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Summary. An application of the Maximum Entropy Method to
the closure data is described here. It is shown that although the
basic principle of the method is to obtain a brightness distribution
which has highest entropy the closure phases play a prominent
role in giving the correct reconstruction especially when the dis-
tributions are complex and the measurement errors are large.
The method gives faithful reconstruction for the observed random
phase error up to +150°. The method can be used as an alter-
native to the routinely used ‘self-calibration’ technique to improve
the astronomical images obtained from the phase unstable inter-
ferometers. For large fields of view when due to repetitive use of
CLEAN the ‘self-calibration’ method becomes time consuming,
MEM with closure phase may have a computational advantage.
For extended sources as the performance of CLEAN deteriorates
the maximum entropy method could be superior to the self-
calibration.

Key words: image processing — maximum entropy — radio astro-
nomy; closure phase — interferometry

1. Introduction

In radio astronomy one is interested in obtaining an image of the
brightness distribution in the sky with as high a resolution as pos-
sible. The application of aperture synthesis technique was a major
advancement in the direction of the resolution improvement.
However, soon it became apparent that due to large measurement
errors the quality of the synthesized maps is quite restricted. In
the presence of the measurement errors the observed map is con-
taminated by spurious positive and negative sources. Also, in the
presence of these errors the image deconvolution techniques like
CLEAN or Maximum Entropy Method (MEM) are unable to
provide faithful deconvolution of the image although they work
outstandingly on the error-free model maps. Therefore, before
going for the problem of deconvolution, it is worthwhile to ex-
plore a possibility of the refinement of the measurement errors
in the observed visibilities.

In the past few years, considerable progress has been made
in the direction of improving the maps obtained from unstable
interferometers (Cornwell and Wilkinson, 1981; Readhead and
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Wilkinson, 1978; Readhead et al., 1980). The success of these
image improving techniques lies in the use of so called ‘closure’
phase which provides almost as much information about the
visibility phases as the true visibilities themselves. The method
which uses the closure phase information for refining the mea-
sured phase errors is called the ‘self-calibration’ technique and
the reconstructed maps are known as ‘hybrid maps’ (Baldwin and
Warner, 1976). The self-calibration method is essentially an itera-
tive technique which is a combination of the image deconvolution
method CLEAN (Hogbom, 1974) and the closure phases. The
method starts with a model distribution which assigns the phases
to some of the observed visibility amplitudes and the remaining
are computed through the closure relations. Presently, the meth-
od is used more or less routinely to improve the radio maps.
However, the final restored distribution is quite sensitive to the
choice of the starting model and at many occasions it has been
observed that due to improper starting model the method gives
a bad reconstruction. For the brightness distributions which are
composed of point-like sources the guess of model distribution
could be relatively easy but for extended distributions, especially
when the errors are large, it is not always possible to predict the
correct starting model. Further, due to the repetitive use of
‘CLEAN’ the method becomes quite expensive in computer time
especially for large fields of view (Cornwell and Evans, 1985).

The maximum entropy method has shown a new promise in
the field of astronomical image reconstruction. In radio astron-
omy, the method has essentially been used as an image decon-
volution technique. However, in other fields like crystallography,
the method has been proposed for the phase refinement problem
(Narayan and Nityananda, 1981, 1982). The MEM assigns the
phases to the observed amplitudes in such a way that the entropy
of the distribution is maximized. In crystallography problems
where the sources are well isolated point-like sources (atoms) the
maximization of entropy provides reasonably good reconstruc-
tion. However, in radio astronomy where the presence of extended
sources is common, only maximization of entropy does not give
good image reconstruction if the measurement errors are large.
Considering the cyclic nature of the phase, there could be multiple
maxima of the entropy, all of which would not correspond to the
true distribution. In the absence of any additional constraints
the solution may be trapped in any of the wrong maxima to give
bad reconstruction. To obtain the correct distribution, the solu-
tion should be guided to the proper maximum through additional
constraints. These constraints could be in the form of closure
phases. We discuss here an application of the MEM combined
with the closure phases to the phase refinement problem in radio
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astronomy. In the second section we briefly mention the principle
of the closure phase and in the third section we present a mathe-
matical formulation of the MEM applied to the closure data. In
the fourth section, we discuss the computational implementation
of the method along with some results and in the fifth section
we analyse the effect of noise on the method. At the end we
make some concluding remarks.

2. Closure phase

For strong sources which have a high signal-to-noise ratio, the
phase errors could be mainly introduced by the changes in the
path lengths due to variable atmosphere and the temperature
sensitive electronics, and the positional accuracy of the interfero-
meter elements. The concept of closure phase which is free from all
these errors was first introduced by Jennison in 1958. The basic
idea of the closure phase could be explained by an example of
three element interferometer system. Figure 1 shows three an-
tennas A, B and C forming three interferometer pairs AB, BC
and CA. Let {5, {pc With (., represent the true phases of the
Fourier transform of the brightness distribution at spacings AB,
BC and CA respectively. If ., Y5 and Y are the phase errors
introduced by the position of the source in relation to the col-
limation plane at A, B and C, and 64, 65 and . are the phase
errors due to atmospheric path lengths and the front end instru-
ments at A, B and C respectively, the observed phases of the three
Fourier components with baselines AB, BC and CA are

Gap="Cap+ Wp— ¥, + (65— 6,
®pc = Loc + (Wc — ¥p) + (6c — Jp) 0]
bca=Clcat+Wa—¥)+ (64— 3d¢)

where ¢,, is the observed phase at y with respect to the phase

at x; ¢xy = —¢yx‘
The sum of the three observed Fourier phases

& =dap+ dpc + Pca 2

is also equal to the sum of the three true Fourier phases. This
quantity ¢ is independent of all the systematic errors and is called
the ‘closure’ phase. It is clear that the closure phase is free from

A B C
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Fig. 1. A three-element interferometer system. The arrows indicate the
outputs of complex correlators

the systematic measurement errors irrespective of the separation
and orientation of the interferometer baselines. Moreover, Eq. (2)
is not true for only three element system but can be obtained for
any system consisting of three or more interferometer elements.
Essentially, the statement of closure phase is ‘the sum of all visi-
bility phases around a close loop of interferometers is free from
all the systematic measurement errors’. For a system of N ele-
ments i.e., N(N — 1)/2 visibilities, the total number of loops and
therefore the total number of closure phases is

Ne="Cy+"Cy+---+"Cy ©)]

However, it should be noted that all the N closure equations
are not independent. For an N-element interferometer system
there could be maximum N errors associated with the N(N — 1)/2
visibilities. Further, since the visibility phase is only a difference
between the phases of signals from two elements of an interferom-
eter, any one of the antennas can be assigned an arbitrary phase
and all other phases could be referred to that. Hence, in an N
element system there are (N — 1) rather than N unknown phase
errors giving total independent closure phases p = N(N — 1)/2 —
(N—1)=(N —1)(N — 2)/2.

For a system of N interferometer elements there will be p
closure relations of type (2) which in general can be represented
by a matrix notation of kind

A4-¢=dc @

Where, 4 is a p x g rectangular matrix (p < g) having elements
0 or +1; ¢ is a vector of g unknown phases and ¢ is a vector
of p closure phases. The number of visibility phases is always
greater than the total closure equations and therefore there are
infinite distributions which satisfy the closure phases. To obtain
a unique solution we need to have more information about the
distribution along with the closure phases. In self-calibration the
additional information about the source is provided in the form
of a model distribution. In the maximum entropy method, among
the infinite solutions given by closure relations we propose to
accept that solution which maximizes the entropy of the observed
brightness distribution. The essential condition that the distribu-
tion is positive definite is imposed implicitly in the MEM.

3. MEM for closure data

The true brightness distribution B,.,(x, y) in the sky and the ob-
served brightness distribution B(x, y) are related to the complex
spatial visibility function p(=|p,|exp (i$,.,)) through a Fourier
transform relationship i.e.,

M N
B(x,y) = M=ZM ..=ZN Pmn€XP [ —i27(mx + ny)] )
or

Pmn = || Biruelx, y) exp [i2n(mx + ny)] dx dy (6)

where x and y are the sky coordinates and m and n are the spatial
coordinates; (M, N) defines the finite size of the aperture. Due to
the finite size of the aperture and the discrete sampling of the
uv-coverage the observed distribution, in general, will not be the
same as the true distribution.

Following Nityananda and Narayan (1982) the entropy of
the brightness distribution could be defined in the most general
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form as

E = ([ f[B(x,y)]dxdy ™

where f can be any of the conventional functions, In B (Burg,
1967) or — BIn B (Gull and Daniell, 1978; Gull and Skilling, 1984)
or other functions like B2, B%2 etc.

Since the brightness distribution is real the visibility function
p is hermitian ie. p,, = p*, -, (* represents the complex con-
jugate). With this modification Eq. (5) can be rewritten as

m N
B(x’ y) = pOO + Zl Zl 'pmnl exp [i¢mn - i27t(mx + ny)]
M N
+ ) %
1n=1

m=

|Pral €XD [ —i@mn + i27(mx + ny)] ®)

To maximize the entropy E with respect to the unknown
phases, 0E/0¢,,, should be equal to zero. Substituting Eq. (8) in
(7) and differentiating with respect to the unknown ¢,,, we get

OE
O mn

where,
|G| €XD [i%s] = [f f'[B(x, y)] exp [ —i2n(mx + ny)]dxdy

and f'(B) is the derivative of f(B) with respect to B. It is easy to
see that Eq. (9) is satisfied by any value of ¢,,, given by

(10)

On = Oy + KT (11

where K,,, = 0 or +1. This indicates that there could be many
maxima and minima of the entropy and the phase solution which
one obtains by iterative schemes may not correspond to the
global or true maximum.

It can be argued (Narayan and Nityananda, 1982) that pre-
sumably most of the solutions correspond to the saddle points
in the entropy and only a small fraction of solutions represent
real maxima. Even with this assumption the phase problem has
multiple solutions and depending upon the starting condition
the solution may converge to the nearest maximum. In this case
it is apparent that positivity of the brightness distribution is not
enough to provide the unique solution. However, beside the posi-
tivity if we have more a priori knowledge about the distribution,
the chances of guiding the solution to the proper maximum go
on increasing. One of the ways to provide information about the
distribution could be in the form of closure phase. The solution
becomes much more restricted when along with the positive defi-
niteness of the image the visibility phases have to satisfy the
closure relations. Therefore, from the uniqueness point of view the
closure phase is going to be a very important constraint.

Since Eq. (9) gives the gradient of the entropy with respect
to the unknown phases through one Fourier transform, it is
relatively straightforward to maximize the entropy by any of the
iterative gradient techniques. Starting from the observed distri-
bution the phases are shifted in the direction of the gradient sub-
‘ject to the observational constraints until the entropy is reached
to the maximum. If the closure phases were not there the obvious
choice would be to shift the unknown phases in the direction of
the gradient defined by Eq. (9). However, in the presence of the
closure relations all the phases cannot be shifted along the gra-
dient. Let us assume that ¢, is a vector of initial visibility phases.
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Then from closure relation (4) the closure phase

¢.= A - ¢, = predetermined by measurements. (12)

If we change the visibility phases by a small amount 4A¢ the
modified phases again must satisfy the closure relation (4) giving

A-4¢=0 (13)

Since we are interested in the relative changes in the observed
phases, it is not required to know the absolute closure phases.
If the phases satisfy the closure relations initially, a differential
form of closure relation (Eq. (13)) automatically inforces the
closure conditions at every stage of iteration. In Eq. (4), ¢, is an
observationally determined vector whose elements depend upon
the brightness distribution under observation, and the interferom-
eter loops whereas, Eq. (13) does not require any observational
data and is rather a characteristic equation of an N element
system. The advantage of Eq. (13) over (4) is that it can be gen-
erated only once for a given interferometer system and is inde-
pendent of the brightness distribution.

Since p < q i.e. number of closure equations is less than the
number of measured phases, Eq. (13) represents a surface in a
g-dimensional space. Any vector 4¢ lying in this surface satisfies
the closure equation. The maximization of the entropy requires
that the phases should be shifted in the direction of the gradient.
However, maximization of the entropy is only a desirable condi-
tion whereas, the closure relations are the essential conditions.
The entropy should be maximized only as much the closure con-
ditions allow. In other words we can shift the visibility phases
along that vector which lies in the closure surface and is closest
to the direction of the entropy gradient. Therefore, the problem
reduces to find a vector A¢ on the closure surface defined by
Eq. (13) which has smallest distance to the gradient vector.

For Eq. (13) there are (g — p) independent variables and re-
maining p dependent variables. Without a loss of generality let
us assume that the first (¢ — p) variables are independent. If the
direction of the entropy gradient is ¢,, the scalar distance be-
tween the shift vector 4¢ and the gradient is

q 1/2

S=|¢p,— 49| = {Zl (Pg: — A%)’} (14
To obtain the shortest distance between the two vectors the
derivative of S with respect to the independent phase changes

s
0A¢;

The (¢ — p) equations given by Eq. (15) along with the p closure
relations given by Eq. (13) form a set of simultaneous equations
which can be solved uniquely to give 4¢. The geometric repre-
sentation of Egs. (13)—(15) is shown in Fig. 2.

0 j=12...,(9—p) (15)

4. Computer simulations and results

A simple iterative gradient method is implemented for the maxi-
mization of the entropy. A suitable function f is chosen to de-
fine the entropy of the brightness distribution. Although, the
choice of the entropy function is not very crucial, different func-
tions lead to slightly different solutions and for a given brightness
distribution one function may provide better reconstruction than
the others. However, to describe the properties of the method
let us take the well known form of entropy In B. Since the entropy
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¢’ ( Direction of the
S Entropy Gradient )

Actual phase shift
direction

A8 -0

(closure surface)

Fig. 2. A geometrical representation of the phase shift direction in the
closure surface which is closest to the entropy gradient direction

function is logarithmic, the brightness distribution B at every
stage of iteration should be positive definite. This condition is
certainly not satisfied during the initial cycles of iteration. Due
to the finite size of the aperture and also due to large measure-
ment errors the observed map contains many unwanted spurious
negative and positive sources. To make the distribution positive
definite during the intermediate stages of iteration, the map
should be lifted by a constant background. The quality of the
reconstruction does depend on the amount by which the map is
lifted (Bhandari, 1978). To get a rough estimate of the constant
background to be added, a parameter called the ‘resolution
parameter’ was introduced by Nityananda and Narayan (1982)
as

J"(Bmax + C)
where, f"(Bna.x + C) is the second derivative of f(B) with respect
to B at a point where B is maximum and f”(B;, + C) is the
second derivative at a point where B is minimum, and C is the
constant background added to the map.

They have shown that the parameter R essentially defines the
degree of nonlinearity of the MEM reconstruction. For higher
values of R (i.e. a smaller background) the reconstruction is more
nonlinear giving sharper peaks in the distribution. For the phase
problem R does not have much meaning as a resolution param-
eter. However, we see that the choice of R governs the degree of
the phase refinement to some extent. For smaller values of R (i.e.
a large background), practically all measured phases correspond
to the maximum of the entropy and one does not get any refine-
ment of the measured phases. On the other hand, if we choose a
very high value of R (~few hundreds), instead of a refinement
the measured phases may be dragged away from the true solu-
tion. It has been found by repetitive computations that usually
for a value of R few tens one gets the best refinement of the phases.

A flow diagram of the algorithm is given in Fig. 3. First, a
suitable entropy function is chosen in the form of f’ directly
(i.e. for entropy function In B, f* = 1/B and so on). The observed
brightness distribution is lifted by a flat background to satisfy
the predetermined value of R. Taking f’ of the lifted distribution
the gradient of the entropy is computed by fast Fourier transform
(FFT) of the f’. The square of the gradient is computed as a
measure of convergence. Combining the gradient with the closure

READ
(1) Entropy function f
(11)
(111) Closure Equations

Initial Dirty map B

y
ADD a suitable background

C to the map
B=(B+C)

(1) Compute f~ of B
(11) Compute gradient !g
(111) Calculate square of

2
the adient I ’ I
49 2

2
¢ 17 <
33
Convergence

1imit?

Combine ¢ and closure
-8

equation to give A¢

r
Rotate observed phases by

A¢ and compute new map B; by

inverse FT

Dirty map B =
New map Bl

Fig. 3. Flow diagram of the method

phases, the direction of the phase shift is computed. The un-
known phases are rotated by the computed change in the phases.
By taking an inverse Fourier transform, the new phase refined
distribution is obtained. The method iterates until the square of
the gradient is reached to the convergence limit. The map is
lifted periodically (usually after every five iterations) to satisfy
the given value of R but it is mandatory if the distribution be-
comes negative at any stage of iteration.

Figure 4 shows an arbitrary model brightness distribution
consisting of an extended source and a localized point like source.
Due to the computer limitation the total field of view in Fig. 4
is restricted to 33 x 33 pixels. Figure 5 shows the spatial uv-
coverage plot. Since we have to write the closure relations, a
direct choice of the uv-coverage is not adequate. We must define
the antenna system also from which the uv-coverage is obtained.
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Fig. 4. A model brightness distribution map. Contour interval = 12.6 units
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Fig. 5. A simulated uv-coverage. The region, where both amplitude and
phase of the visibility function are measured, is indicated by + signs. In
the hatched region the visibility amplitudes are measured accurately but
the phases have large errors. In the outer empty space the visibilities are
completely unknown

Let us take a synthesis telescope where all visibilities are
measured simultaneously. Let us assume that there are 25 an-
tenna elements arranged in the form of letter ‘T". The longer
arm of the T is oriented along the vertical direction and the
shorter arm points towards the right. If every antenna element
of the system is correlated with every other element we obtain
a highly redundant information which is unnecessary. Therefore,
in practice the elements of the longer arm of ‘T” are correlated
only with the elements of the shorter arm. An antenna system
of this kind, in general, provides a rectangular uv-coverage as
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in Fig. 5. If all the antennas have the same order of measurement
errors, all the visibilities will be affected by similar errors. How-
ever, in practice two closely spaced antennas receive radiation
from the same atmospheric layers and also see the same tempera-
ture variation. Therefore, the shorter baselines generally have
much less systematic errors. Just to incorporate this observa-
tional fact it is assumed that for some of the shorter spacing
around the origin of the uv-plane indicated by + signs, both
amplitude and phase of the visibilities are measured accurately
whereas, in the hatched region the visibility amplitudes are mea-
sured more or less accurately but the phases have an rms error
of ~75° (peak error ~ +1.5 x rms error). In the outer empty
space the visibilities are completely unknown. The model map
shown in Fig. 4 is Fourier transformed to have the ideal visi-
bilities. The visibilities were forced to be zero in the outer empty
space of Fig. 5. The Fourier transform of the truncated visibil-
ities gives the map which one would have obtained from a finite
uv-coverage but accurate measurement of all the visibility am-
plitudes and phases (Fig. 6a). Further, introducing random rms
errors of ~75° in the visibility phases corresponding to the
hatched area in Fig. 5, a so called observed map is obtained.
This map (Fig. 6b) is the starting point of the MEM reconstruc-
tion. Assuming the above mentioned antenna configuration, the
closure relations are generated by using proper visibility points.
As can be seen very clearly, the observed map in Fig. 6b, apart
from the real sources, shows many spurious positive and nega-
tive features. One of the strong spurious sources present in the
upper left corner, has even a higher brightness than one of the
true sources. Using the MEM formulation described above and
taking a value of R = 50, the MEM map after phase refinement
is shown in Fig. 7a. The MEM map shows a dramatic improve-
ment over the observed map and is very close to the error free
map in shape and intensity. If we see in terms of rms error, the
initial phase error of ~75° is reduced to ~ 8° in 40 iterations.
In fact the major refinement takes place in the first few cycles of
iterations but there is recognizable refinement till ~30-40 itera-
tions. Although, the value of R is taken to be 50, the refinement
is not very sensitive to the value of R unless it is too high or
too low.

In radio astronomy, so far the MEM has been used as a
resolution improvement technique. In the process of resolution
improvement it is usually assumed that the measured visibilities
are free from all the systematic measurement errors. The obser-
vations could be affected by system noise but the noise is small
compared to the measured signal (i.e., signal-to-noise ratio of
each visibility is above 5g). However, in practice these ideal con-
ditions are met very rarely. The measured visibilities are gen-
erally affected by the measurement errors. Before computing the
unknown visibilities if the measurement errors of the known
visibilities are not removed, there is a high probability that the
MEM image reconstruction may end up in a wrong distribution.
This is demonstrated by an example here. Using the erroneous
visibilities corresponding to the map in Fig. 6b, the visibilities
are extrapolated in the empty region of the uv-coverage in Fig. 5.
The MEM map obtained from extrapolated visibility function is
shown in Fig. 8. Although the features in the map are sharpened,
there is not much of an improvement over the observed map
(Fig. 6b). On the other hand, if we first do the refinement of the
measured visibility phases and then extrapolate the visibility
function we obtain a better image reconstruction as shown in
Fig. 7b. When the high resolution map obtained after the phase
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(a)

Fig. 6. a The error free map which one would
have obtained if all the measured visibilities
were accurate. Contour interval = 6.6 units.
b Observed map with an rms phase error of
~75°. Contour interval = 4.1 units

>

¢

Fig. 7. a MEM phase refined map with the closure constraints. Contour
interval = 6.8 units. b High resolution MEM map obtained from the
phase refined map in a. Contour interval = 8.2 units. ¢ MEM phase
refined map without the use of the closure constraints. Contour inter-
val = 7.4 units. d High resolution MEM map obtained from the phase
refined map in ¢. Contour interval = 9.3 units

refinement of the measured phases (Fig. 7b) is compared with
the model map (Fig. 4) it appears that although the overall struc-
ture of the distribution is restored the peak of the extended source
is over sharpened. However, it should be noted that this extra
enhancement of the broad peak is not due to the incomplete
phase refinement but is due to the inherent peak sharpening
property of the MEM when used to extrapolate the visibility
function.

R

Fig. 8. High resolution MEM map without the refinement of the mea-
sured visibility phases. Contour interval = 4.3 units

Since MEM obtains the brightness distribution which has
maximum entropy subject to some observational constraints,
obviously with increasing constraints i.e., more a priori informa-
tion about the distribution, one expects a reconstruction closer
to the true distribution. Especially in the phase problem where
there are many entropy maxima the constraints provide an ad-
ditional help in guiding the solution to the proper maximum.
For the comparison sake we present here the phase refined MEM
map without the use of closure information in Fig. 7c. Although,
the overall structure is restored the localized source in the left
side of the map center is relatively attenuated. In terms of rms
error also we get ~60° phase error after 40 iterations compared
to the starting ~75° phase error. When we extrapolate the un-
known visibility from the phase refined visibilities without the
use of the closure constraints we get a reconstruction (Fig. 7d)
which is significantly different from the reconstruction obtained
with the closure conditions (Fig. 7b) (and also the true distribu-
tion Fig. 4).

With the increasing initial phase error the application of the
closure conditions becomes rather important. For large phase
errors there is a possibility that the maximization of the entropy
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Fig. 9. a Observed dirty map with an rms visibility phase error of ~100°. Contour interval = 3.3 units. b MEM phase refined map with the use
of the closure constraints. Contour interval = 6.8 units. ¢ MEM phase refined map without using the closure constraints. Contour interval = 6.5

units

subject to the only condition that the distribution is positive
definite may give completely wrong distribution. This will be-
come obvious from the following example.

For the same model map (Fig. 4) and same uv-coverage (Fig.
5) but relatively large rms phase error of ~100° the observed
map is shown in Fig. 9a. Starting from this map and using the
same reconstruction parameters as taken above the phase refined
MEM map is obtained; one with the closure constraints (Fig. 9b)
and other without closure constraints (Fig. 9c). The map obtained
without closure constraints does not show any resemblance to
the true distribution whereas, the map with closure constraints
is reconstructed reasonably well. The final rms error in the ab-
sence of the closure phases rather increases to ~ 120° compared
to the initial rms error of ~100°. This is definitely an example
when the MEM solution is trapped in a wrong entropy maxi-
mum. Narayan and Nityananda (1982) have expressed a hope
stating that even the wrong maxima usually have some features
of the true distribution. However, the above example clearly
shows that in the case of a complex brightness distribution the
solution corresponding to a wrong entropy maximum may not
have any characteristics of the true distribution. The situation
is comparatively better for a distribution composed of point-
like sources. For a localised point source distribution shown in

(b)

3
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Fig. 10a and the same initial rms phase error of 100°, although
the observed dirty map shows many strong positive and negative
sources (Fig. 10b), one gets reasonably good reconstruction even
without the closure constraints (Fig. 10c,d). However, in Fig. 10d
which is the reconstruction without closure information the
sources look slightly shifted from their actual positions. If we
increase the phase error further ie. the peak phase errors are
close to +180° although the reliability of the reconstruction
reduces, the closure conditions help in obtaining the correct
solution.

5. Treatment of noise in the observation

So far in our analysis, we have assumed that the noise is negligible
compared to the measured visibility amplitudes over all inter-
ferometer baselines. In absence of noise although the measure-
ments have large systematic errors, at least the closure quantities
are completely error free. However, in any practical system, due
to unavoidable noise, the reliability of the closure quantities
themselves is in danger. Usually the system noise is independent
of the choice of baseline. Since the amplitude of the visibility
function is a decreasing function of baseline, for longer baselines

Fig. 10. a Error free brightness distribution map obtained from the finite uv-coverage (Fig. 5). The true distribution consists of four point sources
A, B, C and D of intensities 50, 125, 70, and 25 units respectively. Contour interval = 4.3 units. Crosses indicate the positions of the four
point sources. b Observed map with an rms visibility phase error of ~100°. Contour interval = 1.9 units. ¢ MEM phase refined map with the use
of the closure constraints. Contour interval = 4.4 units. d MEM phase refined map without the use of the closure constraints. Contour interval =

4.1 units
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(a) (b)

Fig. 11. a True image of an arbitrary dis-
tribution. Contour interval = 10.0 units.
b Error free map obtained from a uv-
coverage in Fig. 5. Contour interval =
8.6 units

the visibilities start getting dominated by the system noise. There-
fore, those closure phases, which use longer interferometer base-
lines are more affected by the system noise.

For a noisy data, following previous authors (Ables, 1974;
Willingale, 1981; Wernecke and D’Addario, 1977) the constrained
entropy maximization can be converted into an unconstrained
maximization of an objective function F defined as

aﬂk

2, (% — ¢’ 4 (0% — p,)?
F={ff@dxay—1 § G0, § (oo p)

Oei

(17)

where, f(B) is the entropy function and A and p are two Lagrange
multipliers. ¢; and ¢ represent the ith estimated and measured
closure phases respectively. p, and p{ are the kth estimated and
measured visibility amplitudes. o3, is the variance of the ith
closure phase and o2 is the variance of the kth visibility ampli-
tude. From Eq. (4), we can write

d’ci = '21 Aij¢j (18)

substituting ¢,; and so @2 from Eq. (18) into (17) we get the ob-
jective function as

q 2
| 2 Ao
F=[[fB)dxdy—i y ==

it

lAijlaij
L (pf — pi)’
—nY T 19
k=1 Tprc
03; is the variance of the phase noise for the jth visibility coef-
ficient.
To maximize the objective function F with respect to the es-
timated phases and amplitudes

3 A6 — ¢)
oF P
l=¢gl+2,1iz J_lq_i.

ryw A4;=0
3¢ =1 j;l IAllla‘%J

(20)

oF (P — Py
— =put 22— =
Opx o Jﬁk

0 (21)
¢, 1s the phase gradient corresponding to Ith visibility coefficient
and is given by Eq. (9). p,, is the gradient of the entropy with
respect to the kth visibility amplitude.

The Lagrange multipliers 4 and u essentially define the rela-
tive weightages given to the observational data compared to the
entropy maximization. To get the best reconstruction 4 and u
should be chosen by trial and error. However, we have chosen
A and u such that the two terms in Eqgs. (20) and (21) have more
or less equal weightages.

The properties of the formulation are demonstrated by simu-
lated examples. We have arbitrarily chosen a model distribution
(Fig. 11) and an antenna system same as mentioned above giving
a rectangular uv-coverage as shown in Fig. 5. We have restricted
ourselves to the phase refinement problem without going for the
estimation of unmeasured visibility coefficients. We have assumed
that the visibility phases have systematic rms phase error of
about 75° and on the top of that the data is corrupted by a
uniformly distributed random noise. The o of the noise is always
expressed as a fraction of the integrated power of the brightness
distribution, pgq.

In the first example, a noise as high as +20% of py, is as-
sumed over all the visibilities. For an rms phase error of ~75°
the observed image is shown in Fig. 12a. The reconstructed map
using In B form of entropy is shown in Fig. 12b, after 20 iterations.

Itis apparent that the reconstruction is remarkably good even
for highly noisy data. One would certainly be happy with the im-
age in Fig. 12b over the image in Fig. 12a. However, to improve
the quality of the image further, the use of relative entropy func-
tion Bln(B/B,) has been found to be very helpful (Cornwell and
Evans, 1985). For defining relative entropy, using a model distri-
bution B,, composed of two gaussian sources located approx-
imately at the true source positions (Fig. 13a), the reconstructed
map after 20 iterations is shown in Fig. 13b. Comparison of the
reconstructed images using two entropies, In B and Bln(B/B,)
indicate that the effect of noise in the observational data can be
partly compensated by biasing the reconstruction by an a priori
known model distribution. Although, in this particular example
the superiority of the relative entropy is not that striking, the
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Fig. 12. a Observed map for an rms phase
error of ~75° Peak to peak measure-
ment noise is 40% of the integrated flux of
the brightness distribution. Contours are
at(—8, —6, —4, —2,2,4,6,8,10,12) x
2.4 units. b MEM reconstructed map af-
ter 20 iterations. Entropy function is InB.
Contour interval = 5.4 units

Fig. 13. a A prior model distribution
B,. Contour interval = 5.0 units. b Re-
constructed map using relative entropy
function Bln(B/B,) after 20 iterations.

(@) . .
(=] Contour interval = 6.3 units

next example clearly shows that as the measurement errors in-
crease the use of relative entropy becomes essential for noisy
observations.

Let us take another example where the measurement noise
is +10% of pyo but the phases have an error of +120°. The
observed image (Fig. 14) in this case is so bad that retrieval of the
true distribution looks almost impossible. The method has been
applied to restore this distribution. Two entropy functions In B
and Bln(B/B,) are used for the sake of comparison. For defining
relative entropy function the same model with two gaussian as
in Fig. 13a is used. It is clear from Fig. 15a,b that the image ob-
tained by using relative entropy function is far superior to that
obtained by simple In B entropy. The maximization of the simple
In B entropy has not only failed in reconstructing the two upper
sources, but it has also reconstructed a strong spurious source
in the lower right corner of the field of view (Fig. 15a).

Fig. 14. Observed image with an rms phase error of ~ 110°. Peak to peak
noise on the measurement is 20% of the integrated flux of the brightness
distribution. Contours are at (-9, —7, =5, =3, —1,1,3,5,7,9, 11) x
2.0 units
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(b)

Fig. 15. a MEM reconstructed map after
20 jterations using In B form of entropy.
Contour interval = 5.0 units. b MEM re-
constructed map after 20 iterations using
relative entropy function Bln(B/B,).
Contour interval = 5.4 units

6. Concluding remarks

We have shown that the maximum entropy method which has
been working reasonably well as a resolution improvement tech-
nique can be extended to improve the quality of radio astro-
nomical images obtained from the partly phase unstable data.
Before applying the MEM to the problem of resolution improve-
ment it looks important that there should be a way to remove the
observational errors from the known visibilities, as in the pre-
sence of these errors the computation of the unknown visibilities
could lead to erroneous maps. The maximization of the entropy
constrained with the closure phase could give remarkably good
visibility phase refinement. Simple gradient method works sat-
isfactorily to maximize the entropy by iterative technique. The
method more or less converges in 30—40 iterations which in turn
gives a computation time of the order of 60—80 fast Fourier
transforms. Although, the closure constraints do not provide ad-
ditional advantage in the phase refinement for the small phase
errors and for isolated point-like sources, they are rather essen-
tial for reconstructing complex distributions and for large phase
errors. In the presence of noise, when the closure phases are
not accurately known, the reliability of the reconstruction can
be greatly increased by biasing the reconstruction with a model
distribution.

The image reconstruction method presented here for restoring
the astronomical maps obtained from the phase unstable inter-
ferometers could be an alternative to the routinely used ‘self-
calibration’ method. For large fields of view due to repetitive use
of CLEAN, the self-calibration is more time consuming than the
MEM with the closure phase. For extended structures as the
performance of the CLEAN deteriorates, the MEM could be
superior to the ‘self-calibration’.

Finally we would like to point out that instead of the visibility
phases one can formulate the entire problem in terms of the an-
tenna phases. In the antenna oriented approach when all the
visibility phase errors are expressed in terms of corresponding
antenna phase errors, the total number of unknowns reduces
appreciably but the Fourier relation between the brightness dis-
tribution and the antenna phases becomes more complex. There-

fore, it appears that the antenna oriented approach reduces the
number of unknowns only at the expense of computational com-
plexity and may not provide a significant advantage over the
visibility oriented approach presented here.
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