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TWO-DIMENSIONAL PRESSURE STRUCTURE
OF A CORONAL LOOP
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Abstract. The steady-state pressure structure of a solar coronal loop is discussed using the theory of
magneto-hydrodynamical turbulence in cylindrical geometry. The steady state is represented by the
superposition of two Chandrasekhar—Kendall functions. This representation, in principle can delinetate the
three dimensional temperature structure of the coronal loop. In this paper, we have restricted ourselves to
a two dimensional modeling since only this structure submits itself to the scrutiny of the available
observations. The radial as well as the axial variations of the pressure in a constant density loop are
calculated. These variations are found to conform to the observed features of cool core and hot sheath of
the loops as well as to the location of the temperature maximum at the apex of the loop. We find that these
features are not present uniformly all along either the length of the loop or across the radius as will be shown
in the text. We have also discussed the possible oscillatory nature of these pressure variations and the
associated time periods have been estimated.

1. Introduction

The loop or the arch like configuration of the solar active regions has been seen in the
emission at UV, EUV, and X-ray wavelengths (Foukal, 1978; Levine and Withbroe,
1977; Vaiana and Rosner, 1978). The current carrying plasma in the loop supports a
helical form of the magnetic field (Poletto et al., 1975; Krieger et al., 1976; Hood and
Priest, 1979). In earlier papers (Krishan, 1983a, b) the steady-state of a coronal loop
was derived by using Taylor’s hypothesis that the steady-state of a nonlinear turbulent
plasma is a state of minimum energy with a constant value of the magnetic helicity and
this state is represented by a superposition of force-free states describable by
Chandrasekhar—Kendall functions, Taylor (1974), Montgomery et al. (1978). The
magnetic and the velocity fields are expanded in terms of Chandrasekhar—Kendall
functions. Using the MHD equations, the pressure profile is then calculated as a
function of the velocity and the magnetic fields. The present work is an extension of the
earlier work (Krishan, 1983a,b) on coronal loop modeling where only the radial
temperature structure was derived by assuming the plasma to be in a single
Chandrasekhar—Kendall function. In this piece of work, we choose to represent the loop
plasma through the superposition of two Chandrasekhar-Kendall functions. This
brings in the three-dimensional spatial variation (r, 6, z) in the plasma parameters and
the state does not correspond to a force-free state. We have confined ourselves to study
the two-dimensional (r, z) variations of the plasma temperature as the observational
results on the azimuthal variations are not available so far. In the next section, the MHD
equations used to derive the temperature profile are presented. The calculated profiles
are shown graphically in several diagrams which exhibit the rather non-uniform
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behaviour of the plasma temperature. This study provides an alternative way of
describing MHD equilibrium in terms of the conserved quantities like the total energy,
the magnetic helicity and the magnetic fluxes. One can study the statistical mechanics
of the velocity and the magnetic fields (Krishan, 1985). Tsinganos (1981, 1982a, b) has
studied the equilibrium of an ideal MHD system by treating magnetic vector potential
as a variable. Some of the solutions of the MHD equations do conform to the force free
twisted magnetic field geometry used in the present work.

2. Steady-State Model of Coronal Loops

We represent a coronal loop by a cylindrical column of plasma with periodic boundary
conditions at the ends of the cylinder (z = 0, L). The pressure (p) profile of an
incompressible MHD plasma is given by

72p =V [(V x B) x B] - V-[(V-V)V], (1)

where V, B are respectively the velocity and the magnetic field. The magnetic field B
is defined in Alfvén speed units, i.e. B= B/\/ATrp. Gravity is neglected.

We represent the loop plasma to be in a state produced by the superposition of two
Chandrasekahr—Kendall functions corresponding to (n =m =0) and (n =1, m = 0)
Montgomery et al. (1978). The corresponding fields are given as

B=B,+B,,
where
B, = &40 Coléoho1(30r) + €. 20Jo(o7)]e™,
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Substituting for V,, V,, B, and B, we get the following set of simultaneous partial
differential equations:
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We have also assumed equipartition of energy between the velocity and the magnetic
fields at the scales 4, and 4, . This permits us to put 5, = & and 5, = ¢, . Integration
of Equation (4) yields:
P =Po + (Colotig 1) 311 = T5(357) = J3(7o1)] -
= 2CoCy Ao A oMy [7071J1(0r)1(17) cos kyz +

+ (Aol A1) YiTo(yorWo(pir) cos kyz — (Ao/Ay) ¥ils Q)

where p =p, at (r =0, z = 0).
The normalization constants C, and C, are found to be:

2 _ onny-1 | (2RY kj) 205 R)
|Cil (2nL) l:( 5 ) (1"')'2 {Jl(le)

1

(nR)? )’_%

- Jo()’lR)Jz(?lR)} + 5 {J%(%R) + J%(%R)}] -1 (6)

and

1Col? = (@nL)~! [@ (272(3R) - Jo(7oR) X
X J,(3R) + J%(yoR)}]_ - ™

A, is given by the zeros of J,(y,R). We find y,R ~ 3.8, ,,R ~ 4. 1, is determined from
the relationship

ﬁ _ __5 Yoog/0( Yoo R)

, (3)
lpp L )’OOq Jo( VooqR)

where 1, and , are the toroidal and poloidal magnetic fluxes. We shall calculate A, for
two values of the ratio y,/y, and calculate p(r, z) for each case.

Case I

Let the ratio of the length to the radius be L/R = 5. Assuming /i, = 0.1 gives a value
for A,R = y,R = 1. The relative contribution of the two modes (0, 0, 1) and (1, 0, 1) is
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fixed by assuming that there is less energy in the smaller spatial scale or for CaseI:

22> g2 or M5,
o M

As an illustration, we choose #,/7, = 0.2. From Equations (6) and (7) we estimate:
Co = 1.5034(2nL)~ /3 C, = 0.6505(2nL)~ '/,

The total energy E is given by
E =2(13n + A2m).

The numerical results are presented for E/nR2L = 1 erg cm ~ 3. Using Equation (5) we
plot pressure as a function of r for several values of z in Figure 1a and pressure as a
function of z for several radial positions in Figure 1b. Figure 1a shows that the pressure
or temperature (for constant density) increases towards the surface of the loop at the
bottom (z = 0). It is approximately constant across the radius at the mid point of the
half-loop (z = L/4) and at the apex of the loop (z = L/2) the pressure is maximum at
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Fig. 1. Pressure variations for Case I. (a) Radial variation. (b) Axial variation for radial positions indicated
on the lines.
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the axis and decreases towards the surface. Figure 1b shows a linear axial increase in
pressure at radial positions near (r = 0) and a linear axial decrease of pressure near the
surface (r = R). The pressure is maximum at (r = 0, z = L/2). The plasma acquires a
twisted configuration. The values of the magnetic helicity H,, and the toroidal flux ,
which are the invariants of the system can be estimated from the following defining
relationships:

H,, = 21517 + Ay 1E12 = (Gomg + M),
i2J2 = E[3.28 for ny/ne~0.2.
Assuming E ~ 10?8 ergs (Levine and Withbroe, 1977), wefind: H,, = 0.3 x 10°7 erg cm,

and Y, = 2R &7, CoJ1(7R) = 6.7 x 10'7 maxwells for aloop of volume = 10?® cm? and
length L = 4.3 x 10° cm.

Case 11
R =54 for /i, =1.6
= (2nL)~ 2 x 0.5334,
and here
: Aq 4
A2>n2l2 or ’70<____07
ma: > A3 54
choose

Mol = 0.4.

Figure 2a shows the radial variation of pressure for the three values of z. The
behaviour is qualitatively different in this case. The pressure shows radial oscillations
at the bottom (z = 0) as well as at the top of the loop (z = L/2). The oscillations at the
two axial positions are out of phase and thus form a stationary wave pattern. The spatial
period is approximately 1/y, = R/5.4. If one wants to associate time period to these
oscillations, one needs to study the dynamics of this state which is not being done
presently. One could make what one may call a learned guess by finding the value of
the radial velocity ¥, which itself is a function of the space coordinates. The time period

~ (R/5.4)/(1/\ V,|), where

= 1 C33y1T3 ().

Maximizing J%( y,7) ~ (0.58)* at y,r = 1.8 we find T, ~ 2.5 min. The radial variation
at z = L/4 corresponds to rise in pressure for small r and saturation near the surface.
The axial variation of pressure is shown in Figure 2b. The values of the magnetic helicity
and the toroidal flux are respectively 0.1 x 10*” erg cm and (-2 x 10'7) maxwells.

From Equation (5), one notices that the axial variation of pressure is also periodic
with a spatial period 1/L. The corresponding time period could be calculated by knowing
the magnitude of the root mean square axial velocity. We find time periods for axial
variations of the order of few minutes. Finally, for the sake of comparisons, the radial
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Fig. 3. Radial pressure profile in a force-free configuration.
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pressure profile of the loop plasma in a force-free configuration represented by a single
Chandrasekhar—Kendall function » = m = 0 is shown in Figure 3. This configuration
has been discussed in the earlier work (Krishan, 1983b).

3. Conclusions

Representation of the coronal loop plasma in a state generated by the superposition of
two Chandrasekhar—Kendall functions leads to a two-dimensional spatial profile of the
plasma pressure. It is found that the radial variation of pressure corresponding to the
larger spatial widths of the hotter lines does not exist all along the length of the loop.
A twisted configuration of the plasma is obtained. The pressure or the temperature is
still maximum at the top of the loop but only near the axis. For smaller spatial scales
which are determined from the ratio of the toroidal to poloidal magnetic fluxes, the radial
pressure variation exhibits oscillations. Estimates of magnetic helicity are given which
could be checked whenever such observations become available. -
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