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From the known result that a periodic grating with a 
built-in roughness produces a Raman–Nath-type inten-
sity profile, in which the peaks are smeared out by 
randomness, we show that an ‘extended matched filter-
ing method’, developed by us, can reveal the hidden 
periodicities. The present method first anticipates the 
central peak, i.e. the n = 0 term, from a Raman–Nath 
intensity expression. From this residual of the inten-
sity, the n = ± 1 peaks are identified, both in terms of 
their location along vx as also in terms of their ampli-
tude. We demonstrate the effectiveness of this method 
by examples in which the hidden periodicities are un-
detectable by conventional methods and show the  
region of its validity. 

A diffraction grating is known to have distinct peaks at 
periodic intervals, which get smeared out if the diffracted 
(or the incident) light is passed through a phase diffuser. 
The technique described below extracts the signal from 
this smeared output. Applications of this technique can 
be used for display devices, diffuse illuminators and for 
the medical imaging of certain objects. 
 The situation can be modelled in terms of light scatter-
ing by a rough grating surface, in the xy-plane, where the 
elevations ς (x, y) have both a periodic and a random part, 
given by 

  ς (x, y) = a cos (Qx) + δς (x, y), (1) 

where the random part is assumed to be a zero mean, 
Gaussian stationary process, such that 

  <δς(x, y)> = 0, 

〈δς(x, ξ) δς(x′, y′)〉 = σ 2f(r), with r = √[(x – x′)2 + (y – y′)2] 
in which f(r) is considered to be f(r) = exp(– (r/l)θ), with 
θ = 1 for the Cauchy case and θ = 2 for the Gaussian case, l 
being the correlation length of the random part. 
 The scattering geometry is schematically described in 
Figure 1. The directions of the incident and scattered rays, 
following the convention in references 1 and 2, are expres-
sed in polar coordinates to be (θ1, 0) and (θ2, θ3), as shown 
in Figure 1. Further, the wave vectors of scattering are 
defined as, 

vx = k(sin θ1 – sin θ2 cos θ3), vy = – k sin θ2 sin θ3, 

vz = – k(cos θ1 + cos θ2), 
2
xyv = vx

2   + vy
2  , (2) 

where k = 2π/λ, λ being the wavelength of light. 

 In what follows, we calculate the scattered intensity 
under the Kirchoff approximation, which is valid for 4πrc 
cos θ >> λ, rc being the radius of curvature of the surface. 
One can estimate the average radius of curvature to be  
rc ~ l2/σ, and hence the method given below is valid  
only for 4π(l2/σ) cos θ1 >> λ, and (krc)

1/3 cos θ1 >> 1, a case 
which will be maintained in the numerical cases given 
below. 
 We consider the quantity <ρρ*>0 as the intensity of light 
scattered by the rough surface in the direction (θ2, θ3) 
divided by the intensity of light scattered by a smooth 
surface in the specular direction. Following the methods 
indicated in ref. 3, we can show, on defining √g = vzσ/ 
√2, √g1 = avz/√2, that 

<ρρ*>0 = {J2
0  (√(2g1))f(vx, vy; g) + ∑

∞

=1

2

n
nJ (√(2g1)) 

      [ f(vx + nQ, vy; g) + f(vx – nQ, vy; g)]}  

      B(θ1, θ2), (3) 

where 

f(vx, vy; g) = (2π/A)  

      ∫ exp(– g[1 – f(r)]) J0(vxyr) r dr,  (4) 

B(θ1, θ2) = [F3(θ1, θ2, θ3)]
2 S(θ1, θ2), (5) 

F3(θ1; θ2, θ3) = (1 + cos θ1 cos θ2 – sin θ1 sin θ2 sin θ3)/ 

        (cos θ1(cos θ1 + cos θ2)), (6) 

S(θ1, θ2) = S(θ1)S(θ2), (7) 

with 

S(θ) = exp[(– 1/4) tan θ erfc(K cot θ)], (8) 

K2 = (aQ)2 + 4(σ/l)2. (9) 

#For correspondence. (e-mail: chat@iiap.ernet.in) 

 
Figure 1. Orientation of the coordinate system and scattering geo-
metry. The incident wave propagates in the direction k1 and the consi-
dered scattered wave is described by the propagation vector k2. A is the 
plane of incidence and B is in the plane of scattering. 
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Note has to be taken of the fact that while the function 
f(r) (expressed in italics) is defined in the xy plane, the 
function f(vx, vy; g) is defined in the Fourier plane, i.e. 
vx, vy. 
 It is easily seen that for θ = 2, namely Gaussian cor-
relation, one has f(vx, vy; g) = (πl2/2Ag) 2exp( xyv− rg

2  ), with 
rg

2   = l2/8g, while f(vx, vy; g) = [πl2/Ag2] x
xy xcv ]2/1[ 2+  in 

other cases, where in the notation of papers3 c/2x = r0. It 
is clear that for c being independent of x, in the limit of 
x → ∞, we do get f(vx, vy; g) ∝ exp(– ),2

xycv  i.e. a Gaussian 
profile results, showing that the choice of x can accom-
modate a wide range of profiles. The extended matched 
filter method described below, a method gives the best fit 
for c and x to be made in order to extract the terms Jn

2  . In 
what follows, we restrict ourselves to n = 1. This is  
necessitated by the fact that the parameters chosen for 
our numerical work are such that higher Jn

2   terms are  
extremely small. 
 The intensity expression given in eq. (3) is Raman–
Nath-type, in which B(θ1, θ2) involve certain geometrical 
factors as also those which contribute to shadowing effects. 
The factor B(θ1, θ2) is independent of λ, while the factor 
{. . . . . .} in eq. (3) is strongly λ-dependent. Equations 
given in (3) and (4) show that as the width 1/r0 of f(vxy, g) 
increases, the zeroth-order peak is broad enough to encom-
pass other peaks also and the detection of the periodic part 
becomes impossible. It was noted by Baltes and others4–13 
that for a Gaussian correlation function the periodic part 
is undetectable for the randomness if r0/Λ ≤ 0.33, where 
Q = 2π/Λ, Λ being the wavelength of the grating struc-
ture. With the help of the extended matched filter method 
we extract the amplitude a and the wavelength Λ of the 
periodic part, even in cases where r0/Λ << 0.33, i.e. which 
do not permit identification of the periodic part by normal 
intensity measurements, but only by intensity interfero-
metry14. We show that the values of a and Λ found with 
measurements at different wavelengths λ, come out to be 
consistently the same in the n = 1 case. This shows the 
existence of the first lobe. The second lobe is far more dif-
ficult to find, since its intensity is of the order of (a/λ)4 
and may be extremely low in the case under study. For an 
accurate detection of the grating structure, one can per-
form experiments at different λs and show that the ampli-
tude of the n = ± 1 lobe follows the (a/λ)2 dependence on 
λ. For the present, we study the accuracy to which the 
n = ± 1 lobe and the wave vector Q of the grating can be 
found. In doing so we have studied the accuracy with 
which the n = ± 1 lobes and Q can be found at different 
wavelengths λ of light that is used, where the change in λ 
alters the value of the quantity (r0/Λ), detectability being 
worse as (r0/Λ) becomes smaller. 
 Considering that √g1 << 1, the amplitudes of the suc-
cessive nth peaks fall as (√g1)

2n, while the width of the 
peaks vary as ∆vx ~ .1

0
−r  The separation of the peaks being 

δvx = Q, the central n = 0 peak can submerge all the higher 
order peaks for ∆vx >> δvx = Q. Here, the extended matched 

filtering method uses the same principle as given earlier 
by us15,16, but follows a more accurate method to arrive at 
the best filter. As before, this method too envisages the 
shape f(vx, g) of the central peak and separates it out from 
the total intensity profile. In this way it tries to identify 
the n = ± 1 peaks whose shape must match with that of 
the n = 0 peak that has been eliminated out. 
 We begin by assuming (this is the shape of the central 
peak which must be the same for all other peaks too) that 

f(vx) = fa(vx) ≡ [1 + (c′/2y)vx
2] y, (10) 

and note that on defining 

Z(vx) = [〈ρ*(vx)ρ(vx)〉/〈ρ*(0)ρ(0)〉] – fa(vx), (11) 

χ(vx) = Z(vx)/Zmax, (12) 

we have from eqs (3), (11) and (12), 

χ(vx) = (N0 + N1 + N2)/(D0 + D1 – D2), (13) 

where we have defined, 

N0 = J0
2  [ f(vx) – fa(vx)], 

N1 = J1
2  [ f(vx + Q) + f(vx – Q) – 2fa(vx)f(Q)], 

N2 = J2
2  [ f(vx + 2Q) + f(vx – 2Q) – 2fa(vx)f(2Q)], 

D0 = J0
2  [ f(Q) – fa(Q*)], 

D1 = J1
2  [ f(Q* + Q) + f(Q – Q*) – 2fa(Q*)f(Q)], 

D2 = J2
2  [ f(Q* + 2Q) + f(Q* – 2Q) – 2fa(Q*)f(2Q)], 

 (14) 

and Q* is the wave vector at which Z(vx) has a maxima. 
 It is clear that when our assumed fa(vx) is very close to 
the actual f(vx), the terms N0 and D0 become negligible and 
the terms N1 show prominent peaks at vx = ± Q* ≈ ± Q, 
while these lobes at vx ≈ ± Q* should match with the cho-
sen fa(vx). To quantitatively select the best match, we note 
that if the terms N0 and D0 be negligible (because of the 
match f(vx) ≈ fa(vx)), we must have χ(vx) – χa(vx) to be 
extremely small where χa(vx) is defined as, 

χa(vx) = χaN(vx)/χaD(vx), (15) 

where 

χaN(vx) = [ fa(vx + Q*) + fa(vx – Q*) – 2fa(vx)fa(Q*)], 
 (16) 

χaD(vx) = [ fa(Q* + Q*) + fa(Q* – Q*) – 2fa(Q*)fa(Q*)], 
 (17) 

and the matched filtering is effected by defining an esti-
mator 

∆2 = ∫
*

0
|

Q
χa(vx) – χ(vx)|

2 dvx. (18) 

We select the filter by choosing the c′, and y to be the 
one which gives ∆2 to be the minimum. Note must be 
taken of the fact that while χ(vx) is a quantity which is 
found from the experimental data, χa(vx) is a quantity that 



RESEARCH COMMUNICATIONS 

CURRENT SCIENCE, VOL. 86, NO. 1, 10 JANUARY 2004 179

is given by our hypothesis, while ∆2 gives a least square 
estimate of the deviation of data from the hypothesis under 
consideration. The main aim in the extended matched filter-
ing method is to anticipate f(vx) first, such that the shape 
of fa(vx) describing the f(vx) must also match the shapes of 
the side lobes at n = ± 1 to be found by searching for the 
minimum of ∆2. The ∆2 defined above is different from 
that given by Chatterjee and Vani15,16. On redefining ∆2 as 
given here, we note that the identification of the matched 
filter is considerably improved. 
 Identification of the matched filter enables us to ‘detect’, 
through a least square fit, the parameters for the rough 
part of the surface. To find those for the periodic part, we 
use eq. (11) to give (on defining  f ′(vx) = ∂f /∂vx), 

af ′ (Q* + Q) + af ′ (Q – Q*) – 2fa (Q) af ′ (Q*) =  

   – (J1/J2)
2 [ f ′(Q* + 2Q) – f ′(Q* – 2Q)], (19) 

ZmaxJ0
2   – [ fa(0) + fa(2Q*) – 2f a

2   (Q*) – 2fa(Q*)Zmax] 

   J1
2  – [ fa(3Q*) + fa(Q*) – 2fa(2Q*) fa(Q*)  

   – 2fa(Q*)Zmax]J2
2  = 0, (20) 

the typical results from which are given next. 
 In the numerical implementation of our scheme, we have 
chosen a case in which r0/λ ≤ 0.33, i.e. the periodic part 
is to be undetectable by ordinary intensity measurements, 
except by intensity interferometry. The numbers chosen are 
Λ = 6.25 micron, σ = 0.15 micron, l = 5 microns and θ = 1.0, 
being the same as in our earlier works15–17. In making these 
choices, we have taken a situation where the Kirchoff condi-
tions (i) 4πrc cos θ1 >> λ and (ii) (krc/2)1/3 cos θ1 >> 1 are 
maintained. In this case (4πrc cos θ1/λ) ~ 4000 >> 1, while 
(krc/2)1/3 ~ 8, so that condition (ii) is also valid as long as 
cos θ1 >> 0.125. It is clear that r0 is λ-dependent in this 
case, but (r0/Λ) still lies in the undetectable limit in every 
case that we present here. It should be further noted that 
the detectability limit r0/λ = 0.33 is true for the case of 
the correlation between the randomness, i.e. in the θ = 2 
case for the exponent in the correlation function for the 
randomness. In the case chosen here we have θ = 1, and the 

detectability is not possible even for r0/λ = 0.40, by 
studying the intensity profile, up to which we have checked. 
For higher λs an idea about Q can be obtained if one tries 
to observe structures in the differentiated signals α1 and 
α2, being defined as: α1 = [(∂〈ρ*ρ〉0/∂vx)/〈ρ*ρ〉0] and α2 =  
[(∂2〈ρ*ρ〉0/∂vx

2  )/〈ρ*ρ〉0]. This structure is, however, not 
seen in the case of λ = 5700 Å that we have discussed 
below. However, the parameters are detectable to a fair 
degree of accuracy in regions far below the detectability 
cut-off (Table 1) while the conventional methods would 
not have allowed such a detectability. 
 In our earlier work we had effected matched filtering by 
choosing χa = fa(vx – Q*) and obtained satisfactory values 
when λ = 6328 Å. The extended matched filter presented 
here describes χ(vx) much more accurately than the func-
tion χa(vx) that has been described in our earlier work. 
The present method is thus more accurate than the matched 
filter described earlier. This is unmistakably seen when we 
note that the minima in ∆2 becomes sharper in the present 
extended matched filtering than what was seen in the 
earlier version. This makes the best filter to be more easily 
discernible, than was in the method presented earlier. It is 
also to be noted that ∆2 is more sensitive to c′ than to y, 
i.e. is extremely robust up to the second derivative or to 
the curvature of f(vx). As the values in Table 1 show, y 
appears to be the same, i.e. 1.55 (correct one being 1.50) 
independent of λ, as it should be. The values of Λ and a 
are also independent of λ – within limits of permissible 
error – as is physically demanded, taking into account 
that in both the cases we are measuring sub wavelength 
distances, since (a/λ) ∼ 0.051, (Λ/λ) ∼ 0.05–0.10. This 
improved detectability is related to the central point in 
matched filtering that the fa(vx) selected must give a satis-
factory match to f(vx). From the parameters of random-
ness used in our numerical simulations, the quantity r0

2   is 
calculable and is expected to follow (λ2r0) = constant. 
Correct identification of the matched filter would demand 
that that (c′/2yr0

2  ) = 1 in every case. This is indeed found 
to be so, the ratio defined on the left side differing from 
unity by 10% in the worst case that has been encountered 
here. This shows that the method is quite satisfactory in 

Table 1. Numerical calculation for the hidden periodic part. Intensity simulations are made for a rough grating 
with Λ = 6.25 microns, i.e. Q = 1.005 × 104 cm–1, σ = 1.5 × 10–5 cm, l = 5 × 10–4 cm. While the wavelength  

λ of light is different, in every case the amplitude a of the periodic part is adjusted so that (a/λ) = 0.052,  
thus keeping the argument of the Bessel function terms at the n = ± 1 peaks to be 0.65 so that the corres- 

ponding parameter (J1/J0)2 = 0.0070 in every case. Intensity profile does not show any peak other than  
the central one. Numerical values of Q and a as found from the matched filtering are  

shown to give satisfactory results 
       
       
Wavelength  
(Å) 

r0  
(micron) 

Q (calculated) 
(micron–1) 

a/λ  
(calculated) 

 
r0/Λ 

Error in a  
(%) 

Error in Q 
(%) 

       
       
10000 2.527 0.994 0.052 0.4044 0.37 – 1.09 
 7500 1.422 0.995 0.054 0.2275 4.62 – 0.99 
 6000 0.910 1.001 0.048 0.1456 7.7 – 0.40 
 5000 0.632 1.040 0.040 0.1011  24.7  + 3.48 
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finding the factor fa(vx). Indeed as (r0/Λ) reduces, the  
errors in finding c′ and y do contribute to large errors in 
finding Q* and Zmax, due to the smallness of (a/λ) and 
hence the detectability suffers immensely. The limit for 
detectability by this method appears, in a preliminary 
estimate, to be (r0/λ) ≈ 0.12, far lower than the limit put 
by Baltes and others for detection by usual intensity 
measurements. 
 The effectiveness of our method can be understood from 
the following argument. In the discussions on detectability, 
Baltes and others considered whether the n = 0 and the 
n = 1 peaks could be seen separately. This means they 
were tackling the distinguishability of two peaks whose 
amplitudes differ by a factor of (a/λ)2 and which are sepa-
rated by ∆vx = Q. In our extended matched filtering, once 
the n = 0 peak is filtered out we are to distinguish the two 
comparable peaks at n = ± 1 but separated by a larger 
∆vx = 2Q*. The latter, according to the Rayleigh criterion 
or the Sparrow criterion18,19, allows distinguishability of 
the peaks for much lower values of r0. In the results pre-
sented here the errors are indeed tolerable, but the errors 
in Q* and a reach as high as 30%, when (r0/Λ) ∼ 0.065. 
This communication unmistakably establishes the extended 
matched filtering as a promising new tool for detection of 
hidden periodicities, purely from intensity data. Numerical 
experiments choosing various sets of parameters are under 
way and we further plan to advance this scheme by making 
a statistical error analysis and issues of goodness-of-fit. 
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Arabian Sea mini warm pool during 
May 2000 
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Anomalously warmer waters, viz. the Arabian Sea mini 
warm pool were reported in the southeastern Arabian 
Sea, which is believed to drive the onset vortex of the 
southwest monsoon. To understand the characteristics 
of this mini warm pool, an experiment was conducted 
on-board INS Sagardhwani during the middle of May 
2000. Analysis of the oceanographic data revealed the 
existence of a mini warm pool with temperature in 
excess of 30.25°C along 9°N between 68 and 75.5°E 
during the pre-onset period of the southwest monsoon. 
This mini warm pool coincided with the regions of low 
salinity (35.2 PSU) layer and its intensity inversely 
correlated with the depth of the highly stable (E > 
2000 × 10–8 m–1) layer. At the core (73.5°E, 9°N) of the 
mini warm pool, surface temperature was 31.2°C and 
sea surface salinity was less than 34.6 PSU. This core 
was found restricted to the upper 5 m water column 
following the thickness of low-salinity pocket and the 
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