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Abstract. We show that up to second order in the thinness parameter, the equations of equilibrium of a thin,
isolated, axisymmetric, force-free magnetic flux tube in a stratified atmosphere and the other essential
constraints form a mathematically closed system. Auxiliary assumptions about temperature of the tube
plasma are neither needed nor possible.

1. Introduction

Browning and Priest (1984) have modelled the equilibrium of a coronal magnetic flux
tube as a thin, isothermal tube of an axisymmetric force-free field embedded in an
isothermal atmosphere. While determining the equilibrium configuration, they have used
for radial equilibrium in the cross-section planes, an equation given by Parker (1979)
which is valid for a twisted but non-force-free tube whose radius of cross-section does
not vary with length along the axis. They have also ignored the inhomogeneities of
plasma pressure and density in the non-horizontal cross-sections of the tube. In a
force-free field these inhomogeneities are more important than those of the field even if
the plasma pressure is much less than the magnetic pressure.

In this research note, we rederive the equations for equilibrium of a thin, isolated,
axisymmetric, and force-free magnetic tube taking into account the inhomogeneities of
magnetic field, plasma pressure, and plasma density, over the tube’s cross-section, and
the variation of the cross-section diameter, up to the second-order in the parameter
representing the thinness of the tube. The two equations of equilibrium and the three
constraints: (i) constancy of longitudinal magnetic flux, (ii) constancy of plasma pres-
sure on each horizontal plane, even within the tube, and (iii) equality of total pressure
on both sides of the current sheath at the boundary, form a closed system of equations.
Thus there is neither a necessity nor a scope for any auxiliary assumption about the
temperature of the plasma inside the tube. The system of equations is quite complicated
for obtaining, even numerically, the conditions for existence of arch-like solutions in
terms of ‘photospheric’ boundary conditions.
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2. Equations for Equilibrium and Other Constraints

2.1. EQUATIONS FOR GLOBAL EQUILIBRIUM OF THE TUBE

The equilibrium of an element ds of a magnetic flux tube in a stratified atmosphere
requires that

Fg+Fp,+Fem=0,

where the three terms on the left-hand side represent forces due to gravity, plasma
stresses, and electromagnetic stresses acting on the element.
The first two terms can be written as

Fg= - <px>gAlzds

and

d
Fpr= - JpeldeJr as—[— (p;>4l1,]ds,

x

where g is the gravitational acceleration, s is the arc-length measured along the tube axis,
p and p are the plasma pressure and density suffixes i and e represent values inside and
outside the tube, angular brackets ({ )) represent average over area of cross-section
A, d X represents an element of the curved surface X of the tube at which the magnetic
field has reached a zero-value, 1 represents a unit vector normal to d X and 1, is a unit
vector directed vertically upward.

Evaluation of F,,,, as a volume integral of electromagnetic force density would require
integration of infinite force density over the volume of infinitesimally thin current sheath
(wWhose outer surface is X where the field intensity B vanishes). Hence, we write,
alternatively F,,, as a surface integral of the electromagnetic stress tensor &%, over the
surfaces which bound the tube element viz.: cross-sections ‘4’ and ‘4 + 04’ at ‘s’ and
‘s + ds’, respectively, and the portion of X between s and s + ds. Thus:

Fem=J"g’;m'lst+ J (g';m“-a‘%m).(ls-'-61s)dS+J"%m.1£dZ’
A A+ 04 x
where &%, is the electromagnetic stress tensor and d represents increments corre-

sponding to the increment ds in s.
The last term vanishes, for B = 0 on X, and the first two terms together reduce to

g[<_<32>+<33>>ﬂ]ds
dsL\ - 8= 4n 1
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Thus the equation of equilibrium of the tube element reduces to:

- <{p;yAgl,ds - Jpelzd2+d%[— (p;y AL ]ds +

x

+g[(_<32>+<33>

ds 87 4n )Als]dFO' M

Since the flux tube is thin and isolated, the plasma ‘displaced’ by the tube element
would also be in equilibrium in the same surrounding atmosphere with p; and p, identical
to p, and p,. The equilibrium of the displaced plasma would imply

—<pe>AglzdS_J\pe12dz+%[—<pe>A1s]ds=0' (2)
z

Subtracting Equation (2) from Equation (1) we obtain the following equations for
equilibrium of the element:

92 _ (4p gnR?sino (3a)
ds

and
Qiq: {A4p> gnR?cos 0, (3b)

ds

where

Q=[<Ap>+<B‘2>—<BZ>]nR2, @
47 8=

4p = p. - p;; (5a)
Ap=p; = p,. (5b)

R is the radius of the tube at ‘s’ and 6 is the angle made by 1, with horizontal.

2.2. EQUATIONS FOR LOCAL EQUILIBRIUM ALONG THE CROSS-SECTION PLANES

The plasma parameters p, and p, are functions of z specified by the external stratification
and satisfy

dp,
— = —p.8. (6a)
dz

Since B is force-free inside the tube, p; and p; are functions of z, to be determined,
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satisfying

— = —P:g> (6b)

and one must have

D;i = Diy (7

along each horizontal line within any cross-section of the tube, where suffix ‘+’ represents
the value at a point just inside the boundary. The equilibrium of the thin current at the
boundary requires

Diy +Bi/8m=p,. (8)
Thus

p;i=p.—B%[8n )]

on all horizontal lines in the cross-section.
Dividing the cross-section into thin horizontal strips and integrating over the cross-
section, we obtain

2

(dp> = <p> - <pd> =ox (10)
8n
where ( p, > is the same average as in Equation (2) of the ‘displaced’ plasma, and B,
has the same value at all points on the circumference of the cross-section (owing to the
assumed axisymmetry of the field), and is thus a function of the arc length s alone.
The average { p, > can be expressed in terms of the value on the axis, the radius of
the cross-section R to its second power, and the inclination 6 of the axis to horizontal,
in the following manner:

+ R

nR*{p;> = nR?p;, +2 (ddiq) cos? J x(R? ~ x*)1?dx +
z
R

+R

2
+ <——d p;") cos?0 J x2(R? - x*)12dx =

dz
~R

4 2
= nR?p, + FB—(%) cos? 0, (11)
ie.,

2 2
(P> =P+ %(gdp—) cos20, (1
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where the suffix ‘a’ denotes the values on the axis, and x represents the distance of a
horizontal strip of thickness d y from the centre of the cross-section. Similar expressions

hold for (p. >, <p.>,and {p; .
Equation (10) then takes the form

R2 d2 B2
4p, + —| — (4p,) |cos?6=—=%, 12
p 8[(122(17)] o (12)
where
Apa = Pea — Piq -

3. Mathematical Closure of the System of Equations

Following Browning and Priest (1983), the components of a weakly twisted axisymme-
tric force-free field can be written up to second terms in radial coordinate in a local
cylindrical coordinate system r, i, s as:

2
B.=2f - (f +¥), B,=bf, B=-1f, (13)
assuming bR < 1, where

df ., _df

f2fO, f= e (14)
Using these expressions, we obtain up to terms in R?,

B3 =4f% - 2R*f(f" + b*f) + b*R*f* + R*f'?, (152)

(B) =4f* - Rf(f" + bf) + 30°R°f? + 3R*f"2, (15b)

(B?) =4f% - RM(f" + b%f). (15¢)
Equations (4), (10), and (15) yield

R2
0 =~ - 3P°R)f* 3R + 3Rf 7). (16)

Equation (12) takes the form
d2
8ndp, + nRzp (4p,) cos?6= (4 — b*R?>)f? - 2R*ff" + R*"2.  (17)
z

The constancy of the longitudinal magnetic flux in the tube up to second order terms
in R? requires

JBSdAE2fnR2—%i(f” +bf)=F, (18)
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where F is the longitudinal magnetic flux in the tube. Equations (6a) and (6b) yield
together:

4 p.) = - 4p,g sin, (19)
ds

where

Apa=pe_Pia’ Apa'__pe—pia'

By virtue of Equations (4), (5), (11), (15), and (16), Equations (3a), (3b), (17), (18),
and (19) define a closed system of five differential equations in the five functions p,,,
Dias /> R, and 6. Thus it is not necessary to adopt any auxiliary about the temperature
of the plasma in the tube for closing the system of equations. Nor will it be possible to
accommodate any ad hoc assumption about the plasma temperature since the tempera-
ture on the axis 7}, will be determined by the equation of state in terms if p,, and p,,
as'given by the above system.
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