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ABSTRACT

We derive the time-dependent transfer equation for a two-level atomic model taking into account bound-
bound and bound-free transitions. The form of the transfer equation is similar in both the cases. We also
propose a numerical scheme for solving the monochromatic time-dependent transfer equation when the time
spent by the photon in the absorbed state is significant. The numerical method can be easily extended to solve
the problem of time-dependent line formation or the bound-free continuum. We used this method to study
three types of boundary conditions for the incident radiation on a scattering atmosphere. They are (1) an
isotropic pulse, (2) a pulse of collimated radiation, and (3) a constant input of isotropic radiation. We present
numerical results of the angular distribution of the time-dependent reflected and emergent intensities for
various collisional de-excitation parameter values and also for different total optical depths T of the medium.
The quantitative results show that the relaxation of the radiation field depends on the optical depth of the
medium and also on the angle of emergence of the ray.

Subject headings: line formation — radiative transfer

I. INTRODUCTION

Two important quantities characterize the time dependence
of a radiation field in its interaction with quantized atomic
states. One quantity is the average time spent by the photon in
the absorbed state, ¢, (the upper state relaxation time), and the
other is the average time spent by a photon between two suc-
cessive scatterings, t ;. In most of the cases, one of these charac-
teristic times is dominant and determines the temporal
behavior of the radiation field. For a resonance line transition,
normally the upper level is broadened only radiatively, and
therefore t, = 1/4,,, where A4,, is the Einstein spontaneous
emission coefficient; t, is usually of the order 1072 s. For a
model atom consisting of a ground-level and continuum, the
recombination time f, = 1/R,;, where R, is the radiative
recombination rate. In the case of the Lyman continuum, t, ~
5 x 10*%(T)?/N, (Kneer 1976), where T and N, are the tem-
perature and electron density, respectively. Its value for
T = 6000 K and photospheric densities of N, = 1013 cm ™3 is
of the order of 1 s or less. However, for the same temperature
and chromospheric electron densities of the order of 10!°
cm 3, the recombination time has grown to the order of
minutes. Due to the finite travel time of the photon, time spent
by a photon between successive scatterings ¢, is given by the
relation t, = 1/(knc), where k is the absorption coefficient per
particle, n is the number density of the particles, and ¢ is the
velocity of light. The quantity ¢, connects the time derivative
with other terms in the transfer equation. In a low-density
medium like planetary nebula, for a resonance line (e.g., Ly),
we haven ~ 1/cm® k = 1072 cm?,and t; ~ 10%s.

Time dependence must be considered in a scattering atmo-
sphere when the relaxation time of the radiation ¢, is compara-
ble to or longer than the characteristic time for changes in the
impinging radiation field on the medium (Kunasz 1983). In an
optically thick gas, where the photon is scattered many times
before escape or destruction, ¢, is comparable to the mean time
spent by a photon in the gas, t,, and is usually greater than ¢z,
or t,. The term ¢, is related to t, and ¢, by the relation ¢, =
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{L)/c + {N>t,, where (L) and {N) are the mean path length
and mean number of scatterings of the photon, respectively. In
this paper we will study only the effects of ¢, on radiative
transfer and neglect the influence of ¢ .

a) Astrophysical Applications

Time-dependent transfer effects will be important in the
study of objects like active galactic nuclei, quasi-stellar objects,
supernovae, and compact objects with accretion disks. They
are also important when the source of energizing radiation is
intrinsically constant but suddenly occulted or reinstated, as in
planctary atmospheres or close binaries. The photon flight
time t, is important in low-density atmospheres, whereas ¢,
(usually the recombination time scale) is significant in high-
density atmospheres for the study of time-dependent astro-
physical phenomena.

Simultaneous observations using X-ray satellites and
ground-based optical telescopes have detected many pairs of
coincident X-ray and optical bursts (Pederson et al. 1982; see
also Hartmann and Woosley 1988). In all the cases, the optical
flux is delayed with respect to X-rays by typically 1-4 s. Tem-
poral burst profiles are similar in the optical and the X-ray
band, but the optical emission is significantly wider. To explain
these characteristics, Cominsky, London, and Klein (1987) per-
formed numerical calculations of the reprocessing of high-
energy X-radiation by solving the nonlinear diffusion equation.
In the reprocessing scenario, intense bursts of high-energy
X-rays are assumed to be emitted at irregular intervals from a
neutron star in a close binary system with a low-mass compan-
ion star. In many cases, the radiative response of the illumi-
nated atmosphere is very rapid, and the duration of the optical
radiation depends on the duration of the impinging X-ray radi-
ation. However, in certain cases, the reprocessed radiation is
trapped in the medium by large opacity, and thus emerges on a
much longer time scale. Though the models of Cominsky,
London, and Klein (1987) explain the observations, the
detailed time-dependent radiative transfer calculations of the
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bound-free continuum may help further in understanding the
physical conditions of these objects. Future observational
studies may show more evidence of the effects of the time-
dependent radiative transfer due to the advances in astronomi-
cal detectors which will give us higher time resolution.

b) Laboratory Applications

In an optically thin gas, the time decay of the radiation field
from the medium is ~e~ 42t In an optically thick medium,
where the photon is scattered several times, the decay will be
much slower. Knowledge of the radiative decay rate, which is
defined as the rate at which the energy in the excited state
decays by means of radiative transfer, has important applica-
tions in laboratory physics. One practical application is in the
design of fluorescent lamps. In these lamps, it is necessary to
calculate the radiative decay rates of the Hg resonance radi-
ation at the 42537 and 11849 caused by radiation trapping
process (see Post 1986 for a detailed discussion). The study of
time-dependent transfer is also useful in the measurements of
transition probabilities.

Laboratory experiments which involve optically thick
vapors are influenced by radiative trapping and diffusion.
Huennekkens and Gallagher (1982) have measured the time-
dependent fluorescence of sodium D lines following pulsed
excitation of one D line, in the presence of radiation trapping
with optical depths of ~10-2000. Measurements of the funda-
mental decay rate for the Hg resonance in cylindrical geometry
have been reported (Post, Van deWeiger, and Cremers 1986).
Recently, the spatial and temporal evolution of excited atoms
in an optically thick magnesium vapor after an initial pulsed
laser excitation has been studied using a delayed pulsed probe
(Streater, Molander, and Cooper 1988). From the approximate
treatment of the transfer equation with ¢, > t,, they found a
solution for the time-dependent transfer equation with partial
frequency redistribution that showed better agreement with
the experimental results than the complete redistribution cal-
culations.

¢) Past Work

Sobolev (1963) obtained the reflection function through
probabilistic arguments by considering the time spent by a
photon in the absorbed state for semi-infinite media. Combin-
ing the time-dependent principle of invariance and the inverse
method of Bellman, Kalaba, and Locke (1986), Matsumoto
(1974) obtained the solution for semi-infinite homogeneous
media by taking into account both t, and ¢ . However, for the
techniques using the Laplace transforms, the numerical inver-
sion process is ill-conditioned and often leads to unreliable
results. Later, Matsumoto (1976) obtained a Von Neumann
series solution for the Laplace transform of the equation. The
series solution is separable into a time like factor and an angle
factor. The angular factors are identical to those developed by
Uesugi and Irvine (1970) in the theory of order of scatterings
for the stationary case. Ganapol and Matsumoto (1986)
extended the analysis to obtain a numerical evaluation for the
reflected intensity from an anisotropically scattering atmo-
sphere. Though the above methods are useful for studying the
simple physical phenomena, and the results can be used as
benchmarks for other numerical methods employing dis-
cretizations, they have certain disadvantages. They deal only
with certain idealized cases like semi-infinite media. It is diffi-
cult to extend these techniques to time-dependent line transfer
process where the source function contains the contribution

from all the frequencies in the line. The numerical technique
based on finite differences can tackle efficiently these problems.

In Appendix A, we derive the time-dependent line transfer
equation under the assumption of complete redistribution. We
obtain Milne’s (1926) form of the transfer equation if we
assume a square absorption profile. In this equation, the radi-
ation field in one frequency does not depend on the radiation
field in other frequencies; we call this case monochromatic
radiative transfer. One of the earliest attempts to solve this
equation was made by Chandrasekhar (1950), who obtained a
series solution. Milne’s theory may not be valid for an optically
thick medium, where the escape of the radiation takes place
through the line wings. Then we have to consider the detailed
line transfer equation.

In Appendix B, we derive the time-dependent transfer equa-
tion for a bound-free transition. Our atomic model consists of
only one bound and one free state. We can derive the mono-
chromatic transfer equation by noting that for hv/kT > 1, the
frequency variation of J, and B, show so rapid a drop with
increasing v that most of the contribution to the photoioniza-
tion and recombination rate integrals come from v = v,
(Mihalas 1978). The form of the transfer equation is similar to
the line transfer equation derived in Appendix A. Hence the
numerical technique which we have proposed in this paper can
also be employed to study the problem of time-dependent
bound-free continuum.

In § II, we shall propose a numerical scheme based on the
discrete space theory of radiative transfer (Grant and Hunt
1969a, b) to solve the time-dependent radiative transfer equa-
tion for a square absorption profile. In § ITI, we present the
results for a square absorption profile. We consider the cases
where a slab is illuminated by (1) an isotropic pulse, (2) a pulse
of collimated radiation, and (3) a constant input of isotropic
radiation. Emergent and reflected intensity distributions are
studied for various values of the collisional de-excitation
parameter €. We also evaluate the radiation field for different
optical depths of the medium. Extension of the method to line
transfer problems with the complete and partial frequency
redistribution scattering processes is straightforward, and the
results will be published in forthcoming papers.

II. METHOD OF SOLUTION

In this section, we shall present a numerical method for
solving the time-dependent transfer equation when the profile
function is a square profile. As we can see from Appendix A,
the transfer equation for this case is (we change the sign of the
right side of eq. [A21], due to our convention of measuring x in
the direction in which the optical depth is increasing):

dI ! , ar
,u(—") =(1—¢ J e“‘_"/“'JVT +eB(1—e ) —1,.
o

dt »
@

Due to our assumption that the number density of the excited
atoms n, at time ¢t = 0 is O (see eq. [A4]), the thermal term in
equation (1) vanishes at t = 0. We divide equation (1) into two
equations, one for radiation traveling in the direction,
(0 < p < 1), and the other equation for the radiation traveling
in the opposite direction, —u. We will omit the subscript v
from the equations and write I = I(t, 7, u) and € = €(7). For
simplicity’s sake, we shall omit the dependence of ¢, on 7.
Sometimes it is convenient to distinguish between the
attenuated incident radiation which penetrates to a depth 7 at
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time ¢ and the diffuse radiation I(t, 7, ) that results as a conse-
quence of multiple scattering processes. Then the transfer
equation for the diffuse radiation is given by

oI, T, + 1-— t codt !
u o s _L 26(7)] J e t—j LI, 7, &)
0 a JO

- 0t

+I(t, T, —p))dw + K(t, 7, o) — I(t, 7, £, (2)

where
K(t, T, @) = h(t, t, p) + €B(x)(1 — e~ ") .

The function h is the source term due to the directly transmit-
ted radiation and is independent of x for isotropic scattering
problems. The form of h will be discussed later in the text for
each individual case.

For a slab atmosphere, with a given incident radiation input
on the lower boundary of the atmosphere and with zero inci-
dent intensity on the other boundary, the boundary conditions
for equation (1) are

It,c=T, —p)=ftn,
It,t=0,0)=0, )
where f (t, 1) is a given function. The diffuse intensity satisfies
It,7=T, —p) =
It,T=0,u)=0. “)

We shall approximate the angular integral in equation (2) as

1 J
J I(t, T, ﬂ’)dﬂl = 'Zl I(t’ T, ﬂj)cj > (5)
i=
where the coefficient ¢; and angle cosines u; are determined by
the Gauss-Legendre quadrature of order J. We consider for the
time variable a set of equally spaced points, t; =0, t, =
ty+ At ..., t;=1t, + (i — DAt ... t;, where t, is the last time
point up to which we find the radiation field. We shall approx-
imate the time integral in equation (2) by the trapezoidal quad-
rature formula and write

ti , dt’
j e (e, T, ) —
o t,
i-1
Z a.e —(ti— ’k)/tal(t T, +#]) p—

k=1

At
+a;I(t;, , T u)) 7 fori=2,...,1, (6)
a
where coefficients a,, a,, ... a; are the trapezoidal weights and
are givenby a, = 0.5,q, = 1.0fork=2,...,i— land g; = 0.5
for i =2, ... I. We solve now a sequence of equations starting
from time t = t, up to time ¢ = t,. Since the scattering integral
vanishes from equation (2) for time ¢t = t, = 0, we have
+u a_l(_t_l’_.—L)

L 61: K(th T, /'t])

forj=1,2,...,J. )]

I(tla T, i.uj) >

. We can solve equation (7) either in closed form, since

K(t,, 7, #) is a known function, or one can use a simple
numerical approximation. Having obtained the radiation field
I(t; = 0, t, +u) throughout the medium, we will solve equa-
tion (2) for time ¢ = t, by using the approximations (5) and (6).
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Now the transfer equation for time t = ¢, is

ol(ty, T, Tuy) _ 1 —€() E
= 0t T2 t,

J
x Y, [ty 1) + Itz 7,

j=1
+ K(l)(tZa T, ﬂ]) - I(tz, T, i/‘]) s (8)

—/lj)]az Cj

where
K(l)(tz, T, ﬂ]) = h(tZ, T ”]) + 6(T)B(":)
1-¢) At
2

e t2—t)/ta

e—‘z/!a) 4 — 1
L,

x (1 —

J
X 'Zl [I(tb 7, ﬂ]) + I(th T, _:uj)]al cj .
j=

One can note that K is a known term since it depends on the
directly transmitted radiation, thermal sources, and radiation
field at time ¢,. Also, equation (8) has a similar form to the
time-independent transfer equation

oI, tp) 1 e(r)
= 0t N

Z Uz, ) + I(z,

i=
+ K(T’ .uj) - I(T, i/‘;) ’

ﬂj)]c j

which is the discretized (angular) equivalent of the equation

= 1 _26(1) J: I(z, W)ay'

+ K, p) — I(x, 2p), ®

ol(z, +
+u (01 2]

where

K(z, p) = h(, p) + €()B(z) .
Hence one can solve equation (8) for I(t,, T, +u) by using the
techniques which were employed for equation (9).

We can continue this procedure for obtaining I(t;, 7, 1) by
using the intensity values I(t,, 7, 4), ..., I(t;—,, 7, #). We can
write the transfer equation for I(t;, T, #) by combining equa-
tions (2), (5), and (6):

aI(ti, T, iﬂ]) _ 11— e(T)
T T2

J
X '21 [I(ti’ T, ”1) + I(ti, T, '_”j)]dicj
Jj=

+ K“)(ti, T, /’l]) -

fori=2,...

I(tb 1'-9 i.u_]) >
,I1, forj=1,...,J, (10
where

KM, T, £p) = hit, T, 1)) + (©)B(r)(1 — e ")

i—1

+ Y Z I(t,, 7, tudic;,

k=1 j=1

and

o At
dk =aq,e ti—t)/ta __ s
a

fork=1,...,i (11)
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a) Integration of the Time-Dependent Transfer Equation (10)
over a Shell

We use the discrete space theory technique to solve the
1 above equations. We describe briefly the procedure here. For

“*' details of this method, see Grant and Hunt (1969a, b). Let the

medium be divided into N shells. Now we shall integrate equa-
tion (10) over a shell bounded by layers n and n + 1. First, we
recast the system of equations (10) into a matrix form by defin-
ing the following matrices:

Hy
M= Ha . ,
Hilixy
Ci €3 ... €
c=|% 2 Y (12)
€1 € Cilaxy

and the intensity vector and source vector are
I*(t;, T, Uy)
U@ = :
Ii(ti’ T, U] ax1
KM, 1, py)
KV* (1) = :
KWV, 1, u)fix1

Here subscript i refers to the ith time point. We shall rewrite
equation (10) for all angles in matrix form using equations (12)
and (13). This is given for a postively directed beam as

U @) [1 — @,
ot 2
x (CUY + CU;) + KV (1), (14)
and for a negatively directed beam,
oU; (1:) [1 — e(x)]d;
ot 2
x (CU} + CU;7 )+ KV~ (7). (15)

Now we integrate equations (14) and (15) over the optical
depth coordinate from 1, to 7, ; . Then we obtain

, fori=2...,1I. (13)

M———= 4+ Ui(r)=

~MEEE L U =

+ + 1)+
MU — UL+ 1,010 Uy = Tas 1/2[K(i,n+ 1/2

1—e), d; _
+ %L (CUiTn+1/2 + CUi,n+ 1/2)] s (16)

MU;, - U i)+ Tr120Uinrip2

— (1 —_ €)n di
=Tps 1/2|:Kg,1.f+ 12t —%2—

xCU,,,+1,2+CU,,,+1,2):l fori=2,...1, (17)
where U;, = Uf(z,), and the variables subscripted with

n+1/2 such as U7, . )5, T,41,2 and €,,,,, are the averages
over the shell whose boundaries are 7, and 7, ;.
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We shall approximate the quantities U;',,,,, and U; ., by
Ulwirg =301 + U3,
and
Uiz =3Winer + U, (18)

which is called the “diamond scheme.” Substituting equation
(18) into equations (16) and (17) and rearranging the terms, we
get

{M + 057, ,,[1— 0.5(1 — €, 4,,)d; C1}

X Uppy1 —0.257,11/5(1 — €,44)2)d; CU;,

= 0257, 1/2(1 — €,412)d; CU; 44
+{M — 0.5t [ - 0.5(1 — €, 124:; CLUL,
+ K12 Tav sz » (19

{M + 0.57,4 12l — 0.5(1 — €, 4 1/2)‘1.'C]}
X Ui, — 0257, 15(1 — €,41,2)d; CUiTnH
= 0.257, 1 1/2(1 — €,41,2)d: CU;,
+{M — 0.5t 1 o[1 — 0.5(1 — €,412)d; CI}U; 44
+ Kg,l::l/z Tn+1/2- (20

Here I is the identity matrix of appropriate dimension. It is
now straightforward to put these equations in the canonical

form
Ulhiil _[tr+ 1L, n)r(n,n+1)
U, ] lrn+Lmtmn+1)

U+ *
x < lln ) + ( IL’H. 1/2 . (21)
iin+1 Z'i,rl+ 1/2
Now we shall express the r (reflection) and ¢ (transmission)
matrices in terms of the following auxiliary matrices:

Qv12 =051 — €.,42)4;C,
St=M-0.51,, 2= Qri1)2)
S= 0.57,41/20n+1/2
4=[M+05t,,,,I— Q)] ",

F=AS, t* =(I—F)!
Then
tin+ 1L, )=t AS* +#) =t(n,n+1),
rin+ 1,n)=t"H [+ AS*)=r(n,n+ 1)
and

1
Z:+ 172 = Tn+1/2 t+(AK( )11/2 + rAKi n+ 1/2)

w12 = Tar12t (AKD L n + FAKD T )
fori=2,...,1. (22)
Once we calculate the r and ¢ operators for each shell, the total

internal radiation field can be calculated using the algorithm
given by Grant and Hunt (1969a, b).

b) Stability Considerations

From physical considerations, we know that the reflection
and transmission operators r and ¢t must be nonnegative. For
this condition to be satisfied, we need to have A >0, $* > 0.
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This condition can be achieved only if

<71_. =mi K .
Treaz S T = N | e e e P
From equation (11), we can see that the maximum value of d; is
At/t, and hence we choose 7, as 2u,. To study the radiation
field with finer time resolution, and also to keep the error term
in the trapezoidal integration formula for the time integral
as low as possible, we choose At/t, ~ 0.2. But if the radiation
field varies in a time scale comparable to t,, we can choose
At/t, ~ 1.
It may be pointed out that Peraiah and Grant (1973) derived
the condition for the r and ¢t matrices to be nonnegative for a
medium without time-dependent transfer effects as

£y (24)

a1z = Teie =M 65051 — €541)2)c,]

i

III. DISCUSSION OF THE SPECIFIC CASES AND THE RESULTS

In this section, we shall discuss in detail the various cases
considered and the transfer equation associated with those
cases. The results of calculation are shown in graphical form.
In all the cases, we assume that no radiation is incident on the
upper boundary of the medium, i.e.,

It,7=0,4)=0. (25)

We set t, = 1 throughout our calculations and time ¢ is mea-
sured in units of ¢,.

a) Effect of an Isotropic Pulsed Input

We consider the cases when an isotropic pulse impinges on
the lower boundary of a homogeneous medium. The boundary
condition for this case is given by

It, =T, —p) = Lo 1,00) , (26)

where d(t) is the Dirac delta function. Now the directly trans-
mitted radiation 1" in the slab is given by equation

9t 7, —p) = Iot,8(t)e T~k

The scattering integral of I is

t 1
ht, 7) = 0.5(1 — e)IOJ J e~ Iag()e =TI dyf dy’
0 JO

1
=0.5(1 — e)Ioe_‘/"'J e~ T gy
o

=051 — elge e T —(T —1E((T —v)], (27)

where E, is the well-known exponential integral of order 1.
Hence the transfer equation for the diffuse intensity is

olt, T, +
4+ u t 7, £p

+1I(t, 7, +p)
ot

t 1
=051 —¢ J I e O I(t, 1, 1)
o Jo

’

dt
+ I(t, , —/t')]d,u’ T + €B(1 — e—z/ta)
1
+05(1 = e j Ty, (28)

0

1+(t)

(1)

RAO, RANGARAJAN, AND PERAIAH

with
It,t=T, —w)=0,
It,7=0,0)=0.

i) Results for a Conservatively Scattering Medium

The computed solutions of equation (28) are shown in
Figures 1-10 for different values of the collisional de-excitation
parameter €. The time-dependent intensities reflected in the
directions z = 0.21 and u = 0.78 are displayed in Figures 1-6
when the total optical depth of the medium is 1, 2, and 15. First
we shall study the results for € = 0, and the effects of thermal
sources will be examined later.

For a conservatively scattering atmosphere (i.e., € = 0), we
can see from Figures 1 and 2 that the reflected radiation for
1 = 0.21 decays more rapidly with time compared to that for
1 = 0.78. The same behavior can be seen from Figures 3 and 4
for T = 2 and from Figures 5 and 6 for T = 15. In Table 1, we

20

1.6

]

1.2

08

rrrJjrrrrrrrgrrrr

01

0.4

0.0

0.0 | | 1 i t 1
0.0 08 16 24 32 L0 48 5.6

t

F1G. 1.—Reflected intensity as a function of time t, at u = 0.21, for different
collisional de-excitation parameters €, when an isotropic pulse is incident on
the medium with total optical depth T = 1.0.

ol
»
=
~
[N | N AR R I

1.0
08
0.6

0.4

F1G. 2—Same as Fig. 1 for 4 = 0.78
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F1G. 4—Same as Fig.2for T = 2.0 FiG. 7—Emergent intensity as a function of time ¢, at 4 = 0.21, for different
collisional de-excitation parameters €, when an isotropic pulse is incident on
the medium with T = 1.0.
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FiG. 5—Same as Fig. 1 with T = 15.0

F1G. 8—Same as Fig. 7 for u = 0.78
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F1G. 9—Same as Fig. 7 with T = 2.0
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FiG. 10.—Same as Fig. 8 with T = 2.0

TABLE 1
DEecAY TIME FOR THE REFLECTED RADIATION®

TIME TAKEN FOR THE
RADIATION FIELD TO

TiME TAKEN FOR THE
RADIATION FIELD TO

ToTAL DEecAY BY 50% DEecAY BY 75%
OPTICAL

DEPTH pn=021 pn=078 pu=021 pn=0.78
| S 12 14 2.6 3.1
20, 1.3 1.8 2.8 4.0
15......... 1.3 1.8 29 44

With a Searchlight Boundary Condition

| BT 14 1.8 32 3.6
2., 1.6 22 3.6 48
15......... 1.6 25 3.6 6.0

For the Emergent Radiation Field with Searchlight Boundary Condition

| S 2.1 1.7 4.1 38
20, 5.2 4.0 9.0 7.7

Note.—Time is measured in units of ¢,
® For the case of conservative scattering atmosphere, with the isotropic
pulse as input.

Vol. 358

show the time taken for the initial reflected radiation to decay
by 50% and by 75% for different optical depths of the medium.
The values remain the same for the radiation reflected in the
direction z = 0.21 for all optical depths of the medium. But for
the radiation reflected in the near normal direction u = 0.78,
the time spent by the photon to decay by 50% and 75%
increases with the optical depth of the medium.

Van de Hulst and Irvine (1963) pointed out that the time-
dependent problem for t, # 0 and t; = 0 is equivalent to the
problem of finding the distribution of photons over the
number of scatterings. All our results can be interpreted using
this fact. A photon reflected at the grazing angle u = 0.21 expe-
riences few scatterings and spends little time before it appears
on the surface. On the other hand, a photon reflected at an
angle nearer to the normal (u =0.78) undergoes a large
number of scatterings and spends a long time before its
reappearance. By similar reasoning, an increase in the optical
depth of the medium has more effect on the photons reflected
in the normal direction than the photons reflected at the
grazing angle.

The emergent intensities are plotted in Figures 7 and 8 for
T =1 and in Figures 9 and 10 for T = 2. Now the photons
emerging along the direction u = 0.78 experiences few scat-
terings, which results in the rapid dropping of the emergent
intensity distribution compared to the photons coming in the
direction z = 0.21. The amount of time taken for the radiation
field to decay by 50% is 2.2 and 1.8 for x# = 0.21 and u = 0.78,
respectively, when T = 1. The values are 7.0 and 4.4 for
1 =0.21 and u = 0.78, respectively, when T = 2. So we can see
that the effect of optical depth is more pronounced for the
time-dependent emergent radiation field than on the reflected
radiation field. The reason may be due to our chosen boundary
condition. The source due to the pulse on the lower boundary
of the medium has maximum value in the lower layers of the
medium. This radiation has to undergo many scatterings
before emerging from the top of the medium. But the
maximum amount of reflected radiation from the lower
boundary comes from the shallow layers of the medium,
undergoing only a few scatterings. Consequently, optical depth
effects are less on the reflected radiation and more on the
emergent time-dependent radiation.

ii) Effects of Thermal Sources

We can see from Figures 1-6 the evolution of a radiation
field to steady state for € = 0. As € increases from 0 to 1, the
contribution of the thermal sources to the radiation field is
enhanced, and the time-dependent intensity reaches a higher
steady state value. We can see from equation (28), that for a
given ¢, the source term due to the pulse (the last term on the
right-hand side of the equation) decreases and the thermal
source (the second term on the right-hand side) saturates to the
value €B as time t — co. This is due to our assumption of a
constant thermal source in the medium.

When we increase €, the photons become thermalized within
fewer scatterings. Hence the radiation reaches steady state at a
faster rate. For example, from Figure 4, we see that the radi-
ation reaches 75% of its steady state value at time point ¢ ~ 1.2
for € = 1.0 and at t ~ 2.0 for € = 0.5. This behavior is common
for both the angles. When € # 0, we have thermal sources
situated throughout the medium, and hence the emergent
intensity does not have characteristics different from those of
the reflected radiation, contrary to the case of conservatively
scattering medium (e = 0). This can be seen from Figures 1-10.
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F1G. 12—Same as Fig. 11 for u = 0.78

Fi1G. 15—Same as Fig. 11 with T = 15.0
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b) Effects of the Searchlight-Beam Boundary Condition on the 10 T T T T T T
Time-dependent Radiation Field L =021 A
A slab is subject to a searchlight beam with Dirac-delta time T=2 €=1.0
. A .2 . 0.8 —
distribution. The incident radiation can be written as
I(t’ T= T’ *#) = IO taa(t)é(ﬂ - ”0) >
06} 0.5 .
It,1=0,1)=0, ) ey
where p, is the cosine of the angle at which the beam falls on 04
the medium. ) 7
i) Results for a Conservatively Scattering Medium — 04 -
The numerical solutions for this case are plotted in Figures 0.2 00 -
11 to 20 for the same set of values of the de-excitation param- : _
eter (e = 0, 0.1, 0.5, and 1) as in the previous case. First we
consider the case of a conservatively scattering medium (e = 0), 0.0 L | —— L 1 1 L Z
and the effect of thermal sources will be studied later. It can be 00 08 16 2¢ 32 40 48 56 64 T2
derived as in the previous case that the source term due to t
directly transmitted radiation is FiG. 13—Sameas Fig. 11 with T = 2.0
h(t, ) = 0.5(1 — €)I,e ag~ (T~ 9ko
We choose I, and p, = 1.
10 ! ! T T T T 1.0
- /“ = 02 1 1
€=1.0
o8- =1 4 os
| . 0.6
N 0.6 05 N
') L 4 1)
0.4 4 os
~ 0.1 .
0.2 q4 02
0.0 0.0
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00 08 16 26 32 4O 4B 56 64 72 0.0 0.8 16 26 32 4LO 48 56 6.4 72
t t
FiG. 11.—Reflected intensity as a function of time ¢, at # = 0.21, for differ- FiG. 14—Same as Fig. 12 with T = 2.0
ent colisional de-excitation parameters €, when a searchlight beam is incident
on the medium with T = 1.0.
0.8 T T T T 1 T T T T 1.0 T T T I T T T
0.7F m=0.78 — - u=0.21 _ s
T=1 o o8k T=15 €=10 B
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0.0 _l ! ] L ] 00 I [ 1 I | ] ! |
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t t
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F1G. 16.—Same as Fig. 12 with T = 15.0 FiG. 19—Same as Fig. 17 with T = 2.0
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F1G. 17—Emergent intensity as a function of time ¢, at u = 0.21, for differ-
ent collisional de-excitation parameters €, when a searchlight beam is incident
on the medium with T = 1.0.
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FiG. 18.—Same as Fig. 17 for u = 0.78
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F1G. 20.—Same as Fig. 18 with T = 2.0

The source term due to the searchlight beam is larger than
the term for the isotropic pulse (compare eq. [27] and the
above equation):

1
0.5¢ teg=(T~7) > (. 5¢ #ta 4[
o

e T~ gy, (30)
Hence the reflected intensity values at earlier time points are
higher than for the case of an isotropic pulse. This can be seen
from the figures for the time-dependent reflected intensities
(Figs. 11 and 12) for 4 = 0.21 and x = 0.78 (T = 1). The same
can be seen from Figures 13 and 14 for T =2, and from
Figures 15 and 16 for T = 15. In Table 1, we tabulated the
values of time taken by the reflected radiation field to decay by
50% and 75%.

From Table 1, we can see that the values are slightly higher
than the quantities for the isotropic case. Also, when u = 0.21,
the values are nearly same for the medium with T =2 and
T = 15. We see that the reflected radiation in the direction
u = 0.78 takes longer time to decay than the radiation reflected
in the grazing angle, as it undergoes a larger number of scat-
terings and spends more time in the medium before it escapes.
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The diffuse emergent intensities are plotted in Figures 17
and 18 when T = 1, and in Figures 19 and 20 when T = 2. The
intensities start with higher values than in the case of the iso-
tropic pulse. In Table 1, the values of time taken by the emer-
gent radiation field to decay by 50% and 75% are tabulated.
We can see from the above table that the values are smaller
compared to the case of the isotropic pulse.

We checked the time-dependent reflected intensities for
T = 15 with the Ganapol and Matsumoto (1986) values for the
semi-infinite atmosphere. We found that the results for the
semi-infinite atmosphere, using their code, agreed within 5% to
our calculations of reflected intensities from a medium with
T = 15.0.

ii) Effect of Constant Thermal Source

We see from Figures 11-16 that the radiation field evolves to
the steady state for € = 0 as in the case when an isotropic pulse
impinges on the medium. We see that the reflected radiation
increases with time and reaches the steady state. When € = 0.1,
we see that the radiation field is a slowly varying function of
time.

The effect of thermal sources on the transmitted intensities
for 4 = 0.1 and x = 0.78 can be seen in Figures 17 and 18 when
T =1 and in Figures 19 and 20 when T = 2. They all reach
steady state as t — oo for € # 0 as in the case of the reflected
radiation.

¢) Effect of Constant Input of Radiation

A slab is subjected to a constant input of radiation. The
boundary condition is given by

It,==T, —p) = H@), (31)
where H(t) is the Heaviside unit step function defined by
Ht) =0 fort<O,
=1 fort>0. (32)

Now the incident distribution is nonsingular, and so we
solve the transfer equation directly without taking recourse to
the steps of splitting the radiation field into directly transmit-
ted and diffuse radiation field.

The reflected intensities for u =021 and u=0.78 are
plotted in Figures 21 and 22 for different collisional de-
excitation parameter values (¢ = 0, 0.5, and 1.0) for T = 2. For
a conservatively scattering medium, if we consider the time ¥ at
which the ratio I(#, T, p)/I(T, ) is 0.5, [I(T, p) is the steady
state value], ¥ is 1.5 for 4 = 0.21, and 1.9 for x4 = 0.78. Hence
the photons reflected in the direction x4 = 0.21 approach the
steady state faster than the photons reflected in the normal
direction. As explained previously, the photons reflected in the
grazing direction experience few scatterings and hence spend
less time in the medium. Evolution of the radiation field to the
steady state is faster, since thermal sources increase in the
medium. The time 7 at which the radiation field builds to 50%
of the steady state is nearly same for the radiation reflected in
both the directions. This is because the thermal sources domi-
nate the picture and they are isotropic. The 7 is 1.1 and 0.7 for
€ = 0.5 and 1.0, respectively. The reflected intensity distribu-
tion when T = 15.0 is plotted in Figures 25 and 26. The ¥ is 2.0
and 3.0 for a conservatively scattering atmosphere. When
thermal sources are present, ¥ is nearly the same for both the
angles and is equal to 1.1 for € = 0.5 and 0.7 for € = 1.0.
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F1G. 21.—Reflected intensity as a function of time ¢, at x = 0.21, for differ-
ent collisional de-excitation parameters €, when a constant isotropic radiation
is incident on the medium with T = 2.0.
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F1G. 23.—Emergent intensity as a function of time ¢, at 4 = 0.21, for differ-
ent collisional de-excitation parameters €, when a constant isotropic radiation
is incident on the medium with total optical depth T = 2.0.
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10 The time-dependent emergent intensities are plotted in
Figures 23 and 24 when T = 2.0. The value of ¥ to which we
referred earlier is 3.2 and 1.8 for 4 = 0.21 and u = 0.78, respec-
0.8 tively, when € = 0.0. From this, we can see that the emergent
photons coming in the directions u = 0.78 reach the steady
state faster. The ¥ is 1.1 and 0.7 for both the angles when

0.6 € = 0.5 and 1.0, respectively.
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FiG. 24—Same as Fig. 23 for z = 0.78
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FiG. 25.—Same as Fig. 21 with T = 15.0
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FiG. 26.—Same as Fig. 22 with T = 15.0

d) Discussion of the Numerical Checks Employed to
Verify the Results

To verify whether the time-dependent radiation field is area-
ching the correct steady state value, we solved separately the
time-independent radiative transfer equation using the method
due to Peraiah and Grant (1973). We found that the steady
state values attained by the time-dependent radiation field as
t — oo tallied with the solutions of the steady state equation
within 1%.

We should note that the steady state value, which is attained
by the time-dependent radiation field when a constant source
of radiation impinges on the medium, is independent of the
value of t,. We should also note that the numerical value of the
time-dependent radiation field can reach a correct steady state
value even if an error is committed in the calculation of the
radiation field at initial time points. As an additional check for
the radiation at earlier times, we compared the time-dependent
reflected intensity distribution for a conservatively scattering
atmosphere with T = 15.0 with those of the Ganapol and Mat-
sumoto (1986) results for the semi-infinite atmosphere.

IV. CONCLUSIONS

We have showed quantitatively that the time-dependent
problem for t, > t, is the same as finding the distribution of
photons over the number of scatterings. When an isotropic
pulsed beam of radiation impinges on a conservatively scat-
tering medium, the reflected intensity distribution decays grad-
ually with time as the reflected ray approaches the normal
direction. For the same input of radiation, if the thermal
sources are present in the medium (€ # 0), the emergent and
reflected intensity distributions reach to their respective steady
state values, and as € increases, they reach the steady state
values at a faster rate, irrespective of the direction of the radi-
ation field. If a conservatively scattering medium is subjected
to an isotropic radiation of constant intensity, the reflected
intensity distribution reaches the steady state faster as the
angle of reflection approaches the grazing angle. The transmit-
ted intensity distribution reaches the steady state faster when
the transmitted ray approaches the normal direction.

One of us (D.M.R.) would like to thank B. D. Ganapol for
supplying the Fortran code for calculating the time-dependent
radiation field in semi-infinite atmosphere, and W. Kalkofen
for some useful suggestions. We thank M. Sreenivasa Rao and
B. A. Varghese for help in preparation of the manuscript. We
are grateful to the unknown referee for improving the text.
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APPENDIX A
DERIVATION OF THE TIME-DEPENDENT LINE TRANSFER EQUATION

The rate equation for a two-level atom is given by

on,

"1(312 f¢v"vdv + Clz) - "2<A21 + By, J¢vJvdv + C21> = (A1)

where the symbols have their usual meanings.
For resonance lines, n, may be taken as a constant and independent of time. With this approximation, equation (A1) becomes

2 (ﬁ> + <ﬁg><A21 + By, J¢v"’vdv + C21> = <B12 J‘bv‘]vdv + sz) . (A2)
at \n, ny

Solution of equation (A2) for ratio n,/n; will contain terms which are non-linear in the radiation field. Then it is difficult to obtain a
compact form for the time-dependent line source function if one includes the stimulated emission terms, unlike in the case of the
steady state derivation. Therefore we will neglect stimulated emission and obtain a simpler relation in terms of the radiation field.
This assumption is justified, since stimulated emission is important only in very few cases of common interest (for, e.g., lasers and
masers). Now equation (A2) becomes

Jd(n n

P (n_j> + <n_j>(A21 + Cyy) = <B12 J¢vJvdv + ClZ) . (A3)
We shall assume C,, and C,, are constant with respect to time. Solving equation (A3), we get

n, Yy 92 —hupt,

= e ¢ B12 ¢v‘lvdv + C21 —e VIkTe dr’ > (A4)

ny 0 g1

where
1
t,y=—7"m"—"—m"",
Ay + Cyy
We will use the relation (A4) in the derivation of the line transfer equation. The transfer equation is given by

dl,

ds = [ny(A3y + By 1,) — ny By, 1,]¢ (hv/4n) . (AS)
We define the optical depth scale in terms of the frequency integrated line opacity (which characterizes the average opacity in the
line as a whole), dt = — y,, dz, where

and n,(t=0)=0.

X12 = (ny By, — ny By, )(hv/4n) . (A6)

We assume that the medium is stratified in plane-parallel layers whose normal is in the z-direction, and we denote the cosine of the
angle made by the ray to the normal by u. Then dz = uds. Now the equation of transfer is given by

udl,/jdr) = ¢ (I, - S), (A7)
where
S =nyA,,/(n; By, —n, Byy) . (A8)

Note that here the dimensions of dr are s~ ! (frequency units). Neglecting the stimulated emission term in equation (A8), the source
function S reduces to

S = (ny/n1XA21/B12) = (na/n,)(g1/92)2hv3/c?) . (A9)
Now substituting for the ratio (n,/n,) from equation (A4), we get the source function S as

t
S = (2hv3/c?)g,/9,) J e“""’/"'(B12 ¢,J,dv + C,, ?e"‘”"“)dt’ . (A10)
()]

1
Now defining the parameter €,
_ Call — ey
A2 1 ’

€/

(A11)

we have

€' C21(1 _ e—hv/kTe)
€ = = N
L+€ Ay + Cyy(l — e Wi

(A12)
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When hv/kT > 1 (i.e., stimulated emission is negligible), equation (A12) becomes
%
€= >
Ay + Cyy
and the Planck function can be written as
g 1,

v c? (ehv/kTe _ 1) T2

Using the relations (A12)-(A14), equation (A10) can be written as

! . dr
S=(1-¢ I e ¢ f¢vJvdv -+ €B(1 —e™")
(] a

Vol. 358

(A13)

(A14)

(A15)

It is convenient to work with the dimensionless frequency variable x, measured from the line center in units of Doppler widths [i.e.,

x = (vo — v)/Avp). In terms of this variable, we shall write the Doppler profile as

1
P =—= e,
N
and the Voigt profile as
a [* edy
¢(x) - 7t3/2 J\_w (x _ y)2 + az ’

which are normalized such that

fw d(x)dx =1.

Note that

1
o) = Avg o(x) .

(A16)

(A17)

(A18)

(A19)

We will absorb a factor of Avy, into the definition of y and write dt = —y, dz, where y, = x,,/Avp, x,, being given by equation (A6).

Now dz is dimensionless. Then the line source function S is given by

t © ’
S=(1-—¢ J e ¢ )M J d(x) J(x)dx i—t + €eB(1 — e "),
0 —© a

and the transfer equation becomes
/‘(dlx/dt) = ¢x(1x - S) .

(A20)

(A21)

Let us assume that the absorption through the line is uniform and has a width Av (Milne 1926). Then the profile function is given by

d(v) = 1/Av .

With this profile function, the expression for the source function reduces to

! , ar
S=(1—¢ j e ¢y S teB(l - e ')
(1] a

APPENDIX B

(A22)

(A23)

DERIVATION OF THE TIME-DEPENDENT TRANSFER EQUATION FOR THE BOUND-FREE CONTINUUM

Let our model atom consist of a bound level i and the contiuum k. Then the time-dependent ionization equation can be written as

on,
a—t" =n{Ry + Cy) — nRy; + C) ,

(B1)

where n, is the ion density and n; is the number density of the particles in the bound state i. R;, and C; are the photoionization and
collisional rate coefficients from the level i to the continuum k, respectively. C,; and R,; are the collisional and spontaneous
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recombination rates, respectively. The quantities R,; and R, are defined by the relations

N\ ¥ @©
R, = 4n<ﬁ) f o (v)() " 1B, dv
nk vo

R, =4n j o)~ T, dv
vo

635

where o,,(v) is the absorption cross section, and the superscript “*” denotes LTE values. For the definition of the quantities C;, and
C,:, see Mihalas (1978). We shall neglect the stimulated recombination terms from the rate equations. We can make the assumption
that (n,/n;) < 1 if the medium is sufficiently cool for the formation of an optically thick bound-free continuum. Dividing equation (1)

by n;, we have

0
a:( ) (R + Ca) - (’;’:)(R” + G

d
dt

Then
n, + Cui
[e(Rkl+C'tl)' n] — e(Rkl"'Ckl)’(Rki + Cki) .
i

Let ta = 1/(Rki + Cki)‘ Thel‘l
d n
d_t' (e'/t" ;‘:) = et/ta(Rik + Cik) .
Integrating equation (B4) from 0 to ¢, and taking n,(t = 0) = 0, we have

mit)
n;

t
= f e—(‘_")/"'(Rik + Cik)dt' .
0
By assuming that C;, is independent of time ¢, and using the definition for R;,, we can write equation (B5) as

-’ﬂ‘gt—) = 47tta J‘t e_('—")/ta J lk(V) J d - + Clk(l —e t/‘a)t
(V] vo

n;
1 P (v) _
R U [ P L.
(Rki + Cki) J;) vo a %

(B2)

(B3)

(B4)

(B5)

(B6)

We will use the relation (B6) in the derivation of the transfer equation for the bound-free continuum. The transfer equation is given

by
dl,
H Z =n,—x1,
where the emission coefficient #, is given by

2hV3 n; *
—_— —hv/kT
= n, oalv)e
ny CZ k . 1k( ) s

and the absorption coefficient y, is
Xy =1 aiv(v) .

If we define the optical depth dt, = — n; a,(v)dz, equation (B7) can be written as

%=1v#ﬂ<n)*3v
dr n; \n,

n;\* R © au(v) dr _ n; \*
. t—1')/tg Zi ) = CA1 — e~ tay | =
e i vere] K B I ] et R LS

Equation (B8) can be written as
1 ! , ® t
ﬂd—zl — Yy j e_(‘—t)/ta( J d)iv‘]vdv) i__eva(l - e‘t/'a)
dtv 0 vo ta

®@;, = dnay/hv, y, = (n/m)*B,/(Ry; + C) , €, = (ny/m)*Cy/(Ry; + Cy) .

where
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Equation (B9) is similar to the steady state transfer equation for bound-free continuum (see eqs. [7-131] in Mihalas 1978) except for

the time-dependent terms.

We can derive the monochromatic transfer equation from equation (B9) by noting that, for hv/kT > 1, the frequency variation of
J, and B, shows so rapid a drop with increasing v that practically all of the contribution to the photoionization and recombination
rate integrals comes from v ~ v,,. Then we can approximate the integrals

0

(]

where W, is an approximate weight factor. Then
(n/m)*Cy

J‘ (I)iv Jv = 47TW0(a0/hv)J0 ]

f q)iv Bv = 47[W0((10/hV0)B0 ’

Cik

€= (n/m)*[4mag Bo wo(hv) ™ + Cy] - dnag Bowo(hv) ™! + Cy.”

and similarly

Y

Atv = vy , equation (B9) can be written as

dl

where € = C/[4nwo(ato/hve)By + Cyl-

! . dr
po=1-(1-3 j e ey, S Bo(l - e ),
o

= 4oy Bowo(hv) ™ + Cy

(B10)

a
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