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Tests have been made to benchmark and assess the relative accuracies of low-order multireference
perturbation theories as compared to coupled clu&€&) and full configuration interactiofFCI)

methods. Test calculations include the ground and some excited states of the, BeHd, CH,,

and SiH systems. Comparisons with FCI and CC calculations show that in most cases the effective
valence shell HamiltoniarfH") method is more accurate than other low-order multireference
perturbation theories, although none of the perturbative methods is as accurate as the CC
approximations. We also briefly discuss some of the basic differences among the multireference
perturbation theories considered in this work.2805 American Institute of Physics
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I. INTRODUCTION as the complete active space perturbation thé6ASPT),*
multireference Mgller—Plesset  perturbation  theory
The most natural method for treating quasidegeneratéVMiR-MP),>® state-selective qguasidegenerate perturbation
electronic states is to apply some type of multireferencaheory? quasidegenerate perturbation theory with multicon-
(MR) formalism, such as the MR configuration interactionfigurational self-consistent field reference functions
(Cl) approach, MR coupled clust¢EC) methods, or MR (CASPT2,® n-electron valence space perturbation theory
perturbation theoryPT). MR-based approaches have the ad-(NEVPT),®” state-specific multireference perturbation theory
vantage over their single-reference counterparts in providingSS-MRPTj,S'9 multiconfiguration  perturbation theory
the flexibility needed to describe important molecular char{MCPT),**** multideterminant state perturbation theory
acteristics, such as bond breaking pathways, excited statedIDSPT),'* the intermediate HamiltoniafiH) method:>
and transition states, within a few-body truncation schemeand the effective valence shell Hamiltonian methety),*®
For this reason, considerable effort has been devoted fare all capable of providing reasonable results for quaside-
more than two decades to formulate MR methods for bottgenerate and open-shell atomic and molecular systems, in-
ground and excited electronic states. ldeally, these apsluding larger systems. This should be contrasted with the
proaches should have most or all of the following characterinfinite-order many-body methods based on CC thofy
istics: (i) size extensivity and size consisten¢y) applica- that offer very high accuracies, but are typically limited to
bility to both closed- and open-shell systerfi§) ability to ~ smaller systems, although significant progress has been
accommodate all kinds of multidimensional reference spacegchieved recently in extending the applicability of CC meth-
for different states, geometries, ety) low computer cost 0ds and CC computer programs to larger many-electron sys-
and high accuracy(v) uniform accuracy in regions of real tems containing dozens of light ator(eee, e.g., Ref. 2lor
and/or avoided curve-crossings and in nondegenerate réeveral transition metal atongsee, e.g., Ref. 22The choice
gimes, andvi) rapid convergence. of method usually involves a trade off between accuracy and
Extensive studies over the past two decades have dergomputational cost as well as a concern for the ease of use of
onstrated that the state-of-the-art finite-order multireferenc&¥arious computer programs. In addition, for systems involv-
many-body perturbation theoffMR-MBPT) methods, such ing quasidegenerate and/or open-shell electronic states, it is
important to consider the ability of a given method to de-
dpermanent address: Indian Institute of Astrophysics, Bangalore-56003 ,Crlbe the relevant nondynamic Correlatlon'. By design, a!l
India. R-MBPT methods are capable of representing nondynamic
Y Author to whom correspondence should be addressed. Electronic maiorrelation very well. The popular single-reference CC ap-
freed@uchicago.edu proaches, such as CCED (CC method with singles,
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presenf*® although the recently formulated completely “perturb then diagonalize” or “diagonalize then perturb” ap-
renormalized CR) extensions of the CCSID) method, such proaches. The starting point for all these methods is the de-
as the CR-CCS[) approach, behave quite well in quaside- composition of the exact Hamiltonidt into the zeroth-order
generate cases involving bond breakifig?® Genuine multi-  HamiltonianH© and the perturbatioN,

reference CGMR-CC) method<>*°which are based on the

concept of multidimensional model spaces and the general- H=H®+V, (1)

ized Bloch equation, fare very well in quasidegenerate case
but they may suffer from problems due to single or multiple
intruder state solution®>? The state-selective or state-
specific (S§ MR-CC approaches, such as the Brillouin—
Wigner MR-CC theory>"’ the SS MR-CC approach of

38,39 .
Mahapatraet al, and the active-space CC memo_d? Of/\/ll associated with the project@=1-P. Once the active
Adamowicz, Piecuch, Bartlett, and their collaboraftfs: 0 < defi S H
are much better in this regard, although their accuracy variessp‘f’.m?/\/t0 is defined, a wave operatél is introduced that
. ; Satisfies
from very high to sometimes comparable to or worse than
the accuracy of single-reference CC calculati¢sse, e.g., W) :Q|\Pi(0)>1 i=1,... M, (2)
Ref. 30 for an overvieyw
A useful guide through the vast array of many-bodywhere [¥{”) and [¥;) are theunperturbedand the exact
methods is provided by benchmarking their performance fofFCI) wave functions of theith eigenstate of the Hamil-
“difficult” systems that are small enough for comparisonstonian, respectively. The wave operat@y which formally
with full configuration interactior(FCI) calculations. In this ~represents the mapping of the reference spatgonto the
paper, we compare the performance of different MR-MBPTtarget spaceM spanned by thé/ eigenstate$¥), has the
methods with the FCI and CC calculations for a few differentproperties,
systems of increasing complexity, namely, ,, HBe,
BeH,, CH,, and SiH. OP=0, PQ=P, 0?=0. 3
Among the above systems, the Be atom has served as a With the aid of the wave operatd®, the Schrédinger
widely used benchmark case for testiag initio methods  equation for theM eigenstates of the Hamiltonian correlating
and for comparing the efficiency of various quantum chemi-ith the M-dimensional reference spadé,, (also called the
cal methods. While having only four electrons, the Be atomp spacg of M unperturbed Statdﬂﬂ(o)% ie.
is a “difficult” system, since the nears2s>-1s*2p? degen-
eracy and the existence of a trug’4s3s intruder state intro- Hw) =E[P), i=1,... M, (4)
duce severe divergence problems in many types of perturba- ] ) )
tive calculations® The accurate determination of singlet- IS transformed into a generalized Bloch equation
triplet  splittings (lAl—glsl) for CH, and SiH is also HOP = OHOP = OPH_P., 5)
nontrivial, since it requires the precise and well balanced
incorporation of electron correlation effects and an accurat§ynere H = PHQP is the effective Hamiltonian. Once Eg.
description of the ground and excited states of different symey) is solved for the wave operatd?, the energiesE;, i
metries. The Hand Beh} systems offer the opportunity for =1 M, are computed in the “perturb then diagonalize”
considering the performance as a function of nuclear geomgpproaches by diagonalizing the effective Hamiltonkdux
etry and varying degree of configurational quasidegeneracyy the M-dimensional reference spagel,, while the “diag-
While the quality of predictions from multireference per- gngjize then perturb” schemes employ other ways of dealing
turbation theory methods may critically depend on the choicgyith Eq. (4), as mentioned below.
of reference space, the comparisons here employ only & Equation(5) is the basic equation for most multirefer-
minimal complete active spa¢€AS) as the reference space. gnce perturbation theory approach@tis also used to for-
This choice is made, in part, because the methods vary in thgjate all genuine MR-CC metho%°3 As noted earlier,
flexibility for choosing reference spaces. lllustrations of thegepending on the choice of the zeroth-order wave function
dependence on reference space are described elsewhere dpig energy, we distinguish between the diagonalize then per-
several of the methods considered hire. turb and perturb then diagonalize MR-MBPT methods. In the
Section Il summarizes the basic formalism used to defingerturh then diagonalize varieties, the wave oper&tois
all multireference perturbation theory methods, and a brie%etermined by projecting E¢5) onto theQ-space states be-
description of the specific MR-MBPT approaches used ingnging to Mg, whereas the eigenvalu& and the zeroth-
this work is presented in Sec. Ill. A comparison of various, qer wave functionSIf.(o)> are obtained by diagonalizing the
multireference perturbation theory calculations with the cor « M effective Hamiltonian matrixHeg in M. On the
responding FCI and CC results is discussed in Sec. IV. Corsther hand, in the diagonalize then perturb methods such as
clusions are provided in Sec. V. CASPT2, a multiconfigurational wave functid)=|®;),
which defines the zeroth-order sté{ﬂq(o)), is generated from
a CASSCF(or small C) calculation. The first-order correc-
The most extensively used low-order multireference pertion to the wave functiof¥;) is then expanded in terms of
turbation theory methods can broadly be classified as eithehe suitably defined configuration state functi¢@SFs |j),

Where HO is often constructed as a sum of one-electron
Fock-like operators. The full many-electron Hilbert space of
dimensionN is then partitioned into a reference spaté,
(also called the active or model spacé dimensionM <N,
defined by the projectoP, and its orthogonal complement

Il. THEORETICAL BACKGROUND
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M zeroth-order energies. The NEVPT2 method first divides the
|‘I’i(l)> => Cj|j>. (6) orbital space into three orbital subspaces of inactive orbitals
=1 with occupations of 2, active orbitals with variable occupa-
where the coefficient€; are determined by solving a system tions, and virtual orbitals with occupation number 0. Eight

of linear equations of the form classes of spacéék) are generated by the action of excita-
M tion operators, and these classes differ in the number of elec-
X (HO -EQ[C; = (KH[0), k=1,... M, (7)  trons(k) promoted to and from the CAS space, wheute-
j=1 notes the occupation of inactive orbitals. Different numbers

of perturbing functions are chosen for tﬁ(é) spaces by fur-
ther subdividing these spaces into various categories, viz.,
strongly contracted spaces, partially contracted spaces, etc.
For further details, we refer to the work of Angeli al®’

whereE”=(0[H©|0) = (d,|H|d;) is the zero-order energy
corresponding to the multiconfigurational wave function
|®;). The zeroth-order HamiltoniaH© in Eq. (7) is totally
different than that used in the diagonalize then perturb meth , , X
ods.(For more details, see the work of Anderssdral® and The SS-MRPT scheme is a diagonalize then perturb ap-
Hirao?) proach tha.t is designed 'to facilitate relaxathn of the refer-
The choice of reference space, orbitals, orbital energie€nce function and that is, thus, very effective in treating
and the zeroth-order Hamiltonian, as well as the specific forStates of mixed parentage. The emphasis in this approach is
mulation of MR-MBPT can severely affect the convergencet0 develop a state-specific theory, targeting only a single state
behavior, size extensivity, and accuracy of the results. Fofather than several states simultaneously. This goal is
example, the diagonalize then perturb approaches of thachieved by invoking a wave operator which acts on just one
CASPT2 type use projectors to define the zeroth-ordereference space function.
Hamiltonian, and this may lead to departures from strict size The CAS-based SS-MRPT version of Mukherjee and
extensivity” A similar problem occurs when the MCPT co-worker§® uses Rayleigh-Schrodinger and Brillouin—
method is employed, though a size consistent version oWigner type perturbation expansions with robust denomina-
MCPT has recently been develop¥d. tors to avoid intruder state problems in a natural manner. The
method is rigorously size extensive, and, hence, the energy
Ill. OVERVIEW OF SELECTED MULTIREFERENCE optalned is also size consistent because th(_a r_efergnce deter-
PERTURBATION THEORY METHODS minants span a CAS .and because the CAS |s_|nvar|ant under
separate transformations among the core orbitals and among
Since the details of the CASPT2, MR-MP, and MDSPTthe active orbitals. Since the SS-MRPT method of Mukher-
methods(and their variantsare extensively discussed else- jee and co-workef? uses an approach based on relaxed co-
where, we only outline the effective valence Hamiltonianefficients, it might appear to involve extensive computations
(H) approach and the recently developed SS-MRPTto remove redundancies in the excitation amplitudes. This

NEVPTZ, and_MCPT sphemes. drawback is largely minimized by an appropriate organiza-
The effective Hamiltonian methotH") belongs to the  (ion of the computational algorithrf.
less common perturb then diagonalize category. Fite This section is closed by describing the recently devel-

scheme determines the unoccupied valence orbitals and thejhey single-state multiconfigurational perturbation theory
en;rglas fr%m .a/m(O)FOCk operator and defines the zero- \ycpT) 1 The essence of MCPT is that perturbative correc-
order Hamiftonia as tions can be derived for an arbitrary refererizeroth-order

HO = |poyes be + |b,ye (b, + |pores{ el (8) function through the definition of virtual excited states. In
c v e this way, no special character of the reference function must

to remove the most egregious intruder state problems anlae assumed at the outset; in particular, the reference state is

thereby improve the perturbative converge%‘éhe valence Not requwed_ to be a CAS wave fu_nctlon. '_A‘t the same t|me_,
orbital energie, are evaluated from the original set of va- the formulation of the theory remains so simple that there is

lence orbital energies, by the democratic averaging, no need to apply numerical orthogonalization procedures nor
to solve linear systems of equations, such as(Bq.in order
&= % (9) to evaluate perturbative corrections, and the reduced resol-
N, vent in MCPT is always diagonal. Another noteworthy fea-

with N, representing the number of valence orbitals spanningU® ©of this scheme s the presence of adjustable

the CAS. Because of the averaging procedure, an addition®@rameters—the zeroth-order excited state energies—which
diagonal perturbation/s=¢,~¢, appears in theH’ proce- can be used to tune the zeroth-order Hamiltonian to the prob-

dure, beginning with the third order. lem of interest. In other words, the partitioning of the Hamil-

A variant of diagonalize then perturb MR-MBPT, called tonian in MCPT is not fixeda priori. Thus, MCPT is a gen-
n-electron valence space perturbation the@VPT2), has  eral framework rather than one single method. A specific
recently been proposed by Angeli al® This formalism also  variant of MCPT follows by fixing the zeroth-order excited
chooses zeroth-order CASSCF/CASCI wave functions. Thetate energies in a particular way. Here, we consider the fol-
NEVPT2 method differs from CASPT2 in the choice of lowing four variants of MCPTfor more details, see Refs. 12
wave functions external to CAS and in the definitions ofand 13.
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TABLE I. The ground state energies of Be, relative to the F€lhartree.

The[1,0] Padé approximant is constructed from thieexpansion. The FCI
energies for the 6-31G, 63Gt*, and DZ-ANO bases are —-14.613 545,

—14.633 954, and —14.626 388 hartree, respectively.

Basis
Method 6-31G 6-311G** DZ-ANO
SCF 0.046 781 0.062 062 0.053 402
MP2 0.022 470 0.019 900 0.018 507
MP3 0.010 598 0.008 641 0.008 459
CCSD 0.000 028 0.000 307 0.000 276
CCSDT 0.000 002 0.000 007 0.000 010
CCsOT) 0.000 001 0.000 022 0.000 021
R-CCSOT) 0.000 002 0.000 048 0.000 045
CR-CCsOT) 0.000 003 0.000 047 0.000 042
CR-CCSOT),ID 0.000 002 0.000 017 0.000 019
MR-CCSD 0.000 023 0.000 271
MR-CCSDT 0.000 001 0.000 005
CASSCF(APSG 0.001 696 0.018 344 0.009 598
IVO-CASCI 0.003 653 0.021 523 0.013 007
DK-MCPT2 0.000 168 0.003 199
DK-MCPT3 0.000 042 0.001 305
DK-MCPT4 -0.000 005 0.000 719
EN-MCPT2 0.000 010 0.001 432
EN-MCPT3 0.000 025 0.001 029
EN-MCPT4 -0.000113 0.000 086
OPT-MCPT2 0.000 008 0.000 638
MDSPT2 —-0.000 759 0.000 888 —-0.000 262
MDSPT3 0.000 183 0.000 823 0.000 953
MDSPT4 —0.000 026 —-0.000 058 -0.000128
CASPT2 0.000 283 0.002 745 0.005 586
SS-MRPT 0.012 129 0.001 343 0.001 216
SS-MRPTP 0.003 470 0.000 640 0.000 570
MR-MP 0.000 273 0.002 742 0.005 449
HY (2nd) 0.000 281 0.001 892 0.000 788
HY (3rd) 0.000 124 0.000 456 0.000 346
[1,0]Padé 0.000 116 0.000 342 0.000 329
OPT 0.000 005 0.000 018

4Using SCF orbitals.

®Using CASSCF orbitals.

(i) The Mgller—Plesset-like partitionin@glenoted as MP-
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formance in the main space. While it is beyond the scope of
the present work to discuss all the pros and cons of each
perturbative scheme, the benchmarks against FCI partially
serve this purpose.

IV. RESULTS AND DISCUSSION
A. Be

The ground and excited state energies of the Be atom are
computed with three different basis sets, viz., G-ﬂG,
6311G**, ®° and DZ-ANO®* A 2x 2 CAS reference space
comprising the §2s? and 1?°2p? CSFs is used for the mul-
tireference perturbative calculations that also yield'®ex-
cited state energy. All single-reference treatm¢htB2, CQ
are based on the restricted Hartree—Fosie® CSF.

The Be atom provides a simple, yet nontrivial bench-
mark for assessing the relative performance of various mul-
tireference perturbation theory approaches. Several single-
reference methods are considered for comparison purposes.
The single-reference methods include the second-and third-
order MBPT approachd® P2 and MP3, respectivelyand a
few CC and equation-of-motion CCEOM-CC) methods.
The CC approaches are computationally more expensive
than the low-order MR-MBPT methodsissuming that the
multidimensional reference spaces used in MR-MBPT calcu-
lations are not too large and that the perturbation theory cal-
culations are truncated at second or third orgjdyst the CC
treatments have the advantage of including important classes
of many-body diagrams through infinite order. Along with
the standard CC methods, such as CC&IT singles and
doubles®® and CCSDT),> we include results of the renor-
malized (R) and completely renormalizedCR) CCSD(T)
calculationg* 28638435 well as full CCSDT(CC singles,
doubles, and triple&€>®® computations. The R-CCSD) and
CR-CCSOT) methods are designed to improve the CC re-
sults in cases of configurational quasidegeneracy accompa-
nying chemical bond breaking where the standard CO$D
approach fail$+-283%%ut their performance in cases of or-
bital quasidegeneracy characterizing the ground and excited

MCPT) constructs the energy denominators as the difstates of the Be atom has not received much attention. In
ferences of the eigenvalues of the multiconfigura-addition to the original formulation of the CR-CC$SD
tional Fock matrix.
(i)  The diagonal elements of the multiconfigurational CR-CCSIT),ID modef® and which uses the diagonal ma-
Fock matrix are defined in terms of the one-particletrix elements of the triples-triples block of the similarity
energies for the Davidson—Kapuy partitionifiBK-
MCPT) proposed by Davidson.
(i) The generalized Epstein—Nesbet partitionifigsig-

nated in Table | as EN-MCPTdefines the energy de-

nominators of a given determinank) as (k/H|k)

—(0[H|0).

(iv) The optimized partitioning OPT-MCPT in Table )
determines the energy denominators from a suitablynethod$ and the MR-CCSD and MR-CCSDT schenfds,

designed optimization equatidh.>>®

theory?”?8we apply the newest variant, which is termed the

transformed Hamiltonian of the CCSD theory instead of the
bare orbital energies that are used in standard QTSD
treatments to specify the perturbation theory denominators
defining the noniterative triples correction. Calculations are
also presented using the excited state extensions of the
CCSD and CR-CCS(Q),ID methods via the EOM-CC for-
malism [the EOM-CCSD’ and CR-EOMCCSDT),ID%

which represent two different SS-MRCC approximations
based on the active-space CC theory originally proposed by

The IH method® is of the perturb then diagonalize vari- Oliphant and Adamowic?®™*? and fully developed by
ety in which the reference space is further partitioned into théiecuch, Oliphant, and Adamow(€z(see Refs. 44-52 for
main space whose energies are of interest and an intermedinportant further developments and extensions to excited
ate space whose properties are adjusted to optimize the peastectronic states The CCSD, CCSDI), R-CCSOT), CR-
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TABLE II. The energies of théS(2p?) excited state of Be relative to the and MR-CCSDT energies for the Be ground state energy and
corresponding FCI datdin hartreg. The FCI energies for the 6-31G, patween the results of CC calculations with noniterative or
6-311G**, and DZ-ANO bases are -14.211088, -14.271117, and. . iol d the ECI. indicati h h bital
~14.273547 hartree, respectively. iterative trip esan the , indicating that the-2p or |t§1 N
degeneracy in Be does not pose a problem for the infinite
Basis order CC theory, particularly when contributions from triply
excited clusters are included. The CR-EOMCGELID ap-

Method 6-31G  6-311G** DZ-ANO : . X

proach provides equally accurate energies for 18@p?)
EOM-CCSD 0.000 221 0.002 350 0002253 (Table Il) and3P(2s2p) (Table Ill) excited states. In fact, the
CR-EOMCCSRT),ID 0.000 023 0.000 066 0000153  CR-EOMCCSOT),ID 3P(2s2p) excited state energy is vir-
H" (2nd 0.008 566 0.017 064 0.021313  tyally exact. For both excited states, the CR-
H” (3rd) 0003569~ 0.003462  0.005849  EQMCCSOT),ID method provides considerable improve-
[1,0/Padé 0.000 299 0.001 664 0.001 933

ments over the standard EOM-CCSD treatment, but these
improvements are particularly dramatic for ﬂﬁsz) state,
where the basic EOM-CCSD approximation produces rela-
CCSOT), CR-CCSOT),ID, EOM-CCSD, and CR- el large errors. The latter behavior reflects the fact that all
EOMCCSOT),ID calculations are performed with the CC ~p_Eom CCSDT) method€ [including the CR-

computer codé8™ that are part of thesamESs p_ackagég EOMCCSIT),ID approach used hefdave been designed
and tf(l)e fece”t'Y developed' open-shell extensions of the% improve significantly the relatively poor description by the
coded? that are interfaced witksAMESS The CCSDT treat-

s _ EOM-CCSD approach of quasidegenerate excited states that
ment employs the computer program described in Ref. 51,0 yominated by two-electron transitions, such as #fe 2

which is interfaced withGAMESS and with the codes de- e2p2 excited state of Be. Because tﬁé(ZsZp) state has a
scribed in Refs. 71 and 72. The aforementioned MR-CCS% )

. ) redominantly singly excited character, the basic EOM-
anq MR-CC,SDTGgaICl_JIatlons are perfqrmed using thg cod CSD method is already quite accurate, and the CR-EOM-
written by Kallay,” which employs a string-based algorithm

. T),ID hod i he al EOM-
to represent and solve the CC equations. CCSOIM),ID method improves the already very good EO

Tables Il summarize the deviations from th " CCSD energy, making it essentially exact.
aples 1l summarize the deviations 1ro € COome- The considerably poorer accuracy of the single reference
sponding FCI results, i.e Eypeory=Erci, in the computed

; . . . MP2 MP i the singl Itiref-
ground and excited state energies of Be as obtained Wltl\{l and 3 energies compared to the single and multire

various perturbative and CC techniques. Tables I-lll demon(_arence CC and low-order MR-MBPT calculartliolens clearly
strate that the standard CCE8D method and its renormal- demonstrates the importance of higher-order ntribu-

; : . . tions for the ground state of Be. Tables I-IIl further indicate
ized and completely renormalized versions, which are basetcﬁ

; . . . : . : at the bulk of the correlation energies for the ground and
on the idea of adding relatively inexpensive noniterative cor-__ . : .
excited states of the Be atom can be incorporated either

rections due to triples to CCSD/EOM-CCSD energies, pro-, .
; . . hrough some of the low-order multireference approaches or
vide very accurate estimates of the ground and excited sta

energies of Be, particularly when the CR-CASDID/CR- ﬁrough the infinite-order CC and EOM-CC methods.

. Table | demonstrates that the performance of the MCPT
EOMCCSOT),ID approach is employed. The only methods . o
that can com)pete v?/ﬁh the CR-CES% D approagh in the method strongly depends on the applied partitioning scheme.

ground-state calculations are the expensive full CCSDT an for the Be calculations employing the small 6-31G basis set,

MR-CCSDT schemes. The superb accuracies obtained wit € .D.K 'pre partitioning seems to work bette_r tha_n the EN
the iterative or noniterative CC triples methods could be ex_parntlonlng. Although the EN-MCPT2 result is quite accu-

pected due to the infinite-order nature of the CC theoryrate’ the EN-MCPT series dive_rges for the Be ground state.
There are minor(typically, microhartree-type differences In contrast, the DK-MCPi series seems to converge. The

i i DK-MCPT4 energy drops slightly below the exact FCI en-
between the CCSO), R-CCSOT), CR-CCSAT), CCSDT, ergy, so that the convergence of the DK-MGPSeries is not

necessarily monotonic for Be. Nevertheless, the results of the
TABLE IlI. The energies of théP(2s2p) excited state of Be relative to the DK-MCPTn calculations are very encouraging. Second-
corresponding FCI dat&in hartreg. The FCI energies for the 6-31G, . . - L
6.311G*, and DZ-ANO bases are —14.508386, - 14.532 798, angorder calculations using the optimized part|t|0n(rlige_ OPT-
~14.526 502 hartree, respectively. MCPT?2) are also very accurate for the 6-31G basis set. The
behavior of the EN-MCPit versus the DK-MCPH series
Basis for the 6-31G basis should be contrasted with that observed

for the larger 6-311G** basis set, where both series appear to

Method 6-31G  6-311G** DZ-ANO i : n
be convergent and the errors obtained with the EN partition-

EOM-CCSD 0.000 080 0.000176 0.000172 ing are halved compared to the MP partitioning case. Con-

CR-EOMCCSDT),ID 0.000 000 0.000 008 0.000007  sidering the number of contracted Gaussian functions present

MDSPT2 0000349 0002723 0001773 4 the DZ-ANO and 6-311G** basis sets, the accuracies of

MDSPTS3 0.000 062 0.000318 0000209 \epT and OPT calculations with the DZ-ANO bagisot

MDSPT4 0-000 009 0-000 054 0-000 033 displayed in Table)lare expected to be quite similar to those

HY (2nd 0.000 289 0.001 582 0.001 937 . r .

HY (3rd) 0000079 0000234  o0o0002gs Optained from the 6-311G** basis.

[1,0Padé 0.000 007 0.000 105 0.000 090 Apart from some technical differences, such as the

choice of zeroth-order energy, the MDSPT metHad quite
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TABLE IV. The ground state energy of +bbtained with various perturba- TABLE V. The xlz;zfz;_alz; transition energy of bl obtained with

tive methods. All entries represent the absolute deviations from the correthe H’ method. All entries represent the absolute deviations from the corre-
sponding FCI energies in hartree. The FCI energid¥ldtH)=1.0, 1.6, and  sponding FCI energies in hartree. The FCI valuefRatl.0, 1.6, and 2.0
2.0 bohr are —1.114 534, -1.158 707, and —1.127 127 hartree, respectivelgohr are 1.420 687, 0.979 485, and 0.765 371 hartree, respectively.

R(H-H)/bohr R(H-H)/bohr
Method 1.0 1.6 2.0 Method 1.0 1.6 2.0
SCF 0.032 436 0.034 962 0.038 859 He (2nd) 0.033 3460 0.027 5880 0.021 7030
CASSCF 0.019 271 0.013514 0.009447  H® (3rd) 0.013 8570 0.011 8820 0.009 2990
MP2 0.006 522 0.008 874 0.011 208 HY (4th) 0.001 9920 0.005 1210 0.000 0450
SS-MRPT 0.000 878 0.000 614 0.000 649
CASPT2 0.003 801 0.002 442 0.001 511
MRMP 0.003 825 0.002 464 0.001 526 pear to be most accurate. The SS-MRPT approach fares
MP-MCPT2 0.003 889 0.002 570 0.001652  much better than the IH method for,HSince both the SS-
MP-MCPT3 0.000 848 0.000 603 0.000411  MRPT and IH methods specify the sameZ1CSF as the
MP-MCPT4 0.000 197 0.000 164 0.000 125 “intermediate” space, the eigenvalue corresponding to the
DK-MCPT2 0.007573 0.004 999 0.003075 10? CSF is not an approximate eigenfunction of the physical
DK-MCPT3 0.003 645 0.002 452 0.001 426 u

Hamiltonian. This explains why only the ground state energy

DK-MCPT4 0.001 792 0.001 204 0.000 632 e -
MDSPT2 0.002 331 0.001 197 0001978 Is displayed for the SS-MRPT and IH methods in Table IV.
MDSPT3 0.000 572 0.000 360 0.000138  TheHY method provides a precise estimé&é each orderof
MDSPT4 0.000 123 0.000 082 0000085 the ground state and th¢'S;=1'S —2'S] transition en-
IH(2nd) 0.005 902 0.005 425 0.004 904 ergy of H,.

IH(3rd) 0.001 168 0.001 218 0.001 204

IH (4th) 0.000 207 0.000 198 0.000 124 C. BeH,

HY (2nd) 0.000 684 0.000 283 0.000 254 _ -

HY (3rd) 0.000 221 0.000 531 0.000 607 Treating the BeH system presents well-known difficul-

HY (4th) 0.000 029 0.000 019 0.000 062 ties in describing the ground state potential energy surface

for the C,, insertion of the Be atom into Hwith single-
reference methods. Therefore, the BelHsertion reaction
similar to CASPT2, so only the former is provided for the Behas served as an important benchmark for testing new
excited3P(2s2p) valence state. The MDSPT approach esti-approache$""As in earlier calculations, the insertion path
mates the ground state energy of Be more accurately thaof Be into H, is modeled as a straight line=2.54
other perturbative approaches in the diagonalize then perturb0.4@R bohr, wherer is the H-H separation ang is the
category. distance between the Be atom and the midpoint of the H

Finally, Table | demonstrates that among the MR-MBPTinternuclear bond. Our calculations for the Besystem fol-
theories, theH” method provides better results in low orders low the earlier work&"~"" by being performed with a basis
than other low-order methods for the ground state of Be. Theet constructed from a contractgt2s3p]/(3slp) Gaussian
second- and third-ordef’ results for the excited states in set for Be and 44s]/(2s) Gaussian sefwith scaling factor
Tables Il and Il are also very good, particularly for the of 1.2) for the H atom.

3p(2s2p) state and especially when combined with fted] The FCI calculations show that thea?Railbi and
Padé approximantThe [N,N-1] Padé is constructed from 1aZ2a?3a? CSFs dominate the ground staté'A,) wave
the expressions given in Ref. 73. function along theC,, insertion path. Specifically, the

la22a21b5 determinant dominates the'A, state at R
B H =2.5 bohr(geometry A, whereas the &2a23aZ determinant
e dominates the FCI expansion of théA] state atR=3 bohr
The low-order perturbative convergence for the groundgeometry G. Thus, the iAl state is nondegenerate at ge-
state of the H molecule is studied at three different geom- ometries A and C, and standard single reference methods,
etries. We employ the same ba$&31G**) and the same such as the CCSD) approach, work very well in this case,
(2,2 CAS (10@ and ]0‘5 CSF3 as used by Rolilet alin producing errors in the microhartree ran@ee Table V).
their MCPT calculations. Tables IV and V, respectively, The situation dramatically changes, when the Be atom is
present the absolute deviations from the FCI values, i.eplaced 2.74 bohr from the center of the hiolecule(geom-
[Efeor,~EZ/l, for the ground state and thE'S;=1'S;  etry B). In this case, the &2aj1bj and 1a32a%3a? configu-
—>212; transition energies computed using various low-rations become equally important, largely because of the
order perturbative schemeéThe CCSD and EOM-CCSD quasidegeneracy of thesand 2 orbitals of Be. This mul-
methods are exact in this cakse. ticonfigurational nature of the wave function at geometry B
Here we find that the MCPT results again strongly de-leads to severe convergence problems for single-reference
pend upon the choice of partitioning scheme as expectegherturbative treatments. In particular, the error in the
Though the MCPT energies are satisfactory, they are not aSCSIO(T) energy relative to the FCI increases from 30-40
accurate as other second-order approaches. Among the digdiartree at geometries A and C to over 3 mhartree at geom-
onalize then perturb category, the SS-MRPT calculations apetry B (see Table VI. The R-CCSDT) and CR-CCSIT)
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TABLE VI. The ground state energy of Bghbbtained with various meth-  MR-MP results vary Considerab|y with the geometry, pro-
ods. All entries represent the absolute deviations from the correspondingucing Iarge nonparallelity errors relative to the FCI. Hie
FCI energies in hartree. The FCI energies at the geometries A, B, and C are . . .
~15.62288, ~15.602 92, and ~15.624 48 hartree, respectively. method seems somewhat better in this regard, particularly
when the[1,0] Padé approximants are employed. On the
Geometry other hand, unlike the Be and,Hases, the SS-MRPT ap-

proach fares slightly better than th¢ method, producing

Method A B c errors that at geometry C begin to compete with the CC
CCsD 0.001 08 0.003 48 0.000 29 calculations.

ccso) 0.000 89 0.003 31 0.000 27

R-CCSOT) 0.000 47 0.000 29 0.000 17

CR-CCSOT) 0.000 48 0.000 39 0.000 17

MP-MCPT2 0.01578 0.020 06 0.000 88 D. Singlet-triplet splittings in CH , and SiH,

MP-MCPT3 0.006 49 0.009 29 0.012 18

SS-MRPT 0.003 40 0.004 78 0.000 40 The calculation of the Singlet-triplet splittings in QH
MR-MP 0.018 46 0.014 04 0.017 44 and SiH provides another well-known test case for calibrat-
HY (2nd 0.017 04 0.020 06 0.022 96 ing quantum chemical methods because the poor quality of
HY (3rd) 0.006 93 0.005 69 0.009 81 the SCF approximation for these splittings indicates that
[1,0]Padé 0.003 47 0.002 23 0.00576 electron correlation effects contribute strongly to these split-

tings. Fortunately, FCI benchmarks by Bauschlicher and
Taylor’® " are available for these two systems for testing the
methods are capable of restoring high accuracy at geomet@gccuracy of various perturbative and nonperturbative many-
B, which is a consequence of the well-known ability of thesebody methods.
approaches to describe large nondynamic correlation or con- The H atom basis used in the ¢Hnd SiH calculations
figurational quasidegeneracy effects in spite of the appars Dunning’§0 (4s)/[2s] scaled basis for the H atoms with
ently single reference nature and relatively low cost of theone 2 polarization function({,=1.0. The C atom basis set
R-CCSOT) and CR-CCSDT) calculations*~2® is constructed from Dunnings5p)/[4s2p] contracted ba-
None of the low-order MR-MBPT schemes, using thesis set, augmented with one optimiZ&Bd polarization
two 1a?2a’1b? and 1a22a23a? CSFs as reference determi- function({4=0.51 for'A,, {4;=0.74 for®B,). For the Si atom,
nants, is capable of matching the high accuracy of theve employ Dunning’d5s3p] contracted basis set with one
R-CCSOT) and CR-CCSDT) calculations. In fact, some 3d polarization function{4=0.3). All six components of the
methods, such as the MP-MCPT scheme perform rathe3d functions are retained in the basis set. The structural pa-
poorly, exhibiting slow(geometries A and Bor, perhaps, rameters used for CH(Ref. 81 are:*A, r{(CH)=2.11a,
even no (geometry @ convergence. Unlike in the CR- and ZHCH=102.4 deg?Bl, r«(CH)=2.045a, and ~ HCH
CCSOT) case, the errors in the MP-MCPT, SS-MRPT, and=132.4 deg, while calculations for Sjkre performed at the

TABLE VII. The 'A—®B; splitting in CH, obtained from various perturbative and nonperturbative approaches.
The CCSD CCSDI), R-CCSOT) and CR-CCSI) results are obtained using ROHfer the 3B1 statg and

RHF (for the 1A1 state references. The EOM-CCSD and CR-EOMCGS$RID energies are computed using
the RHF reference and treating th&, CCSD state as the reference for the EOM-CCSD calculations.

ECB) ECA) ECA)-ECB)
Method (hartree (hartree (kcal/mol)
FCI -39.046 260 -39.027 183 11.97
SCF -38.927 947 —38.886 297 26.14
CASSCF -38.965 954 -38.945 529 12.82
IVO-CASCI -38.939 204 -38.918 750 12.84
CCSD —-39.044 057 -39.023 639 12.81
CCsOT) -39.045 742 -39.026 310 12.19
R-CCSOT) -39.045 654 -39.026 100 12.27
CR-CCSOT) -39.045 596 -39.025970 12.32
EOM-CCSD -39.043 851 -39.023 639 12.68
CR-EOMCCSDT),ID -39.045 166 -39.026 572 11.67
NEVPTZ2 13.67
CASPTZ 15.43
MDSPT2 -39.030721 -39.015 663 9.45
MDSPT3 —-39.040 848 -39.021 453 12.17
MDSPT4 -39.042 013 -39.022 295 12.37
HY (2nd) -39.083 409 -39.064 795 11.68
HY (3rd) -39.041 328 -39.020 436 13.18
[1,0]Padé -39.050 834 -39.030770 12.59

*Taken from Ref. 84.
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TABLE VIII. The 1A1—3B1 splitting in SiH, obtained from various perturbative and nonperturbative approaches.
The CCSD, CCSII), R-CCSOT), and CR-CCSDT) results are computed using ROkfer the3Bl statg and
RHF (for the 1A1 state references.

ECB) ECA) E(A)-ECB)
Method (hartree (hartree (kcal/mol)
Full CI -290.082 313 -290.110 207 -17.50
SCF —289.986 955 —289.994 434 -4.69
CASSCF -290.016 813 -290.042 911 -16.38
IVO-CASCI -289.998 715 -290.021 725 -14.44
CCSD —-290.079 700 -290.107 433 -17.40
CCsOT) -290.081 439 -290.109534 -17.63
R-CCSOT) -290.081 336 -290.109 356 -17.58
CR-CCSOT) -290.081 287 -290.109 292 -17.57
NEVPTZ -16.69
CASPTZ -15.12
MDSPT 2 —-290.073 605 -290.101 380 -17.42
MDSPT3 -290.082 374 -290.110117 -17.41
MDSPT4 —290.082 968 -290.110526 -17.29
HY (2nd) -290.110 362 -290.140 409 -18.85
HY (3rd) -290.097 108 -290.124 312 -17.07
[1,0]Padé -290.098 514 -290.126 234 -17.40

*Taken from Ref. 84.

geometries reported by Colviret al:** A, r(SiH)  shown in Ref. 85, is capable of giving a 0.04 kcal/mol dif-
=2.84a, and /HSiH=95 deg:’B,, r«(SiH)=2.77a, and ference with FCI for the single-triplet splitting in GH
/HSiH=118 deg.

The CAS spaces for the multireference calculations folv. CONCLUSION
both systems are constructed by allocating six electrons to

six orbitals(three ofay, one ofby, and two ofb, symmetry. Test calculations have been performed to benchmark and

assess the relative accuracies of various different low-order

Tables VII and VIII summarize the calculations for tie ltiref bati h hods b :
=E(*A) -E(B,) splittings of CH and SiH, respectively, as multireference perturbation theory methods by comparing
1 1 ! ' their predictions with one another and with the correspond-

obtained from various perturbative and CC/EOM-CC meth-in FCIl and CC calculations. Test systems include cases with
ods. The IVO-CASCI method is the first-order approxima- 9 ' Y

tion within theH? scheme that has been shown to yield COm_qua3|degeneracy at the transition state or during bond break-

g . ; ge for which single-reference perturbation expansions are
parable eXC|ta_t|on energies to_ CAS.SCF treatments W'.thougften uselessly divergent. The CC and EOM-CC methods
the need for time consuming iterations beyond those in an

initial SCF calculatior® and both yield splittings of compa- " WPles are the most accurate, and the accuracy of effec-
rable quality tive valence shell HamiltoniatHY) method is often better

The SCF splitting for Chi deviates from the FCI by than _that obtained with other multireference pe_rturbatlon
. . theories, although the performance of other multireference
14.17 kcal/mol. Inclusion of electron correlation through

i . . > perturbation theory schemes is usually satisfactory from the
Enﬁ)?c?vcelr:ng;/? CAfe%Il)JC?r?;CUIa“t%ZS pArowdesA a draTgt'C practical standpoint. We have demonstrated that the MDSPT
) theory” S FCl

0.550.87 kallmol Asshown n Tae VI, he appro- PPN fres beter hn aber Slagonae her perr
mate methods exceptH3,, MDSPT2, and CR- ) P

EOMCCSOT),ID overestimate the singlet-triplet energy gap ?Iete reference spaces of "."”'”.‘a' SIZES. Another degree of
. : . . e - freedom to be considered lies in the size of the reference
in CH,. Quite the opposite trend is exhibited by perturbative : .
) o . space and, for some approaches, in the use of incomplete

and nonperturbative theories in the calculationsAoffor reference spaces
SiH,. All the perturbative schemes except tHg,; method '
underestimate the singlet-triplet splittings for SiH

Tables VII and VIII shows that the singlet-triplet split-
tings of CH, and SiH estimated fromn-electron valence The authors thank Professor B. O. Roos and Professor K.
state perturbation theor(/NEVPTZ)84 are better than the Hirao for providing the CASSCF, CASPT2, and MRMP re-
CASPT?2 splittings but not as accurate as those obtained frosults. This research was supported by the Donors of the Pe-
the MDSPT andH’ methods. In fact, the splittings computed troleum Research Fund administered by the American
with the MDSPT scheme, thd” method, and th€l,0] Padé Chemical SocietyGrant No. 37939-A(, the U.S. Depart-
approximant constructed from th& data are all comparable ment of Energy, Office of Science, Office of Basic Energy
to the best CC and EOM-CC estimates. The only other relaSciences, the Chemical Sciences, Geosciences and Bio-
tively inexpensive approach that might improve these resultsciences Division(Grant No. DE-FG02-01ER15228the
even further is the genuine MRCCSD theory which, asNational Science Foundatidrant No. CHE-0309517 the
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