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Relativistic coupled-cluster studies of dipole polarizabilities in closed-shell atoms
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We investigate the role of electron correlation effects in the electric-dipole polarizabilities of the ground
states of the alkaline earth metals, helium, and ytterbium by employing the relativistic coupled-cluster (RCC)
theory. These effects are incorporated via the residual Coulomb interaction to all orders in the RCC singles and
doubles approximations. The perturbed wave functions used in the calculations of the polarizabilities are
obtained by directly solving the first-order perturbed RCC equations, thereby avoiding the sum-over-states
approach. Our results are compared with other calculations and available experimental data.
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I. INTRODUCTION

Knowledge of electric-dipole polarizabilities is necessary
in many areas of physics and chemistry. In particular, it is
required in studies of collisions involving atoms and mol-
ecules [1]. In recent years, the preeminent role of polarizabil-
ities in the determination of interatomic interactions has as-
sumed special significance in the context of research on
ultracold atoms [2].

Calculations of atomic polarizabilities have come a long
way since the classic work of Dalgarno and Lewis [3]. Fol-
lowing a series of calculations using the coupled Hartree-
Fock method (see, for example, [4]), a number of state-of-
the-art methods including the coupled-cluster (CC) theory
have been used to calculate atomic and molecular polariz-
abilities [5-7]. A few calculations of the polarizabilities of
heavy atomic systems have been performed in the past few
years using the linearized [8] as well as the nonlinearized [9]
relativistic coupled-cluster (RCC) theory. These are based on
approaches that sum over a set of intermediate states. Liu
and Kelly used a coupled-cluster linear-response-based ap-
proach to calculate the static and dynamic polarizabilities of
He [10]. In contrast, we have obtained the first-order per-
turbed wave function by solving the first-order perturbed CC
equation and used it to obtain the dipole polarizabilities of
the closed-shell alkaline earth metals, helium (He), and yt-
terbium (Yb). Information on these quantities is useful for
frequency standards experiments that have been proposed for
Mg [11], Ca [12], Sr [13], and Yb [11,14] as well as the
search for the electric-dipole moment [15] and parity non-
conservation experiments [16—18] in Yb.

There has been considerable interest in accurate calcula-
tions of the dipole polarizabilities of alkaline earth metals,
He, and Yb. The dipole polarizability of He is available to
high precision both experimentally [19] and theoretically
[20]. Sadlej et al. have calculated these quantities for Ca, Sr,
and Ba using a quasirelativistic approach, but their treatment
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of correlation is rigorous [21]. Their calculations have been
carried out at the finite-order many-body perturbation theory
and CC levels. Porsev and Derevianko have performed cal-
culations of the dipole polarizabilities of Mg, Ca, Sr, and Yb
using a hybrid approach involving many-body perturbation
theory and the configuration-interaction method [11]. A cal-
culation of the dipole polarizability of Yb based on the time-
dependent density functional theory (TDDFT) has been re-
ported recently [22].

II. THEORY AND METHOD OF CALCULATIONS

In a uniform dc electric field E=£Z, the energy shift AE
of the ground state |‘If§)0)(7T,J0,MO)) with the parity eigen-
value 7 and angular momentum J,=0 and its azimuthal
value My=0 is given by

1 o
AE=—-—a&”,
2

(2.1)

where « is the static polarizability and can be expressed as

8 (. J0.M)|D W (' I, M)
Ey-E;

i

ae_2S ¥
I

(2.2)

where the subscripts 0 and 7 represent ground and excited
states of the Dirac-Coulomb (DC) Hamiltonian (HE)DC)), re-
spectively, the superscript (0) represents unperturbed wave
functions, D, is the zth component of the electric-dipole op-
erator, J; and M; are the angular momentum quantum num-
bers of the intermediate states, 7 and 7’ are the parity quan-
tum numbers for states of opposite parity, and E, and E; are
the energies of the ground and intermediate states, respec-
tively.

In a more explicit form, the above expression can be writ-
ten as
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E,-E,
= (W (7,00.Mo)|D W (' 7' M)y + (U (' I M) |D W (1,00, M) = (Wo| D[ W), (2.3)
where we define
[Wo) = [W (7,10, M)y + W (7T M), (2.4)

with |\I’f)1)(ﬂ" ,J',M")) as the first-order correction with the angular momentum J'(=1) and M’ due to the operator D. to the
original unperturbed wave function, \I’(()O)(W,JO,MO», in the presence of an external dc electric field and given by

WO’ 7, MDY (,40,My))
Ey,-E,

Wi (m' T M)y = 2 (WO (' T, M) 8" )M M) S(My,M,). (2.5)
1

The first-order perturbed wave function |\Iff)1)(17’ ,J',M'")) can be obtained using an approach that avoids explicitly summing
over intermediate states.

A. Unperturbed wave function
Using the CC ansatz, the all-order unperturbed wave function |\If§)0)(7'r,10,M0)> for closed-shell atoms can be expressed as
[23]

|\I,£)0)(779J09M0)> =eT(O)|(I)O(7T"109MO)>9 (26)

where | (,J,y,M,)) are the Dirac-Fock (DF) wave functions determined using the mean-field approximation and 7® are the
electron excitation operators due to Coulomb interaction from the corresponding DF states.

In the present work, we have considered all possible single and double excitations (CCSD approach) in the calculations. We
obtain the 7® amplitudes by solving the following equations using the Jacobi iterative method:

(@F[HYT|Dg) =0, (2.7)
where |®p) represents the singly and doubly excited states with respect to |®), the subscript N represents the normal-order

— 0) 0) 0) . . .
form of the operators, and we have defined H =e‘7{ HeT{ =(He7{ )eon» With the subscript “con” representing connected terms.

B. First-order perturbed wave function
To obtain the |‘I'E)1)(7T' ,J',M")), we proceed as follows.
Let us operate (HBDC)—EO) on both sides of Eq. (2.5); i.e.,
<\I}§0>(7T, ’JI,MI)|Dz|\P§)0)(W7JO,MO)>
Ey—E;

(HPO = E I (w0, M) = 3 (HYS = E W', M)
1

WO (' J, M) |D Y (7,00, M)

= > (E; - Ep)[W(w' J, M)
1

Ey-E;
== 2 |\If§O)(7T’7JIsMI)><’\;[,§O)(7T,9JI7MI)|Dz|qf§)0)(ﬂ-’-’09M())>' (28)
1

Using the completeness principle of the atomic states of the DC Hamiltonian, Ea|‘1’g)))(‘lf§))|= 1, we get

2 WO S MKW O (' T M| = 1= 2 W (,d g, MWW (7, d ¢, M) (2.9)
I K+#I

Substituting Eq. (2.9) into Eq. (2.8), we get
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(HPO —E)| W (7' .J' . M"))=-D,

= — DZ \I,g)o)(ﬂ,Jo,Mo)>,

where the second term does not contribute since
WO (77,0, M) and [W(77,J,M,)) have the same parity.

The above equation represents a first-order perturbed
equation with D, as the perturbation and the first-order en-
ergy equal to zero. The unperturbed wave function is repre-
sented by [W{ (7,75, M), and [W{D (7,0’ ,M")) is its first-
order correction. In order to obtain the solution for
|\P§)1)(7T’,J’,M’)>, we solve Eq. (2.10) using the following
(R)CC approach.

Using the above CC ansatz for closed-shell atoms, we can
express the total wave function |W,), which is of mixed par-
ity and angular momentum, by

|\I,O>:6T|q)0(W3JO’MO)>’ (211)
where we define now

T=10 4 70,

with T representing the excitation operators containing all
orders in the Coulomb interaction and one order in D,. Sub-
stituting Eq. (2.12) into Eq. (2.11), we get

(2.12)

Wy = e 1|0y (r, 00, M)y = &1 (1 + TV | Dy(7,70, M),
(2.13)

where only terms up to linear in 7{V—i.e., those terms up to
one order in D,—are retained.

It is clear from Eq. (2.13) that the first-order perturbed
wave function can now be written as

(WO g M) = " TO| D, d0, M) (2.14)
The 7" amplitudes are determined using the equations

(DL HPOTO|Dy) = — (DD D), (2.15)

where have used the relation 5:e‘ﬂ0)0eﬂ0)=(06ﬂ0))c0n. A
detailed description for evaluating these amplitudes and the
corresponding Goldstone diagrams in the closed-shell and
one valence systems are given elsewhere [24,25].

C. (R)CC expression for «

Using Egs. (2.6) and (2.14), the expression for the polar-
izabilities using the (R)CC operators can be expressed as

;
o= <(I)0|6T PZeT|q)n>
<¢0‘€T'€T@o>

L
@[T DY + DY) D)

2.16
N, (2.16)
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q’f)o)(W,Jo,Mo» + E |\P5?)(7T7JK7MK)><\I,§?)(7T7JK7MK)|DZ|\P£)O)(775J0’MO)>
K

(2.10)

where for  computational define

— i i

Dgo)zeﬂ(” Dze#m and J\/0=<CI>0|e7w) eﬂ0)|<Do>. We compute
these terms by expressing them as effective one-body and
two-body terms using the generalized Wick’s theorem [26].

simplicity ~ we

III. RESULTS AND DISCUSSIONS

In Table I, we present our results of electric-dipole polar-
izabilities and compare them with those available in the lit-
erature. The error bars in the experimental results are large
for all the systems except in He, and our results lie within
them. The results of the calculations that are given in Table I
are obtained using a variety of many-body theories. Our re-
sults are in reasonable agreement with most of them. We
have also estimated the contributions from the important
triple excitations in addition to the CCSD contributions and
taken them as the upper limits of the errors associated in our
calculations. They are mentioned in the parentheses next to
our results presented in Table I.

There are several calculations of the ground-state He po-
larizability available using different methods, and some of
them have also included certain QED contributions [20].
Similarly, a number of precise measurements are listed in
[20] among which the latest result is reported in [19]. It is
therefore desirable to calculate He polarizability using our
method. A linear response approach derived from time-
dependent CC theory was also earlier used by Liu and Kelly

TABLE I. Static dipole polarizabilities in divalent atoms He, Be,
Mg, Ca, Sr, Ba, and Yb (in a.u.). Results from this work are based
on the CCSD method and contributions from important triple exci-
tations given as error bars in the parentheses.

Atoms Expt. Others This work

He 1.383746(7)* 1.383193.,° 1.389° 1.382(1)

Be 37.755,% 37.69,° 37.9" 37.80(47)

Mg  7153.1)%  71.35°72.0,71.3(7)" 73.41(2.32)

Ca 169(17)2 159.4,° 152,72 157.1(1.3),0  154.58(5.42)
152,1 158.00

Sr 186(15)¢ 201.2,°193.2,5197.22),>  199.71(7.28)
190, 198.9

264, 273, 273.9
111.3(5)," 141.7," 157.30°

Ba 268(22)¢
Yb 142(36)™

268.19(8.74)
144.59(5.64)

KReference [36].
'Reference [29].
MReference [37].
"Reference [31].
°Reference [22].

fReference [34].
£Reference [35].
?Reference [11].
'Reference [21].
JReference [30].

Reference [19].
PReference [20].
“Reference [10].
dReference [33].
“Reference [27].
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TABLE II. Contributions from DF and important perturbed CC
terms (in a.u.) for the dipole polarizabilities.

Atoms DF (D,T"+c.c.)-DF DTV +c.c. No

He 1.495 1.376 0.005 -0.1x107*
Be 45.82 -7.94 -0.09 0.02

Mg 82.44 -8.77 -0.21 0.03

Ca 184.14 -29.23 -0.07 -0.26

Sr 234.41 —34.46 -0.17 -0.08

Ba 328.32 -61.18 0.09 0.81

Yb 183.32 -39.86 0.032 1.10

[10] to determine static and dynamic polarizabilities of the
ground state of He. This is different from our approach
where an expectation value of the electric-dipole operator is
evaluated using first-order electric-dipole perturbed wave
functions. Our formulation as described earlier is based on
the time-independent coupled-cluster theory. From Table 1, it
is evident that our result is in good agreement with both
high-precision calculations and measurements. Mitroy and
Bromley [27] have used oscillator strengths from a semi-
empirical approach to obtain the polarizabilities. Some re-
sults based on an ab initio method that combines the
configuration-interaction (CI) method and many-body pertur-
bation theory (MBPT) are available [11,28,29]. In these cal-
culations, the valence-electron correlation effects are evalu-
ated by the CI method, whereas the core-electron correlation
effects are calculated using the MBPT method. However,
these calculations consider the core-polarization effects in
the framework of finite-order MBPT, while our CC method
takes them into account to all orders. Lim and Schwerdtfeger
employed the scalar-relativistic Douglas-Kroll Hamiltonian
to determine some of these quantities [30]. In these calcula-
tions, they showed the importance of relativistic effects.
There are also a few calculations available for the Yb polar-
izabilities using the CC method [31,32], where the atomic
orbitals are evaluated using the molecular symmetries. Re-
cently TDDFT was used for calculating the same quantities
[22], but this method treats exchange and correlation effects
via local potentials. The main difference between the meth-
ods on which all these calculations are based and ours is that
we calculate both the unperturbed and the first-order per-
turbed wave functions using a RCC approach that implicitly
takes into consideration all the intermediate states.

To emphasize the importance of correlation effects in
these calculations, we present the DF and the leading RCC
contributions in Table II for the electric-dipole polarizabil-
ities. For all the cases that have been considered, the DF
results are larger than the total results. From the individual
RCC contributions, we find that only the terms arising from
DZT<11) and its conjugate (c.c.) are significant. Given that
these terms include the DF, leading core-polarization, and
other important correlation effects to all orders, it is not sur-
prising that they should collectively make up the largest con-
tribution. In Fig. 1, we give the breakdown of DZT(II) in terms
of the DF, random phase approximation (RPA), and other
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(viii)

FIG. 1. Breakdown of the szTﬁl) CC diagram in terms of lower-
order MBPT and RPA diagrams that contribute significantly to the
polarizability calculations. Here, D, and V) represent the dipole
and normal-order Coulomb interaction operators which are shown
as single dotted and dashed lines, respectively. The notations ¢ and
i represent the occupied and unoccupied orbitals, respectively, of
the considered systems.

diagrams. All the above-mentioned calculations where these
terms have been evaluated are based on finite-order MBPT,
but in our present method, we treat them to all orders in the
residual Coulomb interaction. The *P; and 'P, configura-
tions are of crucial importance for the leading term of DZT<11)
and its conjugate.

IV. CONCLUSION

We have carried out calculations of electric-dipole polar-
izabilities for many alkaline earth metals, helium, and ytter-
bium using the RCC method and highlighted the importance
of the correlation effects. These calculations avoid the sum-
over-states approach in determining polarizabilities and im-
plicitly consider all the intermediate states by solving the
perturbed RCC wave function to first order in the dipole and
all orders in the residual Coulomb interaction.

Note added. We recently became aware of a recent calcu-
lation of the polarizability of the ground state of Yb [38]. It
was performed using full and approximate relativistic ab
initio methods, and the result is in good agreement with ours.
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