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Abstract

The statistical treatment of the magnetohydrodynamically turbulent plasma {s
used to study the steady state configuration of the coronal loops. The stability of the
plasma system s defined in terms of certain invariants like total energy, n’fugneuc
helicity and magnetic fluvxes. The steady state s represented by a superposition of
two Chandrasekhar-Kendall functions. This representation defines the three dimensional
temperature structure of the coronal loops. We present only twe dimensional (r,z) varl-
ation of temperature in a cylindrical geometry of the loop. The radial as well as the
axial variation of the temperature in a constant density loop is calculated. These var(-
ations are found to conform to the observed features of cool core and hot sheath of
the loops as well as to the location of the temperuture maximum at the apex of the
loop. We find that these features are not present uniformly all along either the length
of the loop or across the radius. We further study the nature of and relationship betwesn
the velocity field and magnetic field fluctuations using the .nonlinear MHD equalions
angd the statistical description of MHD turbulence. It is found that these fluctuations
are of Alfvenic type. A possible existence of Alfven waves with group velocity along
and opposite to the average magnetic field is shown. This study has important bearing
on the heating mechanism of coronal loops.

1. Introduction

The study of solar coronal loops has the potential of revealing the interior as well
as the exterior structure of the solar atmaosphere as the foot points of thess structures
lie deep in the convection zone with their tops extending out in the corona sometlmos
up to 2 solar radii. Gas contained in such loops can attain termperature >10°% K and
emit electromagnetic radlation over a wide range of frequencies in the form of lines
as well as in the continuum. Loops break through reglons of strong magnetic fleld as
in the case of sunspot loops. The foot points of these loops are continuously jostled
by the eddies in the convection zone and through this mechanism, a part of the mecha~
nical energy in the convection zone gets transferred up which then heats the corona.
It is found that a very small fraction of the sun's total output is used in heating the
corona and thus solar atmosphere is considered an example of an inefficient atmosphere
in contrast to the atmospheres of some other stars where the loops are better tuned
to respond to the motions in the convection zone as discussed by Mullan (1985),

Solar coronal loops have been seen in the emission at UV, EUV and X-ray wave-
lengths (Fourkal, 1975, 1976, 1978; Foukal et al. 1974; Levine and Withbroe, 1977
Vaiana and Rosner, 1978). The current carrying plasma in the loop supports a helical
form of the magnetic field {Levine and Altschuler, 1974; Poleto et al. 19753 Hooed and
Priest, 1979). In this paper one dimensional and two dimensional steady siate pressure
profiles of a coronal loop are derived based on the Taylor's conjecture (1974, 1975,
1976) that the decay of energy to a minimum value compatible with a conserved vaiue
of the magnetic helicity leads to a force free state. Based on this selective decay
hypothesis, a proposal for the probable initial configuration of & flaring loop has also
been made (Krishan 1985b). We have also studled the statistical mechanics of the velae
city and the magnetic fields in a coronal loops (Krishan 1985 Maontgomery et al. 1978)
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The statistical mechanical formulation of the MHD turbulence en

nature of fluctuations in the fields and their correlations if any.abr]—leesreuswteo asi:l;d);tltjgi
the time evolution of the velocity and magnetic field fluctuations using fully nenlinear
MI—?D equations. The qup plasma- is assumed to be in the minimum energy state in
v.._rhlc;h the pressure gradient is balanced by the convective derivative of the velocity
field. A relationship between the velocity and magnetic fluctuations is sought which
brings out the Alfvenic nature of these fluctustions. This is quite interesting since
there are several ways in which Alfven waves have been held responsible for the heating
of the loop plasma, KUperua, Ionson and Spicer (1981), Chiuderi (1981), Wentzel (1981).
Some of the theo!’etlcal concepts used in the present and earlier work on coronal loops
have been scrutinized more directly in the case of solar wind where insitu cbservations
of fluctuations are available (Matthaeus and Goldstein 1982; Dobrowolny et al. 1980;
Grappin et al, 1982 and Matthasus et al. 1983). Further, the statistical description
of MHD turbulence {Krishan, 1985; Montgomery et al. 1978) has been used to investigate

the relaifive amounts of energy in the velocity and magnetic fluctuations and thus discuss
equipartition of energy.

2. Modeling of the Coronal Loops

In the existing models of the coronal loops, the radial and the longitudinal pressure
or temperature (for constant density) structure are studied separately. Radial temperature
structure is derived using the emission measure anelysis of the lines observed in the
loop, The Intensity | of the emission line is given by:

I=CNeNid

where C contalns all the atomic parameters, Ne and Ni are the electron and the ion
densitles and d is the spatial width of the line. By measuring I and agsuming a reasonable
value af the electron density, one can find the value of d, the extent over which a
line is excited and hence the extent over which the temperature Is the formation tempe-
rature of the line. Thus, from the observations of lines of different formation tempera-
tures one can reconstruct the radial temperature variation in the loops. It Is concluded
from these studies that the temperature increases with the radius such that the lines
with higher formation temperature have larger spatial widths.

The longitudinal temperature structure of the coronal loop is derived -by.cunsideqng
energy belance between thermal conduction, Radiation losses and the mechanical heating
in the loop as:

d dT
ds [:Ku-d? = nsza-—hn

Conduction Radlation Heat.

Uslng the boundary conditionst T = Constant at the base of the loop end dT/ds = 0
at the top, scaling laws relating temperature, pressure and the length of the loop are
derlved. An lmportant outcome of this exercise was the realization that heating is
a function of the geometry of the loop and therefore the heating mechgnism is neces-
sarily related to the magnetic field. Although this procedure of modeling i8 quite reveal-
Ing one desires to describe the loopl through magnetohydrodynamic processes where
the coronel loop is taken as volume of plasma lisclated by defining magnetlc field with
radial and longitudinal variations, One should solve MHD fequatiuns subject to boundary
conditions st the foot points and at the surface with additional constraints upon mternakl‘
- transport processes, Taking this line of thaught, we propose to model the loops throug
statistical description of MHD turbulence.
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In the steady state, the coronal loop should be in a state of minimum energy corres-
ponding to a conserved value of the magnetic helicity. The steady state pressure structure
of the coronal loop can be studied following Montgomery et al. (1978). The magnetic
and velocity fields are expanded in terms of Chandrasekhar-Kendall functions. We repre-
sent the loop plasma by a minimum energy state which is the sum of the lowest maode
(m =.0) axisymmetric state and the m = 1, non-axisymmetric state, This representation
describes the three dimensional spatial pressure variation in the loop, Since the observe-
tions inform us only of the (r,z) pressure dependence, we shall not consider azimuthal
dependence. The pressure (p) profile of an incompressible MHD plasma is glven by

2

~V-5P-= V. (¥xB)xB1-V.LV.DV] (A)

whera ¥, B, are veloecity and magnetic flelds respectively and B s defined In Alfven
?peed units, The ¥ and B for m =0 and m = 1 state are given by Montgomery et al
1978) asi

B = Bo + B

Bo = EchoColEghodalyoer) + 82 Aolyer)

B1 = EaCh EE,. [‘L}Sf?l] it} + égyrdilyir) + €, M%Ki Jo(Yll‘i] ol

Vo + YV, Mor-%%go

¥=Yo
Vi = 3By sy

Substituting in equation {A) one finds:

p = por(CoXonoyo)? Z[1-08yor)-3F (yor)3-2CeC1 o inoni Lo y1 J1 (Yo )iy r)
cos Kyz+ %Y% Jolyerd Joly1r) cos Kz - %—&Y"{ ]

where, p = pp at (r=0, z=0) ,

|Col* = (2mL)”? iﬁ;‘—)i {2 Jf(YuR)-Jo(YoR)Jz(ToR)N%(YoR)}:‘

2
|C1]? = (2nL)! [(lzﬂ] (14Kt A1 (1R)- 2011 R) 2oy 1 RO}

+ -(11-28—)—2- {8{y1R)+3¢ (YxR)}] !

M is given by the Zeroes of Jy(yviR). Ay is determined from the relationship

__ R yedb(yeR)
b/ = - AoJu%’YoRj

where Y, and Y are the toroldel and poloidal magnetic fluxes, For particular numerical
values of the plasma parameters one can calculate axial and radial varlation of the
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pressure. The deteils of these calculations are given in Krishan (1983, 1985a) The conclu-
sion is that the pressure increases towards the surface of the loop at the bottom (Z=0),
It is approximately constant across the radius at the mid point of the half loop (Z=L/4)
and at the apex of the loop (Z=L./2} the pressure is maximum &t the axis and decreases
outwards towards the surface. On the axis at r=0, the pressure [ncreases from Z=0
to Z=L/2. This behavior clearly indicates the twisted conflguration of the loop., The
calculated pressure profile agrees quite well with the observed pressure structure,

3. Alfvenic Fluctuations in the Loop Plasma

We represent a coronal loop by a cylindrical column of plasma with periodic boundary
conditions at the ends of the cylinder. The magnetohydrodynamic equativns for an in-
compressibie medium are:

2zt + R0zt = - ¥ [pfp 4 b7/2] M

+

a0 . (@)

1=1
InN

where zf =V Q/ﬂmp =V + b are Elsasser varibles, p is the mechahlcal pressure, p is
the density "and B the magneflc field. Now, taking the divergence of Equation (1) and
using Equation (2), one gets

VElplo + 1= Lz % Mz t] )
Separating quantities into average and fluctuating parta:
Y=<y>+8Y and B=<B>+ 8B (4)
Ore findst
2= <¥>: <h> + §zF ' (5)

Shbstituting for z* in Equation (1} and Equation (3) ane gets:

‘58“{ 8zf 3 (CH. V) 8 2* (63*-\7.)'63'*"'5 - Vip/p +b?/2] )
and 72[p/p + b%/2] = -E.[(G}'.j) § 2] )]
w.here Cp = <¥> & <b> (8)
and § 2% = 8V ¢ 6t (9)

Equation (9) represents the two possible Alfvenic modes, In order to study the propagation
characteristics of the modes defined by Equation (9), one hss to solve for pressure
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in Equation (7) and substitute in Equation (6). We choose to represent velocity and
magnetic fields by a single Chandrasekhar-Kendall functlon which provide a good descrip-
tion of & coronal loop In its minimum energy state &s discussed In earlier papers, Krishan
{1983, 1985, 1985a). Therefore one writes

E = Eo)’«n COEO (19)
V=102Cog0 (1)
:é = é\e:’\ojl(;\u I‘) + EzluJo(AoF) (12)

g and &, are the unit vectors, Jo and J; are Bessel functions. Using Equations (10)
and {11) we find:

Gjt = [(no-<np>) ¢ (o-<E0>)AeCoso (13}

From equation (12} it follows that §z} = 0. From Equation (7) one finds for the pressure
profile:

8z5 828
‘a% (p/p + b*/2) = -%—— (14)

2
and <3p/ar> = [<n>-<ng>?+<Eo> 2] xAd Jlr(‘;\"r) ‘ (1%)

where the angular brackets represent the ensemble average, The spatial variation of
the pressure given by Equation (15) has been discussed in earlier papers, Krighan (1983,

2198d59) where <ng> = 0 was assumed. Substituting equation (14) in Equation (6), we
n

C

3t 85 T 6z < 0
Cl
8 t . ABb :
3t $% T 820 = 0 (16)
9 s
at ﬁzz_ﬂ

-Using Equation (13), 8§z} =0, one finds:

3

Cheb2§ = 0 and~- 828 = 0 (1

(1f 6zf = 0 thlan §vg = + &by (n
or No-<ne> = +(Ey-<Ep>)

and from Equation (14)

-E-,% (p/p + b2y =01
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139p ’ a3
and (138 = cef>rict (18)

One observes from Equatiojns (16) and (17), éVg=+6bg and §Vy =+ 8b; represents Alfvenic
fluctuations propagating along b with group velocity ¥<b> and 6Y =& §b respectively, with
frozen spectrum as discussed In Dobrowolny et al (1980) and Mattheeus et al {1983), The
non-linear interactions between 6z~ and §z* vanish., The spatial variation of pressure
Equation (18) is the same as in Equation {15).

(if) If 623 # 0 and Clag = 0 which gives
<Me> t <Ep> = 0 (19

Substituting in Equation (15) one gets for the pressure variation:
823 ' .
PN _ 2 =
@2 - <ng>xch (20)

Equation (20) s same as Equation (18) except for the factors <£§> and <n§>. In this case
the pressure balance is through nonlinear interaction of §z§ and & zg The concluslan of the
sbove exercise is that In a coronal loop the pressure balance occurs through the nonlineer
interactions of the Alfvenic type fluctuations, This supports the existence of Alfvenic

waves excited within the loop and, therefore, the heating mechanisms based on Alfven
waves, .

The state of the coronal loop described by Equations (10}, (11} and (12) can be
treated as an ensemble and one can celculate the correlations between velocity and
magnetic fields, The statistical description of this state was given by Krishan (1985).
Here we use the results in order to calculate the correlation coefficient of the velocity

and the magnetic field. The probablility distribution function for the expansion coefficient
Lo and np ares

Py = K expl-0Ad +Br0)|Eo|* - 8poko-(@At|no|®) - yAFEomo] (21)

where o, 8, vy and ¥ are respectively the Lagrange multipliers corresponding to the
four invarlants, ‘ :

the total energy E = A§|E0]? + AfIne]?

the magnetic helicity Hm = Ao|Eol?

the toroidal flux P = peko (22)
and the cross helicity l-;g; = A Eone
and Po = 2MRCoho J1(MyR), R = radius of the cylindrical plasma.

The nermalization constant determined:from the condition

™)
[ Prane 96sone =
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70
is found to be:
8%p}

2\1/2 242 172
K :,-'M-ﬂl—/—- ard +BAo - I-a-a—o-] / exp [:— z}\z—}]
m Glard + Big »150‘—“

The correlation coefficient of the velocity and magnetic field fluctuation is defined as

(23)

<5.y.6'9>
Pe = < EV%> <8hIl>17?

In order to determine pp, we calculate the ensemble average of the expansion coefficients

of the magnetic and velocity fields as:

<£o> = -8pe/2A
<M > = Spov/doA

. 62 2
ctne> = - 31 [A-5588 |

2 2
et = [7rf ]

2. _ 1 axd + Bhg  82pdyZAl
arf A ' BaA?

and

242
A= odd 4 Bhg - A2

Now, the procedure is to determine the Lagraenge multipliers in terms of <E>, <Hmp>
We can express the correlation coefficient in terms of the ensemble

<lpt> and <Hc‘>|
averaged invariants as:

by =0 =Ne>)Eo - <Ko>)>
[<(no-<ﬂo>)2> <(E;U"<EO>)2>]1/2

- <Mefo>-<mp><Eo>
[<EE>-<Ep>2]/2[ <15 - <> 2]V/2
<Hc> _ SHe> <Pt
Al 2x0p8 <Hm> (24)
<HC>2(1]Jt>2 :l l/2

) [-:H ]1/2 <E> }\o<Hm>
T el <HR>®

Thus the correlation coefficlent pg has been expressed In terms of the measurable quanti-
ties, For the case of Alfvenic type fluctuations one has for Yy =6b
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<n>-<mp>? = <Ef>-<Ep>?

which describes the equipartition of energy in the velocity and magnetic fluctuations
end in this case one gets:

<Hp > [1 RS T Y

b = A 208 <Hm> 1
L T 1. <Pt >“hp
Xo pﬁ(Hm>

The maximum value of the correlation coefficlent ps is 1. We can estimate & value
of cross helicity <Hg> compatible with the values of other mvarlants indicated in earlter
work (Krishan 1983, 1984 1985a). For <E> ~10%® ergs.,AoR~1 R=10% em, <y >~10"7
Maxwell and <Hmp>~10%% ergs.cm. one finds <Hg> ~10?7 ergs. from Equation (25). The
temporal evolution of the correlstion coefficient In the case of solar wind has been
studied by Grapin et al. (1982) where this study reflects on the origin of Alfvenic type
velocity snd magnetic field fluctuations. We plan to study the temporal behaviour of
the correlstion coefficient for a time dependent steady state of the loop plasma where

one expects a time evolution in the Elsasser varisbles and a possible link with the waves
responsible for heating the plasma.

'3, Conclusion

It is found that the velocity and magnetic fleld fluctuations balancing the mechanical
pressure of plasma in a coronal loop are of Alfvenic type. Using the statistical description
of this MHD turbulent state, the correlation coefficient af the velocity and magnetic
field has been expressed in terms of the measurable quantities.
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