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Abstract

A wide wvariety of gravity and acoustic wave motlons have been detected at the
surface of the Sun as Doppler shifts of spectral lines. These velocity fields provide
"a wvaluable probe for studying the internal solar structure and its dynamics. The role
of convection in driving the observed motions (s discussed in the framework of a linear
stability theory. The most unsiabie convective modes exeited in the solar enwvelope
are found to be in reasonable agreement with the features associated with granulation
and supergrannulation. It is demonstrated that when the mechanical and thermal effects
of turbulent convection are incorporated in the analysis, a linear superposition of statis-
tically independent unstable convective modes can reproduce the model convective
flux profile of the mixing-length formalism. The stability of acoustic modes is investi-
gated to find maeny of them to be overstable, with the most rapidly growing modes
occupying a region cenired predominantly around 3.3 mHz and spread over a broad
range of length scales. It is argued that these five-minute oscillations are largely driven
by the effects of turbulent convection.

1. Introduction

The inside of the Sun is clearly not directly accessible to observations; nevertheless,
it is possible to construct a reasonably accurate picture of its interlor with the help
of equations governing its mechanical and thermal equitibrium. the Sun is, in fact,
the primary calibrator of the theory of stellar structure. Moreaver, the Sun is suffici-
ently near to Earth for its surface phenomena to be closely scrutinized and its atmo-
sphere to he studied in detail.

The obhservations of the solar atmosphere reveal a wide range of velocity fields
with Lwo dominant components: a non-oscillatory part which is believed to be a mani~
festation of the sub-photospheric convective motions and an oscillatory component
with a period predominantly centred around 300 sec. One of the remarkable properties
of the' sclar convective motion is the discrete spectrum of horizontal length scaleas
granulation with a characteristic cell size of ~2000 Km and having an average lifetime
8-10 min (Beckers and Canfield, 1976) and supergranulation, with an average diameter
~30,000 Km and lasting for ~1-2 days (Simon and Leighton, 1964), In addition, global
convection comparable in size to the thickness of the convection zone (~200,000 Km)
and lasting for several months ‘has also been detected (Howard, 1971). Amongst the
oscillatory motions the five-minute oscillations have been the subject of most extensive
study since their discovery by |eighton, Noyes and Simon (1962),

Just as geoseismology provides a weaith of information sbout the interior of Earth
by analysing the frequencies of terestrial oscillations, solar seismology, with Its origin
in the work of Deubner (1975) who successfully resolved the spatial and temporal struc-
ture of these oscillations, is expected to be 8 valuable diagnostic probe for the structure
of the Sun. A power-spectrum of the five-minute aoscillations of high degree (spherical
harmonic degree & 2150) was produced by Deubner, Ulrich and Rhodes (1979). The obser-
vations using integrated sunlight by Claverie et al (1979) and Grec et al (1980) revealed
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the existence of five-minute oscillations of low degree (2<3). Recently, Durall and
Harvey {(1983) provided the power spectrum of these oscillations In the intermediate

degree (1<% <£150) thus bringing the gap between the observations of low and high
degree,

Any reassonable theoretical model must not only sccount for the existence of pre-
ferred length scales on the solar surface, but should slso explain the cbserved features
of the solar five-minute oscillations. For this purpose, Antia, Chitre and Narasimha
(1983) calculated the growth rates of linear convective modes by perturbing a realistic
solar envelope model computed using the mixing-length prescription. The main thrust
of the calculation was to incorporste the effects of turbulence on the mean flow through
the eddy transport coefficients. The equilibrium solar envelope model does not get
sensibly altered by the inclusionn of the turbulent pressure, but the convective modes
are significantly damped by the Reynolds stresses, The growth rate of the fundamental
mode then exhibits a double pesk when plotted against the horizontal wave number
which may be interpreted as ylelding the two distinct scales of convectlon eorresponding
to granulstion and supergranulation. We calibrate the turbulent Prandtl number (Py=
turbulent viscosity/turbulent conductivity) which gives the most reasonable accord with
the granular and supergranular motions and adopt it for examining the stability of
non~-radial acoustic modes. We find many of these trapped acoustic modes to be over-
stable with the most rapidly growing modes cccoupying a region centred around a period
of five-minutes and spread over & wide range -of length-scales,

2. Basic Mathematiecal Scheme

We adopt the usual hydrodynamical equations governing the conservation of mass,
momentum and energy applicable to a viscous, thermally conducting fluld,
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In this we have neglected the viscous dissipation In the energy equation and adopted
the usual notation with S as the specific entropy, P the thermodynamic pressure (gas +
rediation), Pryp the turbulent pressure, ¢yl the turbulent energy density (= (3/2XPyun/p )
and F, the total flux (=Fr8d.Feonv), The above «7juations are supplemented by an equa-
tion of state for & perfect gas undergolng ionlzation. We compute the radiative flux
using the Eddington approximation (Unno and Spieygel, 19663

rad . A
L 3HDEJ’

where J = oT" - (V.F'@d/4up) s the radiation intensity. For caleulating the convective
flux we adopt the mixing-length praseription and write

_F_conv = ‘Klub(Y,T - Vbd% EO) '
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where Vg = Vad _a_l__c_l_l_rﬁ_ and the coefficient of turbulent conductivity is expressed

n(P+Pt bl ' o
in the form Kpyh = apCpWL. Here o is an efficiency factor of order unily, the mixing
length L is taken as z+4B6 Km, z measured downwards from the level 7=1 and W Is
the mean convective velocity (cf, Shaviv and Chitre, 1968) which includes the turbulent
drag experienced by moving elements (Antis, Chitre and Narasimha, 1984). The turbulent
dynamic viscosity is then written as

Hiub = PtaDWL y

where Pt is the turbulent Prandtl numbher which we treat as a free parameter to be
calibrated from the best fit of maximally growing convective modes with the observed
features of granulation and supergranulation.

For the present sun we adopt the following set of parameters:
X=0,74, Z=0.018, Te=1.52x10° K, Pp=145 gm/ecm?®, and Xc=0.36.

.We assume spherical symmetry and express the eigenfunctions for any perturbed
scalar physical variable in the spherical geometry (r,0,¢) as

fr,0,8,t) = folr) + F1(e)YEY (B,0) ot ,

where the subscripts 0 and {1 refer respectively to the unperturbed and perturbed quarti-
ties, YE’ Is the sphericel harmonic of degree £ and w the eigenvalue which may be real
or comlex. The velocity and flux perturbations are taken to have the following form:

v(r,0,4) I:vr‘(r), vh(r)—g% vhir}
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The equations governing the perturbed quantities form a set of eight first order diffe-
rential equations, while in the adjoining inviscid layers bounding the convection zone
the order of the equations reduces to four, We therefore need two boundary conditions
at each boundary and six connecltion conditions at the interfaces.

We Invoke free boundary econditions at both the boundaries where the lagrangian
pressure perturbation is assumed to vanish, We adopt the thermal boundary condition
requiring the radiation not to enter the layer from infinity at the upper boundary and
for the lower boundary we impose the condition of the vanishing of Lagrangian flux
perturbation. The six connection conditions at both the interfaces relate to the continuity
of the perturbed horizontal and vertical components of the viscous stress tensor, vertical
components of velocity and total flux, entropy and radiation intensity. The linearized
system of equations together withy theé boundary and connection conditions constitute
a generalized eigenvalue problem where the eigenvalues (real/complex) and the associated
eigenfunctions are determined numerically for a specified value of the horizontal harmo-
nic number R using a finite-difference scheme (Antia, 1979},

3. Convective Modes and Consistency of Mixing Length Theory

We first attempt to address the gquestion of the preferred length scales observed
on the solar surface snd in particular why there are two distinct scales of motion -
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granulation and supergranulation. To investigate the convective modes we compute
the real growth rate w as a function of & which ls related to the horizontal wavelength

X = 27Ry /Y {%+1) (Rg = solar radius). For a given &, there exists a series of sigenvalues
w and we call the one with the highest eigenvalue the fundamental convective mode.

A little way below the solar surface the temperasture gradient becomes unstable
to convection and save the top several tens of Kilometers, 8 major fraction of the
total flux in the solar envelope is transported by convection. Furthermore, the raditive
conductivity is also very small as compared te the turbulent heat conductivity, The
turbulence is therefore expected to have a significaent influence both in the way it
modulates the heat flux and through the direct effect of the Reynolds astresses. We
incorporate the mechenical and thermal effects of turbulence in a very approximate

manner in our calculation through the eddy transport coefficients and the effects of
momenturm transfer are included through Pgyp.

The numerical results of our computation are surmmerized in Table 1 which shows
the preferred length scales and associated time scales (1/wmay) for three values of
the tubulent Prandtl number Py = 0.1, 0.2, 0.3,

Table I
P Primary maximum | Secondary maximum
t  tlmin)  (km) t{hr) km)
0.1 13 1600 82 68 000
0.2 17.8 2000 135 77 000
0.3 24.4 2200 215 140 DOO

For the choice of parameters adopted, the e-folding tlme and horizontal wavelengtha
for the most unstable fundamental mode lie respectively In the range of 10-25 min
and 1600-2400 km. The length scale associated with the primary maximum is not parti-
cularly sensitive to the variation of the paramesters, and the preferred length and time-
scales sre evidently in reaesonable accord with the observed granular features. The
secondary maximum, however, is rather sensitive to the cholce of the parameters,
and the corresponding e-folding time and horizontal wavelength vary over a wide range.
it 18 tempting to identify the convective modes corresponding to Py=1/3 as yielding the
length- and time-scales that are not in too unressonable agreement with the observed
cell sizes and lifetimes of granuletion and supergranulatiom.

It is instructive to note that the dissipative mechanisms arising from turbulent
trensport coefficlents which are effective at short wavelengths manifest their damping
influence for large values of & This is evident from the role of the second-order deriva-
tives of velocity and temperature in the momenturmn and energy equations in assuming
importance for large values of % The turbulent pressure, on the other hand, appears
only as a flrst-order derivative In the momentum equation and its influence is therefore
expected to be felt for intermediate values of f3 the modes with large length scales
are clearly not affected by the presence of grad Pyyp, while for intermediate values
of %, the growing rates may even become negative because of the damping by the turbu-
lent pressure. This seems to be responsible for production a double pesk in the plot
of w vs &, a behaviour which seems to be In contrast to the cese without turbulent
pressure which yields only one maximal growth rate for the fundamental mode, Such
a behaviour is highly suggestive of mode coupling (Antia, Chitre and Narasimha, 1983).

The mixing length theory has been extenslvely used In eonstructing convection
zone models for stars. But the guestion whether these models are consistent with models
incorporating convection dynamics was wide open. Hart (1973} convineingly demonstrated
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that no linear superposition of inviscid, adiabatic modes can even remotely reproduce
the convective heat flux of a stellar envelope. This was a consequence of all the convec-
tive modes having a sharp peak in the strongly superadigbatlc layer near the top of
the convection zone, and as a result of the model convective flux could not bg c_onsn:st—
ently represented by a combination of statistically indepent_dent unstable pon—dxssnpatlve
convective modes. This situation was remedied by Narasimha and Antla. (1982) yvho
explicitly included the effects of eddy transport coefficients on the elgenfur_lctlons
of unstable convective modes. The eigen-functions then no longer peak qnly in the
sub-photospheric superadiabatic region, but rather they are sperad over the entire convec-
tion zone: those with large values of L peak in the sub-surface layers, while those with
small peak near the botton of the convection zone.

The energy flux, Fy(r), transported by any given mode may be calculated by using
the expression,

Fg(r) = povp(TeS1 + P1/pa)

Clearly the eigenfunctions, vy, S; and P, are arbitrary in a linearized theory to
the extent of a constant multiple. In order to fix the normalization of the multiplicative
constant is so chosen that the maximum of the convective flux, Fg,(r), over the entire
convection zone equals the actual model convective flux at the depth. For a linear
superposition of statistically independent linear modes, we have

i ai Fg(r) = FCONV(r)
'}

ay, being real constants which are supposed to fix the amplitudes of corresponding modes
in the solar envelope. If one succeeds in finding a set of real constants, ag such that
the above equation is reasonably satisfied over the entire convection zone, then one
would conclude that the mixing-length theory is self-consistent. As is clear from Fig.1
it turns out that the maxima of Fg(r) occur at different depths for different values
of &, and it is possible for a suitable superposition of statistically independent unstable
convective modes to reproduce the convective flux profile of the mixing-length theory
in a consistent manner.

The feature of the flux profiles due to convective eigenmodes with different values
of & peaking at different depths can be profitably employed to identify the mixing
length at a particular depth with some length scale associated with the dominant convec-
tive mode which has a peak in the flux profile at that depth. We choose the full width
at half maximum for that eigenmode at the natural choice for the length scale. This
is illustrated in Fig.2 which shows the mixing length as a function of log P for the
solar envelope mode along with the full width at half-maximum for the fundamental
mode. The general agreement between the two curves is certainly noteworthy!

4. Excitation of Five-Minute Oscillations

The important question of the excitation mechanism for five-minute oscillations
was addressed by Ando and Osaki (1975) who investigated the stability of non-radial
oscillations of intermediate and high degree for a realistic solar envelope model. This
work included the full effects of radiative exchange in the stability analysis. However,
the interaction between turbulent convection and oscillation was neglected in this waork;
this situation was later remedied by Goldreich and Keeley (1977) who sought to incorpo-
rate the influence of turbulence on the stability of acoustic modes. Antia, Chitre and
Nar_asimha (1982) investigated the stability of acoustic modes and the question of their
excitation mechanism utilizing the framework employed for studying the convective
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modes and aedopting the same set of parameters, in particular, the turbulent Prandtl
number Pt = 1/3. ' .

The numerical results for the acoustic modes of low, intermediate and high degree
yleld eigenfrequencles which are In reasonable agreement with the observed frequencles
of five-minute oscillations (cf. Fig.3). Thus, for the intermediate and low values of &,
the departure of theoretically caleculated eigen-fregquencies ls within 15 pHz, i.e. no
more than 0.7% of the observed frequencies. The contours of constant stability coeffi-
cient n (2 growth rate/frequency) are displayed in Fig.4 In a frequency (W) vs. spherical
harmonic degree (&) plot. In this figure the outermost contour represents the marginally
stable cese (N=0) within which sll the elgenmodes are unstable (indicated by 0), while
the' modes outside this region are stable {dencted by X). Interestingly, the high-frequence
cut-off around 4 mkz appears to be more or less independent of % and is presumably
a reflection of damping in the -atmosphere, which is In rough sgreement with the observa-
tions of Duvall and Harvey (1983). Moreover, for low &, the lower harmonlcs are found

to be stable or have an extremely small growth rate, and thls ls consistent with the
low power observed in these harmonics.

Our results asre in general agreement with the earlier analysis of Ando and Osaki
. (1975}, except for a significant difference that we get closed contours of the stability
coefficlent n, with a distinct peak at n=1.6x10"? arcund £=475 and w=3.5 mHz, while
Ando and Osaki get open contours with n Increasing with &, The pronounced peak of
the stability coefficient is situated almost near the central region of the observed
power spectrum of five-minute oscilietions. Thia difference is clearly due to the effect
of turbulent viscosity which produces increased damping for larger values of & and
hence decreses the growth rate at high % We find seversl acoustic modes trapped- in
the sclar interior to be overstable and the nvost repldly growing modes occupy a region
centred predominantly around 300 sec with a wide range of horlzontal length scales,

In order to understand the possible excitation mechanism responsible for driving
the five-minute oscillations, we must recognlze that both the radiative and turbulent
diffusion mechanisms have their origin in the strongly superadimbstic layers in the sub-

photospheric reglon. But, as Unno (1976} has pointed out, the efficiency of the turbulent
, con v
diffusion mechanism is algnificantly larger by a factor, Ti::-';ad— ¥ Vaq

compared to the

purely radiative exchange mechanism. This prompted us to compute the growth rates
of acoustic modes in the solar envelope both with and without the turbulent diffusion
mechanism. The numerical results ere summerized In Table 2 which shows the viscous
acoustic mades for the solar envelope model for £=200 with P=1/3 when (a) the turbulent

diffusion mechanism is suppressed, (b) both the radiative processes (k-mechanism) and
the turbulent mechanism operate,

Table 2
Mode Period (sec) (&) (b)

f 714 ~ 3,25 (-4) . - 1.71 (-4)
P 513 « 4,83 (-4) - 5,67 {-5)
P2 416 ~ 1,03 (~3) 4,33 (-4)
P3 357 - 1,11 (-3) 1,03 (-3)
P4 315 - 134 (-3) 1.50 {~3)
P5 281 - 1.48 (~3) 147 (-3)
P6 257 - 1,66 (~3) 1,31 (-3)
P7 237 = 172 (-3) B.17 (~4)
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It is clear that the degree of instability of acoustic modes, as measured by their
growth rates, is considerably stronger when the turbulent diffusion mechanism is included
than when only the k-mechanism operstes. We conclude that the five-minute oscillations
are driven by a simultsneous action of the k-mechanism and the radiative and turbulent
diffusion mechanisms, but the turbulent diffusion seems to be the process which makes
a dominant contribution to the excitation of acoustic waves In the sun,

2. Role of Solar Physics in Broader Context of Astrophysics

The aspiration of salar physicists is to seek answers to questions that have hitherto
been in the realm of theeretical speculation. We would like te know about the conditions
in the deep interior of the sun, and test the hypothesis that the hydrogen burning re-
actions really occur in the solar core and the energy generation is mainly by the proton-
proton chain, We should like to find out if the solar core is rotating rapidly and if
there is a mixing of the nueclear products with the surrounding layers of the core. We
ought to have a knowledge of the extent of the outer convection zone and the physical
conditions near the base of this zone. We should be able to infer the variation of the
speed of sound in the solar interlor and also the chemical composition of the sun,

Helioselsmology must surely contain an enormaous amount of information about
the solar interior and one should be able to extract It from the detailed observations
of eigenfrequencies of acoustic and gravity modes detected at the solar surface. A
complementary probe is provided by the neutrinos produced in the core which, we had
hoped, would enable us to to 'see' the interior of the sun., Unfortunately, the measured
neutrino flux has consistently turned out to be a factor 3-4 lower than the theareticsl
prediction of the Standard Solar Model. We therefore need an independent probe of
the Sun to reveal the physical and chemical conditions in its interior and the observed
eigenfrequencies seem just appropriate for this purpose. We outline below some of
the broad physics problems te which helioseismology might hopefully provide valuable
clues. .

(a) An important inference of most comological models is the amount of helium
produced in the esrly universe. The distribution of helium inside the present Sun may
be inferred from the observed frequencies of the global modes of oscitlation It turns
out outside the core of the Sun, and beneath the subsurface convection zone, the helium
abundance in abaut 25 per cent by mass. It is generally believed that this intermediata
region in the 5Sun is relatively uncontaminated by the nuclear products generated in
the core and by material that may have been accreted by the Sun during the lifetime,
If this indeed should be the case, we have an access to the protosotar hellum abundance
of the gas from which the Sun condensed some 4-6 hillion years ago. This may provide
the most reliable estimate of helium abundance in the early universe,

(b) There is convincing evidence present in the observed eigenfrequencies about
the internal rotetion of the Sun., The fine structure could slso be contributed by the
presence of strong magnetic fields of primordial origin buried deep in the core. The
variation of solar rotation with depth has an Important bearing on solar dynamics,
A rapidly rotating core is liable to induce a circulation which might lead to the helium
produced by the nuclear reactions to be mixed with the surrounding material. Further-
more, a knowledge of the solar rotation is vital In understanding the solar activity
cycle, and also the dynamics of the convection zone.

(c) The observed solar eigenfrequencies have implications for the Sun's gravitational
potential. One of the classical tests of general relativity involves the precession .of
the orbit of planet Mercury. It has been known that, after correcting for the ptanetary
interactions, the residual orbit of Mereury was processing about the Sun at 43" per
century, and this was successfully explained by general relalivity assuming the Sun
to be spherically symmetric. The rotation of the Sun would, however, cause oblateness
which would modify the Sun's gravitstional field to have a quadrupole moment. It ap-
pears from the observed rotational splitting of the eigenfrequencies that the oblateness
does not contribute more than one percent to the precession of the orbit of Mercury.
This may resolve questions of the accuracy of the theory of general relativity. '
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