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THERMAL OVERSTABILITY OF HYDROMAGNETIC SURFACE
WAVES
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Abstract. We investigate the effects of radiative heat losses and thermal conductivity on the hydromagnetic
surface waves along a magnetic discontinuity in a plasma of infinite electrical conductivity. We show that
the effects of radiative heat losses on such surface waves are appreciable only when values of the plasma
pressure on the two sides of the discontinuity are substantially different. Overstability of a surface wave
requires that the medium in which it gives larger first-order compression should satisfy the criterion of Field
(1965). Possible applications of the study to magnetic discontinuities in solar corona are briefly discussed.

1. Introduction

Hydromagnetic surface waves in magnetically structured plasma media have been
studied extensively by Wentzel (1979a, b), Roberts (1981a, b), Edwin and Roberts
(1982), Somasundaram and Uberoi (1982), and Somasundaram (1983). They have
shown that a single surface of discontinuity separating two uniform, magnetic and
compressible plasma media can sustain in general two hydromagnetic surface waves
propagating along the interface and evanescent on both sides of the interface. Dissi-
pation of such waves are believed to contribute to the irreversible heating of the solar
coronal plasma (Ionson, 1978, 1985; Wentzel, 1979¢; Rae and Roberts, 1981; Gordon
and Hollweg, 1983). In view of the increasing awareness of their importance for the
energetics of the upper solar atmosphere, an examination of the thermal stability of such
surface waves in the presence of different heat gain and loss mechanisms is necessary.

A detailed discussion of the physics of the thermal instability can be found in Field
(1965). For an optically thin, uniform medium, one gets an exponentially growing
isobaric or isochoric instability mode as well as two overstably oscillating, nearly
isentropic-acoustic modes propagating in opposite directions. Thermal conductivity
stabilizes these modes for wavelengths smaller than some critical wavelength. In the
presence of a uniform, frozen-in magnetic field, condensations with wavevector perpen-
dicular to the field get stabilized for the field strength exceeding a certain critical value
while the condensations along the field remain unaffected. Among the three MHD wave
modes, the Alfvén mode, being incomrpessible, is thermally neutral while the overstabili-
ty criterion for the compressible slow and the fast MHD modes remains same as that
for the acoustic mode, although their growthrates get modified by the magnetic field.
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Thermal instability in magnetohydrodynamic media has been further discussed by many
authors in the context of their application to the solar atmospheric situations (see, for
example, Heyvaerts, 1974; Hildner, 1974; Priest, 1978; An, 1984; Bodo et al., 1986).
These authors have considered either the role of condensation modes in the formation
of magnetic structures or the stability of existing structures against condensation and
bulk MHD perturbations. In the present paper, we investigate the effects of radiative
losses and thermal conductivity on the fast and the slow hydromagnetic surface modes
along a discontinuity separating two semi-infinite magnetic plasma media. We consider
modes with wavevectors along the field direction. In Section 2 we state the basic
equations and derive the relevant dispersion relation. In Section 3 we discuss the
asymptotic behaviour of the dispersion relation. Numerical solution of the dispersion
equation in two different cases using parameters typical of solar atmosphere are
presented in Section 4. We find that each of the slow and the fast compressible surface
waves will be overstable or decaying depending on the radiative properties of the two
media to different extents. We also find that the thermal conductivity parallel to the
magnetic field introduces a cut-off in the wavelength for the onset of overstability of the
surface modes. In Section 5, we briefly summarize our results and discuss its relevance
to the study of the solar coronal structures.

2. Derivation of the Dispersion Relation

2.1. BASIC EQUATIONS

The basic set of equations consists of the usual MHD equations. The gas is assumed
to be perfect and completely ionized (with mean molecular weight = 3). In the energy
equation we include a heating term in a phenomenological way, a radiative cooling term
corresponding to an optically thin medium and a term representing the divergence of
the thermal flux due to an anisotropic thermal conductivity. The rate of heating per unit
volume is assumed to be proportional to the density and independent of the temperature
of the medium. For radiative cooling rate per unit volume we use the formula given by
Rosner et al. (1978). We further assume the magnetic field to be frozen into the plasma.
In a low-density, high-temperature plasma with strong magnetic field, like the solar
coronal plasma, we can ignore the thermal conductivity perpendicular to the magnetic
field (Spitzer, 1962) and for the numerical value of the parallel conductivity, we use the
formula given by Priest (1982). Thus, we take:

K, =9x1077T?ergss 'cm™'K~!. (1)

The basic equations (in conventional notations) then reduce to the following.
The fluid dynamical equations, viz.,

dp/dt + p(V-v) =0; (2a)
2 B-V)B
pQ+VP+V(B—)—( ) =0; (2b)
dt 87 4n
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1 dP
—— ————(Pp) —+p$ V&,V T)=0 (2c)
y—-1dt vy- 1
P =2RpT; (2d)
(;—B+B(V~v)—(B-V)v=0; (3a)
t

and the divergence-free condition for the magnetic field:
V-B=0. (3b)
The energy loss per unit mass ¥ in Equation (2c¢) is taken to be of the form

L(p, T) = (x/m2)pT* - h, “4)

where the values of the parameters y and ¢ are taken from the tables given by Rosner
et al. (1978), and A is the heating rate per unit mass which is assumed to be constant.

2.2. THE DISPERSION RELATION

We first linearize the basic equations taking a perturbation of the form
¥ = Y(x)exp(nt + ikz), (5)

where 7 is in general complex and & is real and positive. We consider waves propagating
only along the magnetic field, i.e., in the z-direction. Two semi-infinite uniform plasma
media are chosen which are separated by a non-rigid boundary at x = 0, and whose
equilibrium states are characterized by p;, T}, P;, B;, and k; (j = 1, 2). The quantities A,
are assumed such that & = 0. We confine ourselves to the x — z plane. This wﬂl
decouple our equations from the Alfvén modes, the polarizations of which are in the
y-direction and also from the almost incompressible, Alfvénic surface waves (see
discussion in Wentzel, 1979a and also Roberts, 1981a), which occur when k,lk,> 1.

Linearized equations in both the media are then made dimensionless taking the unit
of length as k!, unit of time as (k*P, /p,)~ /> and the unit of magnetic field as B,. The
resulting equations are

np + nj{%+ivz}=0; (6a)
1;nv, + % + B, (%) — i pib, =0; (6b)
mnv, +ip = 0; (6¢)
np + (apj — ynd)p + {(n;/0,)o 5 + O'K”j}T =0; (6d)
nb, — iwv, = 0; (7a)
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nb, + o (%) =0, (7b)
dx

where 1; = p;/p;, & = B;/B,, &; = T,/T;.

The parameter §, is defined as two times the inverse of the conventional plasma-beta
in medium 1, ie., B, = p(V4,/C,)*, where V, = Alfvén speed in medium 1 and
C, = acoustic speed in medium 1. The dimensionless terms representing radiative
energy loss and energy dissipation due to thermal conductivity are:

_ hj?’B/z(V -1)

1
(y — DkK,;p'?
Ox,, = Ij and  yg; = 0,/0,, .

2Rp, C,

In the above units we write:

’11=°‘1=XR1=51=1 and 7, = n; Ar, = Xr> o, =9.

After algebraic elimination of other variables, we arrive at a single, second-order
differential equation in the total pressure (magnetic + plasma) p,:

%’;T =m’pr, ®)
where
2 _ (n* + B) {n® + n?4, + nyd, + B;} .
’ Bin® + ny<3j(n2 + )+ ﬂjnzAj + (% + B,)B; ’
4; = (g/9)0,, + (x,,/1,) ; )

B; = O-Pj(gj -+ (31-(0'1(”]/’7]') )

Since n is complex, m; are also in general complex. The x-components of velocities
are given by

=" (d” T) . (10)
n(n* + B) \ dx

In the two semi-infinite regions defined by x > 0 and x < 0, solutions of (8) are:

pT = I/Ifje:Fij ’
with

Re(m;)> 0. (11)
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Here W, are arbitrary constants, and the negative and the positive signs in the exponent
correspond to j = 1 and 2, respectively.
The boundary conditions at x = 0 are:

Uy, = Uy, (12a)

and
B? B2
P1+8—1=P2+—87";. (12b)
T

In the afore-mentioned notation the condition (12b) takes the form:
nd=1+(@6/2)1 - a?). (13)
The perturbed form of Equation (13) is:
Pr, = Pr,- (14)

Using Equations (10), (11), (12a), and (14), we arrive at the following dispersion
relation:

(n* + B)my = = n(n® + B)m; . (15)

In the adiabatic limit (o, = 0x,=0) n=iw and Equation (15) agrees with
Equation (24) of Roberts (1981a). In the non-adiabatic case m, and m, are complex and
the modes represented by the solutions of Equation (15) are not purely evanescent on
the two sides of the interface. We can still call them as ‘surface modes’ if
Re(m;) > [Im(m;)| (j = 1, 2), that is, if the amplitude of the waves decay considerably
within a distance equal to the reciprocal of the wave vector in the x-direction. In our
numerical calculations, we verify this condition for each solution.

3. Discussion of the Dispersion Relation and Its Asymptotic Limits

Squaring of Equation (15), cancellation of the factors (n? + B,) and (n* + B,) and cross
multiplication ultimately leads to an eighth-degree polynomial equation in n:

Y an'=0, (16)

i=0

whose coefficients a; are given below :
a, = B,H, - n°B,H,,
a, = (yOH, + B,G,) — n*(yH, + B,G,),
a, = (A,H, + B,F, + y6G,) - n*(4,H, + B,F, + vG,),
a, = (H, + A,G + yOF, + B,E,) - n*(H, + A,G, + yF, + B|E,),
a, = (G, + A,F, + y0E, + B,D,) — n*(G, + A,F, + yE, + B,D,),
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as = (F; + AyE, + ydD, + B,C,) — n*(F, + A\E, + yD, + B,(C,),
ag = (E; + DA, + y0C,) — n*(E, + DA, + yC,),
a; = (D, + Ci4,) - *(D, + C,4,),

as = C, — n*C,,
where

G =B+7v4;  Dy=B+pA};

E = §(C+78);  F=BD,+B);
and

G =v58'; H=§B.

Numerical solution of Equation (16) yields, in general, two complex conjugate pairs
of ‘physical’ roots, i.e., those satisfying both the ‘original’ (unsquared) dispersion
relation (15) and the condition of vanishing perturbation at infinity in both directions.
The modes given by these roots are classified as the ‘slow’ and the ‘fast’ surface modes
depending upon their phase speeds.

Before giving numerical results we first discuss the effect of radiative loss terms alone
on the surface modes under some asymptotic conditions in terms of parameters «; and
B; (j = 1, 2). Thus we drop the thermal conductivity terms in Equation (9). We refer to
the cooler of the two regions as medium 1 (i.e., T,,/T; or 6> 1) and consider the
following cases:

Case A: B?/8n < P, and B%/8n < P,
From Equation (12b), P, ~ P, > B%/8n, B3/8x.

For convenience of the discussion, we take B, ~ B, and P, ~ P,. Hence, in our
present notation: B, -0, a>~ 1, n~ 1/4, and B, ~ 9B, — 0. In this case, dispersion
relation for adiabatic conditions (Wentzel, 1979a; Roberts, 1981a) gives only a slow
surface mode with frequency

n? A~ _.32'*‘&/’7z _ 2p, .
1+ 1/n 1+0

(17)

We expect maximum radiative influence on this mode when the period is of the same
order of theradiative cooling time, i.e., g, ~ g,, ~ |n| ~ p}/*>. Now for B; — 0, the limiting
forms of m$ and m? are:

m? = (n* + B) {nyd; + p, (5, — 1)} + $(B?) _
(0 + ) {(m13+ 0, (5~ D} + 8(57)

Equation (18) gives the same dispersion relation as that in the adiabatic case. The reason
for this can be understood if we compare each of the fractional perturbations in the gas

9(B) . (18)
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variables (O0P/P, etc.) in the two media to the corresponding perpendicular velocity,
which must be non-zero in the surface modes. From Equations (6a) to (7b) we obtain

mn(dP/P) = + {n* + p(1 - m*)}v,, (19a)
mn®(8plp) = F {(1 - m®) (n* + B)}v,, (19b)
and
mn(0T|T) = +[{n* + Bl - m*)} + iz (1 -m?)(B+n?)]v,. (19¢)
n

For m? given by (18), |6P/P| ~ |dp/p| ~ |6T|T| < |v,|.

Since the radiative processes affect the stability of the modes only through the
first-order perturbations of the thermodynamic variables, we get only neutrally stable
surface modes in case A. This can also be seen in the results obtained by numerical
solution of Equation (16) which are shown in Figure 1. The growth rate of the overstable
slow surface mode decreases monotonically with the decrease of f; (and, hence, of §8,)
for fixed values of «? and 9 and vanishes for very low values of f,.

ALPHSQ=0.25 CHAI=1.8

g_‘ SIGMR=9.7 DELTA=2.0 _8

2 S

[ ]

D r-.
w ¢ S
- s e >
T < -2 9
- ’
= -

(] w
‘5N s &
g;9_1 _llz w
- S
= |
S E
3 )

' ) T ¥ L} -

.00 .20 .48 .60 .00 1.00

BETA1

Fig. 1. Growth rate (represented by O) and frequency (represented by A) of the slow surface mode as
functions of §;(BETA 1) for fixed values of «?>(ALPHSQ),  (DELTA), xz(CHAI), and 0,,(SIGMA). Note
that the growth rate tends to zero in the asymptotic limit of f; — 0.
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Case B: Bi/8n> P, and B3/8n> P,
For simplicity we take B ~ B and P, ~ P,.

Hence, in our notation: B; — o0, a®>~ 1, nx 1/d, and B, =~ 8,. In the adiabatic
situation Wentzel and Roberts have shown that pure surface modes are not possible
in this limit. However, they discuss a one-sided surface wave with n = +i \/Fl in
medium 2 terminated by an Alfvén wave with m? = 0 in medium 1. For periods
comparable to radiative loss time, i.e., for |n| ~ ;> ~ 0, ~ 0,

2 = @ B)Unt 50,/5} + (B V)]
J Bi{n + 8]0;5/51} + g(ﬁjl/z)

1
=+ B) [1?3 + 8(B~ 2)] . (20)
With the help of Equation (20), Equation (15) can be written as

mlmzl: i + ide: ] -0, 1)
B {1 +9(Br )} 1B{1 +38(B ")}

which cannot be satisfied together with condition (11). Hence, the only permissible
solution is m; = 0 and n* = — B, which makes the one-sided surface mode completely
decoupled from radiative effects. For m? given by Equation (20), Equation (19) gives
|0P/P| ~ |dp/p| ~ |0T|T| < v, | in both medium 1 and 2 for this one-sided surface mode,
which explains the above results.

Case C: B%/4nP, > 1, B3/AnP, < 1, B3/BZ < 1, and B?/8n ~ P,.
For simplicity, we assume a? ~ 1/B and 6 ~ finite.

Then, f; ~ 218 — c0; n~ By and B, = («*/mpy ~ B ' — 0.

In the adiabatic situation (Roberts, 1981a), we have a slow surface mode with
n*~ —y and a fast surface mode with n? ~ — [(\/1 + y? — 1)28]/y.

In the non-adiabatic situation and for |n| ~ o, ~ o, = finite, approximate ex-
pressions for m? and m3 are given by:

(n* + By) {n® + n’¢;0, + yn + 0, (¢, — 1)}
By {n® + ey, n* + yn + g, (¢ — 1)}

m

~
~

2
1

and

n® + n*(e,0,,/0) + yon + g, (e, — 1)
nyd+a,(e — 1) '

m3

(22)

After rearrangement of the terms, the ‘squared’ dispersion relation takes the form:
{n® + n*¢,0, + yn+ a0, (e, — 1)} {n°(yd) + n*a, (e, — 1) - (46°)n> -
— (43) (&,0,,)n* — (4y0%)n — (48%)a,,(e; — 1)} = 0. (23)
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The roots given by the first parenthesis represent the slow surface mode with an
‘unphysical’ root. For the slow surface mode, power expansions (Field, 1965) in regions
0, <1 and g, > 1 give (up to the first-order terms):

A 0, {(e; — 1) — yg} +i
2y

— - 1=
nm x \/1 P {(81 ) ”l}, (24)
& &0, 2y

respectively. Thus, we see that the criterion of overstability for the slow surface mode
agrees with Fields’ criterion of medium 1, i.e.,

Y, (24a)

and

g < - L . (25)
y—1
This result can be explained with the help of Equations (14) and (22). For the slow
surface mode m? and mZ are both finite and m? & (n + B,)/B,. In medium 1 this gives
|0P[P| ~ |dp/p| ~ |0T/T| > v, |, while in medium 2, |dP/P| ~ |dp/p| ~ |0T|T| ~ |v,].
Since the perturbations in the gas variables are much larger in medium 1 than in
medium 2, the thermal stability of this particular mode is determined mainly by the
radiative properties of medium 1.
The second parenthesis of Equation (23) yields one ‘unphysical’ root, two ‘spurious’
roots and the fast surface mode. As above, a power series expansion for the fast surface
mode in the region g, <1 gives

n~ —(0.1029) (1/8)a, (e, + 1.5) + i(1.10641)5"/2, (262)

where we have chosen y = 2 to avoid cumbersome expressions involving 7.

We see that in this case the overstability criterion for the fast surface mode is
& < — 1.5 which is same as Field’s criterion in medium 2. For the series expansion in
the region g, > 1, we take y = 2 and also ¢, = — 2.00, for simplicity of illustration, and
obtain:

n % (0.0165) (o,, — 1)62 + i(1.0346)5". (26b)

From Equations (26a) and (26b) we see that the growth rates and the overstability
criterion for the fast surface mode is predominantly determined by the radiative losses
in medium 2. This is so because Equations (22) give m? =~ (n*> + B,)/B, = 1 + (B ")
and m? = finite, leading to |dP/P|~ |dp/p| ~ |dT/T| < |v,| in medium 1 and
|0P/P| ~ |0p/p| ~ |0T|T| ~ |v,| in medium 2.

In Figures 2, 3, and 4 we illustrate the dependence of growth rates and frequencies
of the two surface modes on the parameters o, , 9, and B, under various conditions. The
figures are drawn from the solution of Equation (16) for arbitrarily chosen parameters
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Fig. 2. Growth rate and frequencies of the slow and the fast modes as functions of the dimensionless
wavelength ¢, in the limit of p,(BETA 1)— oo and B,(BETA 2)— 0 represented by §; = 2 x 10°> and
B, = 2 x 1073, respectively. Values chosen for y, (CHAI) and § (DELTA), are indicated. The dimensionless
growth rates for the slow and the fast modes are represented by O and [J, respectively, and refer to the
vertical scales on the left side. Corresponding frequencies are shown by A and # referring to the vertical
scales on the right side. On either side, the first scale is for the slow mode and the second one is for the
fast mode. Note that the ranges of values on the frequency axes are quite small showing that the frequencies
are insensitive to the changes of g,,,.

g = —2.00 and &, = — 1.00 and y; = 1.50. In Figure 2 growth rate of the slow(/fast)
surface mode increases linearly with ¢, (/0,,) in the quasi-adiabatic domain of small
wavelengths (g, and o, < 1) where the radiative cooling times of the two media are
much longer than the sound travel times which, in turn, have the same orders of
magnitude as the periods of the two waves. On the other hand, in the long wavelength
region (o, 6,, > 1), the radiative time-scales are shorter than the periods, and this
results in a damping of the surface modes. Frequencies of the modes are mainly
determined by the nonradiative properties of the media and, therefore, vary rather slowly
with g, .

In a similar manner one can explain the variation of the growth rates of the surface
modes with the temperature ratio 0 of the two media. An increase in 6 and the
corresponding decrease in the sound travel time in medium 2, for a fixed wavelength of
perturbation, decreases the growth of the fast surface mode in the small wavelength limit.
On the other hand, in the large wavelength limit, the sound travel time tends to be
comparable to the radiative cooling time of medium 2, and the growth rate increases.
This is shown in Figures 3(a) and 3(b). Here the growth rate of the slow surface mode
seems to be insensitive to the parameter J. This is understandable since 0 is merely 7,
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Fig. 3a-b. Growth rates and frequencies of the slow and the fast modes as functions of the temperature

ratio & (DELTA) of the two media in the asymptotic limit f; - oo (=2 X 10%) and B, —» 0 as implied by

«?(ALPHSQ) >0 (~5x10-%). The small wavelength limit (a) is represented by the value

0,,(SIGMA) = 10~ 2, while the large wavelength limit (b) is represented by the value 6,, = 50.0. The vertical

axes and the symbols are similar to those in Figure 2. Apparent sudden jumps in the growth rates of the
slow surface mode are artifacts of the plotting programme.
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Fig. 4. Growthrates and frequencies of the slow and the fast surface modes as functions of 8, in logarithmic

scales, where an increase of §, is accompanied by a decrease of «>(ALPHSQ) and, therefore, of §,. Fixed

values are chosen for g, , xzr(CHAI), and 5(DELTA). The vertical axes and the symbols are similar to those
in Figure 2.

normalized in units of T, but the slow surface mode overstability is independent of T,.
Figure 4 shows the variations of the growth rates and the frequencies of the two
surface modes as B, and B, approach asymptotic values oo and 0, respectively, from
intermediate values. The growth rates of both modes increase with increasing , and
ultimately become independent of f,, as predicted by Equation (23). Physically this
shows that the modes become almost completely acoustic in this limit of large f; .

4. Numerical Results for Two Types of Interfaces

Since pure surface modes are almost stable in case A and non-existent in case B, we
present here numerical solution of Equation (16) for the two varieties of discontinuities
which fall under the category of case C, i.e., the discontinuities across which the value
of f changes appreciably. While doing so we assign for various parameter values which
are typical in solar atmosphere. We shall consider the effects of thermal conductivity
also. Extrapolating the conclusions of case C in the previous section, we expect that in
the presence of thermal conductivity the surface modes will be stabilized for wavelengths
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Fig. 5a-b. Effect of radiative loss and thermal conductivity parallel to the magnetic field on the growth

rates and frequencies of the surface modes for a situation considered in Section 4.1 and for two ranges of

dimensionless wavelengths. (a) shows the cut-off in the short wavelength limit for the overstability of the

slow surface mode. The values chosen for T, T,, V,,(VAl) and V,,(VA2) are as given. The axes and
symbols are similar to those in Figure 2.
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below the critical wavelengths given by Field (1965), viz.,

o < - {GK" / <e,. + L)} @
j J y _ 1

with j = 1 and 2, respectively.
The situations considered are the following.

4.1. THE FIELD IN THE COOLER MEDIUM IS STRONGER

Numerical results in this case are illustrated in Figures 5(a) and 5(b). The temperatures
and the Alfvén velocities are given in the figures. The temperatures correspond to
g, = —2.0 and &, = —% (Rosner et al., 1978). Consequently the fast surface mode is
stable for any value of g, and o, (ref. Equation (27)). The onset of overstability for
the slow surface mode occurs at a wavelength corresponding to g, = 0.08, while the
critical wavelength given by Equation (27) is o, = 0.078. The fastest growing mode has
a frequency of 0.85 mHz, and a wavelength of 1.3 x 10° km, while the growth time is
2.3 hr. The e-folding distances for this mode are 4000 km in the cooler medium and
25500 km in the hotter medium.
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Fig. 6. Effect of radiative loss and parallel thermal conductivity on the growth rates and frequencies of the
surface modes in the situation considered in Section 4.2. The axes and symbols are similar to those in
Figure 5.
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4.2. THE FIELD IN THE HOTTER MEDIUM IS STRONGER

Figure-6 illustrates the numerical results for such a case. Only the slow surface mode
can exist in this case and the onset of overstability of this mode occurs at g, = 0.13.
This also happens to be close to the critical wavelength o, =0.124 given by
Equation (27). In this case the fastest growing mode has a wavelength of 650 km, a
frequency of 89.5 mHz, and growth time of 5.8 min. The penetration distances in the
two media are 140 km in medium 1 and 102 km in medium 2.

S. Summary and Discussion

In the above section we have examined the thermal stability of a sharp discontinuity in
a magnetic plasma. The conclusion of the study is that under suitable conditions an
‘in situ’ generation of surface waves along such a discontinuity is possible through the
overstability caused by radiative heat-losses. In Section 3 we have shown that this
overstability is appreciable when the plasma-beta on the two sides of the interface are
substantially different. The overstability further requires that the medium in which the
surface mode is more compressible should satisfy the Field’s criterion. In solar coronal
plasma this implies that the temperature of the corresponding region should lie in a
narrow range of ~ 10°>“-10°7° K. This condition might be satisfied near the surfaces
of the coronal magnetic structures like a ‘cool-core coronal loop’ or the ‘prominence-
corona interface’. The example given in Section 4.1 might simulate the situation at the
interface between a ‘cool-core-hot-sheat coronal loop’ and the ambient medium. The
excitation and growth of the surface waves could possibly lead to turbulence at such
an interface. In the case of prominence-corona interface, the low resolution of magnetic
observations and uncertainties in theoretical models do not enable us to decide whether
the conditions in Section 4.1 or 4.2 are mor realistic. However, the general increase of
turbulent velocity towards the edge of the prominence (Hirayama, 1985) might be
construed as an indication of the surface overstability in this case also.

The excitation of surface waves through overstability might also facilitate transfer of
energy and momentum from the lower corona to higher corona and interplanetary space.

Finally, it must be remembered that the aforementioned results and conclusions apply
only to waves of wavelength much smaller than the thickness of the coronal magnetic
structures, in which case the structures can be approximated as a single interface
(Roberts, 1981b; Edwin and Roberts, 1982). For more general applicability one must
consider the effect of finite thickness of the structures and study both surface as well
as bulk modes in relation to the thermal stability.
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