friction coefficient defined in equation impermeable surface

(38) y coordinate perpendicular to the
C,,C, constants defined in equations (15) and inclined impermeable surface.

(1n
d constant defined in equation (30) Greek symbols
d* constant defined in equation (29) oy) equivalent thermal diffusivity
f dimensionless stream function defined %o equivalent thermal diffusivity at the

in equation (17) edge of the boundary layer
Gr local Grashof number, B coefficient of thermal expansion

or thermal boundary layer thickness
Gr = 19:{ 1T = Tl Bx? £(y) orosity of the saturated porous
3 Y, p y p
v medium

g gravitational acceleration in the x £ porosity of the saturated porous

direction medium at the edge of the boundary
h local heat transfer coefficient layer
K(y) permeability of the porous medium n dimensionless similarity variable
K, permeability of the porous medium at defined in equation (15)

the edge of the boundary layer 0 dimensionless temperature defined in
k(y) thermal conductivity of the saturated equation (16)

porous medium A constant defined in equation (17)
m constant defined in equation (1) u viscosity of the convective fluid
n constant defined in equation (2) v kinematic viscosity of the convective
Nu local Nusselt number, Nu = hx/k, fluid
p pressure p density of the convective fluid
Pr Prandtl number, Pr = v/x, G local porous parameter, o = x//K,
Q total surface heat transfer rate defined ¥ stream function.

in equation (44)
q local heat transfer rate Subscript
Re local Reynolds number, Re = U x/v o] condition at infinity
T temperature w condition at the wall.

Flows are designated as aiding flows for which the
buoyancy force has a positive component in the
direction of the free stream velocity. Flows for which the
buoyancy force has a component opposite to the free
stream velocity are designated as opposing flows. For
the physical model presented in Fig. 1, the aiding case
will require T,,— T,, > 0(B > 0)and the opposing case
will require T,, — T,, < 0(B < 0). For the mathematical

Figla Figlb

Fi1G. 1. (a) and (b). Physical model.

analysis of the problem we assume that

(i) the convective fluid and the porous medium are
everywhere in local thermodynamic equilibrium,
(ii) the temperature of the fluid is everywhere below
the boiling point,
(ili) permeability and thermal resistance are functions
of the vertical coordinate, y,
(iv) Boussinesq’s approximation is valid.

Under these assumptions, the boundary layer
equations have the form

oU v
A 3
Ox + dy )
dp U uU
0= ——— —_——— 4
ax PI=TH 3 K0 @)
oT oT 2T daly) 0T
VIl ey — el 5
Uﬁx + dy 20) ay? + dy dy )
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and
p=p 1 =BT-T,)] 6

where u is the dynamical viscosity, K(y) is the
permeability of the medium and a(y) = K(y)/pc is the
thermal diffusivity. The third and fourth terms of
equation (4) represent the viscous resistance term and
the Darcy resistance term, respectively. The boundary
conditions for the problem are

U=V=0;,T=T, at y=0
()
U=U_;

T=T, at y=co.

The continuity equation (3)is satisfied by defining the
stream function i such that
0
v
oy
oy

—a;.

®

The pressure gradient dp/dx appearing in equation (4)
is evaluated from the free stream momentum equation
neglecting dp/dy,
dp Iz
-— + wox + ‘_Uoo =0 9
ax T =9t 1 ©)
where K, is value of K(y) at y = oco. Incorporating
equation (9) in (4), we have
v U orU
0= gxﬂ(T —Too)+ —Uw_ = V=
Ko Ky oy
(10)

The momentum (10)and energy (5)equations expressed
in terms of ¥ become

v v oy 3y
0=g BT -T)+—Uy~—— +v——s (11)
oM K = "Kgay oy
oy dT oy aT T  daly) 8T
————— = — —. (12
Gy ox oy Vart g 5 P
The boundary conditions in terms of i are
%"i - .gi ~0
Y x aty =0 (13)
e,
é‘k—»UQ, T—-T, as y—oo. (14)
dy

To seek similarity solutions for equations (11) and (12)
we define the following variables, after Sparrow et al.

(1]

n=C,yx" (15)
T-T,
0(n) = T-T. (16)
¥
fm= % 17
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where C,,C,,4 and w are constants yet to be
determined. Substitution of equations (15)(17) in
equations (11) and (12) leads to

v
0=g, X" —— AX™— ——
9:POn)B K, K@)
xf/C1C2x1+w+vfmcleci;x:iw (18)

nfx® AL fAgxr At

G da(n) C,
=am)f’-— +6 —— (19
a(n) c, an C, (19)
Equation (19) will be independent of x provided
w—A+1=0, ielil=w+l. (20)

Further we observe from equation (18) that the third
and the fourth terms are matched when A = 1 and w
= 0. This, in turn,leads to therelationn = landm = 1,
if the equation (18)is to be independent of x. The above
discussion shows that the free stream velocity and the
surface temperatures cannot be varied arbitrarily when
similar solutions are sought. Using the above relations
for the exponents n, m and A, equations (18) and (19)
reduce to

v v
0= OB+ —A———f'C,C "C,C3 (21

9B0(n) +Ko K(n)f 1C+y"C,C (21)
do(n) C,
dn C,
where the primes represent the differentiation with

respect to 1. Following Sparrow et al. [1], we find that
C,, C,, 1, f, U and V satisfy the following relations:

nf'0—af = fx(n)()’% +0 (22)
2

Ci =AM, Cy = (A (23)
= $0/%) (U /)12 (24)
S = YU vx)' 72 (25)
U(X) ’
U==32f (26)
V=30Uo/)" 2 [nf (L—m)+f(1+m)].  (27)

We also note that for A=1, n=0 and m =0 the
constants C,, C, take the values

Ci =3(A/vx)!2. C, = (Av/x)'? (28)

leading to the same relations for #, f, U and V as given in
equations (23)~27). Thus for the present problem, the
similarity solutions exist when the exponents n and m
have values(a)A = l,n=landm=1,(b)i=1,n=0
and m = 0.

Following Chandrasekhara et al. [14] we allow for
the variation of K(n) and «(y) in the form

K(n) = Ko(1+d*e™) (29)
an) = aoleo(l+de™+b{1—eo(l+de™")}] (30)

where d* and d are constants, «y, K, and &, are the
values of the diffusivity, permeability and porosity,
respectively at the edge of the boundary layer, b is the
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ratio of the thermal conductivity of the solid to the
conductivity of the fluid. Using the above relations, the
governing equations (21) and (22} finally take the form

2 2
,f"'-4f'%misf—;e+% +8m=0
31
2Pr[mf'8—f9]
={eg(l+de ™ +b{1—ex{l +de™™}10"
+[begde ™ —god €710 (32)
where
Gr = 194l iiv;— T, B3,

local Grashof number; Re = U x/v, local Reynolds
number; ¢ = x?/K,, local porous parameter; Pr
= v/a, Prandtl number. The plus and minus signs in
the third term of equation (31) correspond to aidingand
opposing flows, respectively since the Grashof number
as defined in equation (31) is always positive.

The boundary conditions (13) and (14), with the help
of equation (26), become

fO)=f0=0; 0)=1
f>2,8-0 as - .

(33

As we see from equations (31) and (32), the problem
involves four parameters, i.e. Gr/Re?, o*/Re, Pr and
exponent m. The magnitude of Gr/Re? gives the rela-
tive importance of forced and free convection in
determining the combined flow. For small values of this
parameter, forced convection will dominate, while for
large values, free convection becomes important. The
ratio g%/Re tells us about the relative importance of
viscous and Darcy resistance terms on the combined
flow. It is interesting to note that the inclusion of the
viscous resistance term in the governing equations

0.0 05 1.0 1.5 2.0 2.5

"1 —
(a)
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leads to Gr/Re? as the controlling parameter of the
combined flow while in Cheng’s [9] Darcy flow, Gr/Re
is the controlling parameter. Equation (31), in the
absence of the viscous resistance term and for constant
pcrmeability, reduces to the similar form given by
Cheng [9] for f* since Gr/o? in the present case
corresponds to Gr in Cheng’s case and, further, for
6%/Re = 1, Pr = 7 and b = 2, the values of Gr/Re in
Cheng’s [9] case and Gr/Re? in the present case
correspond to each other.

3. RESULTS AND DISCUSSION

Equations (31) and (32) with boundary conditions
(33) are integrated numerically by Runge-Kutta
Predictor—Corrector scheme with systematic guessing
of the derivatives f”(0) and 8(0) using the automatic
initial value technique [14]. The above method is
accurate and fast converging compared to the shooting
technique.

The solutions are obtained, for different Prandtl
numbers and for m = 0 and m = 1, i.¢. for uniform wall
temperature and for linear variation of temperature
with distance from the leading edge, for both aiding and
opposing flows. For the purpose of numerical
integration we have assumed d* =3, d =15 and
g, = 04 after Chandrasekhara et al [14]. The
temperature and velocity profiles are presented in Figs.
2and 3for a wide range of the parameter Gr/Re” and for
particular values of ¢*/Re. The following discussion is
confined to uniform wall temperature since a similar
trend is observed for the case m = 1. It is seen from Figs.
2 and 2(a) that the velocity profiles satisfy the no-slip
condition and are different from the velocity profiles
obtained by Cheng. As Gr/Re? is increased, the velocity
profiles become sharply peaked near the wall indicating
the influence of free convection in modifying the flow
field from pure forced convection flow to pure free
convection flow. The temperature profiles are

a¥Rest
Pr:70
b =2

crméi00

2.5

FiG. 2(a) and (b). Values of /' vs .
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AIDING FLOWS
o 2iRe =1

b -2

Pra0.7

m =0

0.6
o
0.4
0.2
0.0
0.5 1.0 15 2.0
n—

F1G. 3. Values of 8 vs. 1.

presented in Fig. 3. The profiles display a simple shape
which is found in thermal boundary layers of the pure
forced and pure free convection flows.

The results which are of greatest practical interest in
geothermal application are heat transfer rate, shear
stress and boundary layer thickness. We first consider
the heat transfer rate. The expression for the local
surface heat flux is given by

oT
= —k ——
1 [53" :|y=0

-T

126/(0).
5 Re"00)

(34)
Using the definition of heat transfer coefficient and
Nusselt number

_ hx

a Nu=

h=
T,— T, k

(35)
We obtain the expression for the dimensionless heat
transfer in the form

Nu

ot = — O

(36)

The wall’s shear stress and friction coefficients are

defined as
5]
T, =M —
a ay y=0

C; = t./[pU%/2]. (37

AIDING FLOWS
- ——— FORCED CONVECTION ASYMPTOTE
—-—«— —FREE CONVECTION ASYMPTOTE

0D
==t
rTTTl

-l WU IO

01 02 0304 10 20
Gr'?/Re
F1G. 4. Heat transfer and friction factor results, (aiding flows).

4.0 6.08010

The dimensionless shear stress, from equation (37), is
written as

cRe'’? = 2f"(0). (38)

The numerical values of f "(0)and §'(0) corresponding
to different values of Gr/Re* and 6%/Re are given in
Tables 1 and 2. We observe that #(0) has higher values
for a given value of 52/Re compared to Cheng’s [9] case
of constant permeability. In Fig. 4 we have plotted both
dimensionless heat transfer and shear stress as
functions of Gr'/?/Re for aiding flows together with the
asymptotes representing pure forced convection and
pure free convection.

The expressions for these asymptotes are

4N

u
Ee—i-/—z- = 2.448

forced convection (39)

2ciRe'’? = 5.4 J

4Nu

Rl = 1.98 (Gr'/2/Re)"/?
e

“free convection.  (40)
2c(Re'? = 4.335(Gr”2/Re)”2J

Table 1. Values of f”(0) and [ — €'(0)] for aiding and opposing flows, b = 2 Pr = 0.7

62/Re=1,m=0

6%/Re = 100,m = 1

62/Re=1m=1 6} /Re=1,m=0

(aiding flow) (aiding flow) (aiding flow) (opposing flow)

Gr/Re*  f"0) [—0©] nr Gr/iRE [f"0) [—0©)] Gr/RZ ['Q) [—00)] Gr/Re f"(0) [~8(0)]
100 13749  3.145 05 100 128.07 3.731 100 123.02  4.179 0 5.40 1.225
50 81.06 2.677 0.62 50 99.99 4.337 50 74.09 3.573 0.16 5.39 1.224
20 40.29 2210 0.75 20 84.97 4.802 20 39.21 2975 025 5.12 1.183
10 2479  1.949 0.85 10 80.91 4316 10 2542 2678 0.36 477 1.148

4 14.83  1.659 1.10 0 75.98 2.200 2 1256  2.598

1 8.19 1512 1.15 0 7.45 1.173 0.50 3.92 0.825

0.64 7.34 1.500 1.16

0.36 6.71 1.470 1.17

0.25 6.47 1.441 1.18

0 5.40 1.225 1.31
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Table 2. Values of f”(0) and [ — §(0)] for aiding flows, b = 2

6*/Re=1,m=0, Pr="10

6% /Re=1,m=0, Pr=35

Gr/Re? S0 [-6701] Gr/Re* S0 [-070)]
100 82.64 5.647 100 96.00 4732
50 49.466 4825 50 57.58 4.037
20 25.82 4.00 20 29.78 3.334
10 16.43 3.565 10 18.674 2.960
4 9.83 3.255 4 10.899 2.685
0 5701 2.650 0 5.862 2.186

The heat transfer prediction based on asymptotes
would be in maximum error of around 25% which
occurs near Gr'/2/Re = 1.35,

We can also establish the criteria for pure mixed
convection applying the 5% deviation rule suggested
by Sparrow et al. [1], leading to the following
subdivisions:

0 < Gr/Re? < 0.18 forced convection
0.18 < Gr/Re? < 25
25 < Gr/Re?

mixed flow 41)

free convection.

The results for the opposing flow situation are
represented in Fig. 5 for isothermal boundary
conditions which show that at small values of Gr!/?/
Re, the curve approaches the forced convection
asymptotes. The friction factor is very much reduced
as Gr'/2/Re is increased and finally leads to flow
separation at still higher values of Gr'/*/Re.

We now consider an expression for the thermal
boundary layer thickness. If 5y is the value of 5 at the
edge of the boundary layer, i.e. the value of 8(#) has a
value 0.01, we have

oT 20

T R 42)

The values of #y for m = 0 and for selected values of
Gr/Re? are presented in Table 1. The variation of Re'/?
8T/x with respect to Gr'/*/Re is shown in Fig. 6 for
aiding flows in which the expression for the free
convection asymptote is given by

3T i 10.0

x ¢ T (Gr/REP® @3

m=20.

7F  oprosinG FLows
FORCED CONVECTION ASYMPTODTE

] o o 2Re szt
i b2

5 Pr=07

L1 2¢re)2 m=0

3+

oF -

1 I.NulRe”z

0 L L

0.1 02 03 0507 10

Gr'/Re

F1G. 5. Heat transfer and friction factor results, (opposing
flows).

The above discussions are confined to the case
Pr = 0.7. A similar kind of behaviour is also observed
for other values of Pr. The values of f”(0) and 6'(0) for
Pr =7.0and 3.5 are shown in Table 2.

In geothermal applications, the quantity of interest is
the total surface heat transfer rate, Q, which for a flat
plate with length L and width S can be computed from
the relation

0= Sf g(x)dx (44a)
SkB 1/2 7 m+ 1)/2
Q = 5 [APT [0 12 (44b)

In order to have an idea of order of magnitude of
various physical quantities involved in geothermal
application, we consider a heated isothermal im-
permeable surface (m = 0) 1 km x 1 km embedded inan
aquifer where a pressure gradient exists. If the
temperature of the impermeable surface and the aquifer
are at 215 and 15°C, respectively, then we find that the
value of Q is 130 MW for the following values of the
physical quantities: f = 1.8 x107%°C, p,=10° g
em 3 K=10""2m? u=027gs *m~ !,k =0.58cal
s7'°C 'm~'and U, =1 cm h™'. Whereas, in the
case of Cheng [9] it is 45 MW.

4. CONCLUSIONS

The problem of mixed convection about inclined
surfaces in a saturated porus media incorporating the
variation of permeability and thermal conductivity is
analysed by a similarity solution approach. The
analysis is based on the boundary layer approxim-

5.0

AIDING FLOWS
—~ ~—~~ FORCED CONVECTION ASYMPTOTE

————— FREE CONVECTION ASYMPTOTE

4O

ReBx/x —»

L1 1

I
0.4 0.60.810 2.0 40 608.010

Gr'¥Re

F1G. 6. Dimensionless boundary layer thickness, vs. Gr'/2/Re.
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ations and neglecting the component of buoyancy force
normal to the inclined surface. The problem admits
similarity solutions for m = 0 and m = 1. The variation
of permeability and, in turn, the conductivity of the
medium brings about an increase in the heat transfer
rate whichis large for large values of %/Re. The velocity
profiles exhibit skewing near the boundaries due to the
Brinkman resistance term and are different from those
obtained by Cheng [9] for pure Darcy flow.

Acknowledgement—One of us (P.M.S.N.) thanks Professor
J.C. Bhattacharyya for the encouragement given in the course
of this investigation.
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INFLUENCE DE LA PERMEABILITE VARIABLE SUR LA CONVECTION MIXTE AUTOUR
DES SURFACES INCLINEES DANS DES MILIEUX POREUX

Résumé 1 ’analyse concerne la convection mixte autour des surfaces inclinées dans des milieux poreux en
incorporant la variation de perméabilité et de conductivité thermique due a 'entassement des particules. Des
solutions similaires sont obtenues pour deux cas, a savoir (i) température uniforme de paroi, (i) variation
linéaire de température avecla distance au bord d’attaque, a1a fois pour des écoulementsfavorables et opposés.
On trouve que les paramétres adimensionnels Gr/Re? et a*/Re controlent 'écoulement. La variation de
perméabilité augmente le transfert thermique pour toutesles valeursde o?/Re. Des applications d I'écoulement
convectif dans une réservoir géothermique saturé de liquide sont discutées. Des critéres sont donnés pour des
écoulements qui sont purement forcés, purement naturels et mixtes.

EINFLUSS DER VERANDERLICHEN PERMEABILITAT AUF DIE MISCHKONVEKTION
UBER GENEIGTEN OBERFLACHEN IN POROSEN MEDIEN

Zusammenfassung—Die Untersuchung wird fiir Mischkonvektion an geneigten Oberflichen in einem
gesittigten porosen Medium durchgefiihrt, wobei die Permeabilitit und die Wéirmeleitfihigkeit in
Abhiingigkeit der Packungsart variiert wurden. Fiir zwei Fille wurden Ahnlichkeitslésungen ermittelt :
(i) einheitliche Wandtemperatur, (ii) lineare Anderung der Temperatur mit der Entfernung von der
Anstromkante, und zwar fiir aufwirts- und abwirts-gerichtete Stromungen. Es wurde herausgefunden, daB
die dimensionslosen Parameter Gr/Re? und ¢2/Re die Stromung kennzeichnen. Eine Anderung der
Permeabilitit bewirkt eine Zunahme des Wirmetransportvermogens fiir alle Werte von 62/Re. Anwendungen
fiir eine konvektive Strémung in einem geothermischen Sammelbecken mit iberwiegendem Fliissigkeitsanteil
werden diskutizrt. Kriterien werden fiir Stromungen aufgestellt, welche vollstindig erzwungen, vollstindig
natiirlich und gemischt sind.
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BJIASTHUE M3MEHEHHUA ITPOHHLIAEMOCTH HA CMEHIAHHYIO CBOBOJHYIO
¥ BBIHYXJAEHHYIO KOHBEKLHIO ¥V HAKJIOHHBIX NOBEPXHOCTEH,
MOMEIMEHHBIX B ITOPUCTBIE CPE/lbI

Annorammst—IIpoBeieH aHaMH3 CMEWAHHOW KOHBEKUMM Yy HAKJIOHHBIX HOMEILIEHHBIX B NOPHCTYIO
cpely NOBEPXHOCTEH NPH M3MEHEHHH NPOHMLIAEMOCTH H TEIUIOTIPOBOMHOCTH CPEabl M3-33a PAa3IMYHOMN
IUIOTHOCTH YNAKkoBKH YacTHL. [ToJry4eHbl aBTOMOCIBHbBIE PEILCHHS ANA ABYX clyyaeB: (i) oNHOMEpPHO#
TeMIIepaTypbl CTEHKH ¥ (ii) JIMHEHHOrO H3IMEHEHHS TEMIIEPATYPbi C PACCTOAHHEM OT NMEpeRHeH KPOMKH
KaK APH CUyTHBIX, TaK ¥ NPOTHBOTOYHBIX Teyerusx. HaHneHo, 4To mapaMeTpamu, onpeacARiORIHMA
TeYeHHe, ABAAIOTCR Beapasmepubie kpuTepun GriRe? u qlee. Tpu M3MEeHEHUH TPOHULIAEMOCTH CpEasl
OTMEYAETCH POCT HHTEHCHBHOCTH TEIUIONEPEHOCA NIPH BCEX 3HAYEHMsAX napamerpa o’/Re. Pesymbratsi
AHAJIM3a WCHOJL30OBAHB! IR ONHCAHHA KOHBEKTHBHOIO TEYCHHMS B I'COTEPMAbHOM pe3lepByape, B
OCHOBHOM 3Qil0JIHEHHOM XHIAKOCTHI0, [TpHBEedeHBl KPHUTEPHM [IA ONMCAHHA YHCTO BBIHYX/CHHBIX,
YHCTO CBOOOAHBIX H CMEIUAHHBIX TEUCHHH.



