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FLOW OF GAS ALONG A MAGNETIC FIELD WITH TIME-DEPENDENT GEOMETRY

S. 8. HASAN and P, VENKATAKRISHNAN

ABOTRAOT

Tha flow of gas along a magnetla fleld with time depsndent geomatry has been atudled, It [a seen that
tha veloolty of tha flow in tha diraotion of ths magnetlc fisld depsnds both on tha magnlitude of tha veloolty of
flow poerpendloular 10 the fisld 2s well as on Its spsatial varlation. Further, the naiure of the flow la not very
sansltive 10 the ohalae of bass temparature and polytropls Index, The applloation of thls study to magnatofluld
dynemlo flow on the Sun Iv disoussad,

Kay words ! fluld dynamlos—one dimansional unstaady flow : sstrophysles—Sun—magnatotiuld dynamios

1. Introduation

The study of ges flow along a magnetlo fleld with time-dependent geometry Is of conelderable Interest to
astrophysics. A wide varlety of flows have baen observed on the Sun, which appeer to be ohannelled by mag-
netlo flelds. The present study wes undertaken mainly to understand the behavlour of such flows when the
conflguration of the magnetic flald changes with tima.

Among the various complexities whigh exist for flows [n ths solar atmosphere are the presence of gravity,
the curvature of magnetlo flelds, the compressibiilty of gas, partlal jonlzation of matter and energy losses and
galns In the gulse of radlation, conductlon and heating by waves. To study flows Including all these features
la 8 formldable tesk, There le also the danger of ewampling essential Informatlon In a deluge of detalls. As a
{irst step, therefote, we have concentrated on tha effeot of the change In geometry of the fleld on the motion of
ges along It  For this, we presorlbe the veloalty of a fleld line normal to [tselt and Integrate the equation of
motlon parallel to the flald. The necessary coupling between the normel and parallel velooitles |8 provided by
the oontinulty equation where the full effects of compraeslbllity have been Incorporated. The energy equation
ls replaced by a polytroplo law to almplify the mathemationl analysls.

2. Initlal Gaometry of the Magnetio Fleld

It |s aasumed thet the megnetic fleld (e In the y-z plane, with gravity acting in the negative z-direstion.
It Is convenient to transform to a ourvllinear system of coordinates conslating of unit vectors s and » In the
direotlon of the tangent end the cutwerd normal to the fleld line reapectively. The maln equations are con-
aldered In thls curvllinear system whereas, for determining the stream geomsetry as a functlon of time, It [e more
convenlent to conslder cartealan coordinates. The apace and time derivatives of the unit veators » and n are

given by :
ot at ‘as R 'an R.
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where @ [a the angle bstween the flsld [Ine and the vartical and R and Ra ars the radll of ourvature of the. lin§
and its orthoganal reapsotively,
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The Initlal magnetio conflguration [e asaumed to have a potentlal form given by:
By = Boe™™ ginky; B.=Boe™™ cosky: (2.2)

where By and B, are the horlzontel and vertical components of the fleld and k ls & constant which represents
the degree of curvature of the line, The equation of & fleld iine |s easlly determined as:

aln {ky) = aln (ky.) e* , (2.3)
where y» (s the value of y et the baae of the fleld Ilne. We aleo see that

8 =ky;

R = (kelnky) ™! ; (2.4)

An = (k cosky) 1,

3. The Magnatofluld Dynamical Equations

The magnetofiuld dynamical equations for an Infinltely conducting fluld are

24y V) =0 .10
and V
p (B Vv V) ——vprputt, (3.1b)

where p Is the denslty, V the veloclty, p the pressure, @ the acceleratlon due to gravity and f reprasents all
other body forces, for example, the Lorentz force due to the magnetla fleld. The energy equation la replaced by

the polytropla law,
a? = T'RT, (3.10)

where a |s the sound spsed, R Is the gaa constant, T la the temperaturo and I' I8 the polytroplo Index which la
unlty for the |sothermal cass.

As mentloned earlier, we shall conslder only the equation of motion paralis! to the fleld and prescribe Vn,
the veloclty normel to the fleld, In place of the leteral equatlon of motlon. (For & slmllar procedurs In the
context of coronal magnstlc reconnaction, see Kopp and Pneuman, 1876). The equatlon of matlon along the
1leld line can now be written as:

BV. aV. av, - 1_P 30 Vo Vs 2 92
Bt +V| Vn 3N s a8 gooa0+Vn R ——+ V; an (3.2)

where V, la the veloolty parallel to the fleld and p s the pressure. We can recest equatlon (3.2) In & freme of
referance moving with the fleld line as:

DVu Dvl - _1_ D E_ E_o Vn Vl
bt tViDy = " De 90088+ Vet S, (3:3)
using the following operator relationships
D2
Ds s (3.32)
and b
D _a 3
bt =3t Vein - (3.3b)

The equation of continulty (3.1e) oan Ilkewlae be written as:

DV. |I'I 6 VI bVl
st + V. + V. 7t -;—n—-o . (3.4)
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Equetions (3.3) and (3.4), along with equatlon (3.1c), form a hyperbollc sst of partlal differentlal equations
and thersfore possess two real oharacterlstice. The equatlons of the cheracterlstice In the t—a plane are

dt 1 dt 1
(-d'? , u+s nd(ds) u-a’ @.6)
The oharacterletlo equations ars
d V. B dt 1
'EIT(I"'? +T) -A+ o along " Urs (3.08)
and
d V., B dt 1
'a—(ll"lp —_——_ -Aa—--—-alonq 'CT; - a—a' , (3.Bb)
where
A= v ¥y fy 2 (3.80)
an
and p V v
Da
Be ~gcoal + Va 551 Dt .H. (3.3d)

Woe assumad an Inltlal hydrostetlo state glven by

Vo= 0, (3.79)
Vi=0 (3.7b)
and
1/(I'~1)
p(6)=p (© {1 -2 =2EN £} (3.76)

4. Method of Solution

A numeralal method wes used to Integrate equations (3.68) and (3.8b). In thls method all the flow
propertlae were determined at praspecified grid polnte using en Inverse marching method (Zuorow and Hoffman,
1978). Forlllustratlon, the prooadure for detanmining the velacity and pressure at an Interlor point d s desorlbed,
glven the propertles at thrae other apace polnts e, b and o et an earller Instant of time (see Figure 1). If we

d
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q.th 'Ipvaree! mprofingfor Iritsrick pqint.d, .a b.o (4 thie-previous time-lira: de and df are thie right and tsft tunning ohamnrinm-
foppotivaly;
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draw characterlstlcs from d towarde the previous time llne, they wlil mest It at two paints, aay @ and { ree-
pectively. Flow propertlea along the right running cheracterietic will be subscripted, In what follows, wlith a
+ elgn and the —slgn glven for varlebles on the left running cheracteristic. If we cast the equatlons (3.6),
{3.6e) and {3.6b) In finita differance form, we get

(34 -98) = At (u, t8,); (4.19)
(8a —81) = At (u_—a)): (4.1b)
S—,d) + L—M; =l LAty ; (4.10)

In (;:) - (u'{m -Aty_; (4.1d)

where Y, =A, + B, /e, ’

and At Is the time step which waa chosen such that It did not vlolate the Frledrichs-Courent-Lewy criterlon.

Sinoe the flow propaertles and locetlon of points e and f ere not known, these equations must bs solved
Iteratlvely. An Euler predictor-corrector method was used for the iteratlon.

{1
For ‘the predictor algorithm we choaa Inltlally :

(0 (0) (O (o

I.I,,-fu., p,-Pn u_-ul: p--b'
and llkewlse for the geomatric paramsters. These were ussd in equations (4.1a) end (4.1b} to oblaln a flrst
gueaa for the looetlon of points & and f. The flow propertles &1 thess polnts were determined by Interpolating
between the valuas at points a, b and c¢. For subsaquent Iterations In the predictor we assumed :

(ny (—1) () ((—=1) (M~ (=1 (0} (n—=1)
U, = U Ps = Pe u_ = ur p. = Pr

whare the superscripte danote the order of the Iteration. When the caloulated value of s, and ar converged to a
spaoclfled tolerance, the latest veluea of u, and pg were used to caloulate the propertles at point d from

cquations {4.1¢) and (4.1d). In the present atudy, & relstlve convergence to within 10™* wea found to be
generally attalned within flve [teratlona,

Next, the corrector was applled to the above predloated values of us and pa. For tha corrector we assumed

U, - 2 ! p'n 2 []

(ue+ua) p__(Er_+_&)_
L I

Here too, an lteratlon ls required to locate points e and f as well 83 to determine the flow propertles. How-
aver, during thle Iteratlon, the valuee of ua and pa (whloh were determined by the prediotor) are not ohanged.
After obtalning convergencs, us and pa are redetermined. To Improve the accuracy we substituted these
sorrected values of ua and pq beck into equations (4.1) and followed the same steps mentioned above to obtaln

Improved values. The maximum number of predictor lterations was limlted to flve and the gorrector was applied
at most three times,

4.1 Boundary Conditions

The method |@et-desorlbed s only applioable to an Interior point. It Is well known foi tihe-dependent
initlal value problems solved by the method of charaoteristlcs, thet the number of boundary conditlona necessaly
to solve the problem uniquely |s 2—n, where n Is the number of characterlstica orosaing the boundary from an
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Interlor point. In the present case, the left cheracterlstic doag not cross the right boundary end the right
characteristlo does not cross the Jeft boundary. Hence we require one boundary condltlon each at the twe
boundarles; We usad two dlfferent conditlona for the left (lower) boundery, namsly

u=af{l-oe7th) {(4.1.1)

or
p = constant. {4.1.2)

For the tight {top) boundary we prescribed the value of u extrepaleted from two preceeding spaca points. This
boundary condition essured a8 smooth termination of the apetlel velocity and preasure runs. The equetlon releting
pa and ug along the “misaing” characterlstlo Is raplacsd by'the boundary conditlon which prescribes any one of
wa and pa. The remalning varlable s then determined from the rest of equations (4.1).

4.9 Correction for Distortlon of Grid Dus to Stretohing of Field Llnqa

The prescribed laters| velocity strstched the fleld IInes st evary Ingtant of time. Thls brought on the compli-
catlon of grld distortion. To ellmlnate this, we calculsted the geomstrlc parametsrs of the |ina et certaln pointe
which followad the netural motlon of the [Ine. The squations for the dleplacsment of these pointe are given by

5}’ = Vacoa §; (4.2.12)

dz

aT- "'Vl sln 0 H (4-2-1 b)

dd aVa

dt = 8 ' (4.2.10)
z (t+ At)

fow | (4.2.1d)
2 {l)

1 a0

" cos az (4.2.1e)

where As Is the total dieplacemont In a time At. Equstione (4.2.1a) through (4.2.10) were integrated using an
Euler pradictor-coirector method with a tima slap dt - At'3 to achleve Improved aocuracy., The Integretion and
differsnilation In equations (4 2.1d) and (4.2.1e) 'wgro parformad using Lagrange 3-polint Interpoletlon formulae
(Abramowltz and Stegun, 1966). Having obiained the coordinetes and geometric paramsters at the displaced
polnts, we dstermined them at the orlginal spatlal grld pointa by Lagrange 3-point Interpolstion. Hence the
problems Involvad In a moving grid (llke non-unliorm spatlal step slze) could be eliminated.

§. Cholos of the Lateral Flow

In order to keep the study eufilclently genaral, the following two forme for the lateral veloclty Va wene
consldered :

1) Va = VooxpzfH; (8.1)

where Vo and H ere constants.
1)) Va =V, (t) slnky / sinkyu(t) ; (6.2

WM{B :\}b,-.('t,) = Vo #inkys (1) coskys (t){alnkys (0) Ia the veloclly of the bess point, yu (1} = 2 tan™1 (g
(=M. {t:5 4y} Jo; 11w v - ocordinate, Vo Is a conetant and v and t are given by

=~'y‘. - 2ys (0)/ir," ta' = O, twr
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and
Yi = 2vyi ('r) [11', ty = 7, t>7.

The form (6.1) wae chosen for simplicily. The symbel H denntas the acele helght of the velocity varlation,
which cen be sither poeltlve or negat ve. The form (6.2) ensured thst the geometry ci tha fleld lines was
ponssrved such that the ieletion @ = ky was satlefled st all times. This enabled us to celculate the egquation
of the streamline analytlcally at sech instant of time. The velocity of the bese polnt wea chosen 1o have an
Infital rapld motion followed by a docraase to aimost zero velocity. Such a motlon aimulates n rapid onest of

some [netabllity and [te subsequant quenching by the enhancement of the megnetlc fleld. Flgure 2 deplcta the
soundary of a fleld line moving wlth such a veloclty,
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fig. 2 The streamlines (or mignetlo fleld lines) at diffarent instanta of tima when the flow was according te (B.2). An (nitial valye
Vab =80 km s-! was sssumed for the base veloolty,

8. Desorlption of Results

For purposes of computation, we ahose R=8.2x107 and temparaturea of the order of 10000 K, wvhich are
'yploal of the solar chromoaphare and & represantative fleld length of 2000 km. We sea thsat the cholee of bese
.emperature does not critlcally afiect the beslo nature of the flow. Hence, the desorlptlon of resulta tha! follows
|3 applicabla for diffarent tamparatures as woall.

The equttlona (3.8a, b) wers first solved using the farm for the normal veloclty given by equation (B.1).
The results exhlblted aeveral Interasiing featuras. The most obvlous one ls thet the paorallel fiow |s always
Inltlated In the direction of Incrassing | Vn|. Flgure 3 showa this result expllicitly for I'~1 (lsotheimal flow).
Here the value of V, 8t the base Is 10 km s~! for the case where it Increases In the posltlve s-dlrection whereas

lhe bese velocity le set equal to 80 km 87! |n the case wiiers |Vn| deoreasss with s, The scale helgat of
varlailon in both cesea la 1000 km,

There ls no drastlo change In the flow propertiee when different values of ', the polytropls Index are
assumed. 1n Flgure 4, the results are deplcted for flve values of I' {Including the leothcrmal case) for a base
temperature ~B000 K and a baee veloclty Vs ~600 m 8™!, The scale height of velocity vatlatlon |s BOO km with
| Va | decreasing with helght. In all cases there are downdrafts for all times except for the slngle cass where
<1 (elmulating tempersture Increesing with halght)., Even In thle exceptional case, the behavlour after e
sufflolently long time tenda to be simllar 10 the other four cases, Hence, using I' =1 for the subsequant com-
putations doea not lead to any lose of generality.

Considar now the second form for Va according to equetion 6.2, In thls oaae, the diraation of parallel flow
la once agaln along the direction of Incresaing |Va|. Tha effect of boundery conditlons and Inltlal conditions
oan be easslly dlscemed In flgures B and 6 where the apatlal veloclly and pressure (or denslty) runa for three
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Flg. 3 The run of perallel veloalty at different tivea ls ahown for He=s — 1000 km and Ve = 80 km o-1 (&t t=0) by solkd lines, and
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dlifferent Instents of time are shown. A emall kink cen be seen propsagating downstream with & velocity
spproximately equal to 2B km s™1. At later times, a second kink le also seen. Tho first kink could be due to
the Initlal condltlon of saudden onsst of the leteiel flow while the second paek could be due to the boundary
condition (4.2.1) where wa prescribc tha perallel velocity V. st tha base. This la bormo out by Figures 7 and 8
whare a smoother boundery conditlon of constant base pressure |8 assumed. Here we sto only one kink which
propagates downstresm with a speed of roughly 16 kma™!. We Identlfy thia kink as the one due to the nitlal
condltions. Table 1 glves the posltlons of the kinke at varlous Instants of time. Figures 9 and 10 show the
temporal behavlour of the velocity arnd pressure at two dlfferent epace polnts with boundary condlticns {4.2.1)

' 1-—-'_ ll-nrlllllo w-! ) ! o L T o ' I ° ilnlll :H”l-“‘ I i ' '
10} a "e- -
, i .l. 1
| i i
.E‘ 10 d1 = .
: i
a 4 = » N
£ g |
1o :
T I i
_———-'_'_-—_—'—
L Inds - i
[] [ : & : R l'h_h—'lll_--l#“ ' in [1.] L ﬁlll 1 1998 980 1
SIBTARCE (hm)=—p AISTANCE (M} =i
Fig. 8 The spatial variation ol parallel velooily ai differant Plg. 8 Tha epetlel vanation of pressure {denmity) st differant
times 18 shawn for en inltlal oholce Vo == 80 km =1 with the times for &n Initlal gholoe Vab == 80 km &1 with boundary gon-
boundary aonditlon (4.1.1). dition {4.1.1).
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Fig. 8 Spatial varlation of pressura (dsnelty) at diffaront times
for an Initial aholoa Vas = 80 km e-!, with boundary eondition
{4.1.2).
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Pig. 8 Tima varlallon of veloalty (solld [Inos) and pressuro/
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{(4.1.1),
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Flg. 10 Tima varlatlon of valocity (eolld Ines) and pressure
density (dashes) for Vv =80 km -1, with boundary oonditics
(4.1.2).

Tabla 1, Approximale positions of valoally end pressura kinks of Pigs, 6, 0, 7 and @ at dif{arent
Inslants of tima. Appearanca of twe values In a column Indloatss two kinks,

Posltlon of Posltion of Vealoalty of prepegation of
"'::’“ “2‘:; Pressure kink  Veloalty Kink kink (km 1)
) (km}) ____(im) Voloalty Prassure

3 0 100 - —

6 14 300 400 27 27
a2 800,300 800,0 22 28

3 0 200 —_ —_

7m 28 300 800 10 14
us 800 1000 13 17

and (4.2,2) respectivaly. In both oassa there la arlse to peak veloclty followsd by 8 decline. The deoline It
dua to the rapld diminutlon of the lateral flow around 20 seconda. The peak velocltles are different slnce ths
Initlal values for Vx &l the baee are different {aquel to 80 km 8~} respectlvely}. We find that emaller atarting
velues for V, produces smaller parallel flows. The dacline of the parallel flow ls on a time scale comparable tc
the acoustio travel time over the length of the fleld line partlolpating In the Isteral motion. For a total lengt!
of 2000 km for the fleld IIns, the 1ime scale of decline s approximately 70s. Flgure 11 shows the tempora
behavlour of the paraliel flow when & field |Ine of length 4000 km ls coneldered, The behaviour Is slmllsr t
that In the shorter fleld Iine, but the deciine of the paralle! flow Indloates a reiaxation time of approximatel
300 seconds. The beheviour of the Iateral flow Va le aleo plotted alongalde for the sake of [llustration. The
sffoet of curvature of fleld lines can be eesn clearly In Flgure 12. The larger the cutvature, the larger la the peal

veioblty attalned.
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Fig, 11. Tine varlatlon of parallel veloolty (solld line} and normal volooity (dashes) at a=20800 km for a total fleld length of
4000 km and Ve = 60 km #-!, boundary condition (4.1.2) wan uassd,
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Fig. 12, The effect of curvature on the tamparal diastrihution of veloslty at 8=1700 km Is deplotad. A valus of 20000K for the
temperature and an Inltlal normal veloolty Vab =80 km s-1 ware used.

7.

Conoluslons and Discussion

The main results obtalned from the present study are :

1) For the range of polytroplo Indloea consldared, the gas s acoelerated In the direction of Increasing

lateral volooltg.
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2) The peak velocity attalned by the parallel flow depends on the magnltude of the Inltlal base velocity of
the lateral flow.

3) The larger the curvature of the fleld line, the greater Is the peak veloclty attalned by the parallel flow.

4) The relaxatlon time for the decline of the parellel flow (In the ebeence of the lateral flow) dcpends on
the length of flald |ine coneldered.

6) The baslc nature of the flow s not grestly Influenced by the cholce of bass tempereture or polytroplc
Index.

Regults (1) through (3) can be simply understood as due to the dominance of the term Ve g—t' In equation
(3.3). The non-uniform leteral motlon of a line elsment Imposes on the assocleted fluld element : (1)} a trans-
lational motion of Its centre of gravity along & curved psth and {2) e rotatlon eround the oentre of gravity. The
term V, Pb"i can then be Interpreted as a centrlfugal acceleration due to the translatlonal motlon along the curved
path (centrifugal forces dus to rotatlon of the line alement cancel out when Integreted over the fleld line.) The
diraction of this centrifugel acceleratlon ls In the dlrectlon of incressing |Va|. Moreover, the magnitude of
the accelersation will depend both on the magnitude of Va end the emount of curveture of the fleld line, The
dependoanca of the relaxetlon time on the length of the fleld Ilne can be understood In terme of the finlte time
taken for pressure dlaturbances to traverae the length of the line. Flnally the weak dependence of the flow on

the temperaturo Indicstes thet the flow doee not cause any major alteratlon [n the balence between grevity end
tha presgure gradient.

8. Applloations

On the Sun, there are several kinds of flow sltuationa., According to Deubner (1875), very large downdrafta
(~2km s7!) can be Inferrod to be present In the derk Intergranuler lanes. There are downdrafta (~100 to 200m s™1)
at the borders of supergranulation cells end It ls generally agreed that the meln downdrafte ocour In very
locallsed magnetic reglons at the call boundary (Bohm, 1878 ; Glovanelll, 1860). There &re also strong down-
flows (~3km a™!) gssoclated with the birth of sunspats end actlve reglons (Zwaen, 1978) which have besn
modolled In terme of matter sllding down along rieing magnetlo flux tubea {Shibata, 1980). For examples of
outward flows (or updraiis) we have splcules In the chromosphere and high speed eolar wind streame presumably
orlginating In coronal holee. All these flows have the common propeity of belng highly locelised and In ell
probebility are channslled by magnetlo flelde. 11 {s not unreallstic to think of eltuatione where & change In the
flald geometry cen take place, for example by meane cf hydromagnetic or thermel Insteblililes, or "buffeting’
of the fald lines by extemnal flows, The present study shows the extent of the resulting paralie! flow glven the
magnltude of the leteral flows, Conversely, It Indicat€e the magnitude of the [ateral flows necessery If the
observed flowa are In fact caused by changes [n the magnetic fleld gsomatry.

9. Summary

The time varlation of the shape of a magnetic fleld line produces a oentrifugal accsleration along the [Ine,
This accelsretlon Induoes gea flow along the magnetic fleld. There are aeveral flows observed on the Sun,
which could be a manifegtation of such a time verlation In tho megnetic fleld geometry end this atudy indlcates

10 degree of varlation required to cause the flows.
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