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In a recent study[H. Branover, A. Eidelman, and E. Golbraikh, “On the universality of large-scale
turbulence,” Phys. Fluids16, 845 (2004)] the properties of the large scale turbulence have been
investigated theoretically and experimentally concluding that the kinetic energy spectrum goes as
k1/3 at large spatial scales and citing a few examples for the existence of such a spectrum in natural
systems[J. C. Kaimal, R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn, and J. A.
Businger, “Spectral characteristics of the convective boundary layer over uneven terrain,” J. Atmos.
Sci. 39, 1098(1982); I. Gultepe and D. O’C. Starr, “Dynamical structure and turbulence in cirrus
clouds: Aircraft observations during FIRE,”ibid. 52, 4159(1995)]. In this paper we show that the
1/3 spectrum for the kinetic energy is a direct consequence of the magnetic helicity invariant of the
Hall-magnetohydrodynamic turbulence. We present the simultaneous kinetic and magnetic energy
spectra and propose the verification of the latter in the laboratory and natural systems. ©2004
American Institute of Physics. [DOI: 10.1063/1.1794756]

The phenomenology of the Kolmogorov1 spectrum gets
significantly extended when one ventures into the realm of
the magnetohydrodynamic(MHD) turbulence. The MHD
turbulence has been studied within the ideal MHD(Ref. 2) as
well as beyond it, including nonideal effects such as the Hall
effect in the two-fluid picture.3 The Kolmogorov phenom-
enology of the Hall-MHD(HMHD) has been investigated
and applied to the observed spectra of the solar atmosphere
and the solar wind4 successfully. Recently, the universality of
the large scale turbulence with the kinetic energy spectrum
going ask1/3 has been concluded from the laboratory experi-
ments on MHD turbulence.5 Evidence in favor of such a
spectrum has also been seen in convective atmospheric
boundary layer6,7 along with the usual Kolmogorov spectrum
k−5/3. Cirrus clouds8 have too been observed to supportk1/3

spectrum. In this paper, we present the spectral distributions
of the kinetic and the magnetic energy densities, within the
Hall-MHD, first derived for and applied to the solar
atmospheric4 turbulence. While some of the spectral predic-
tions of the Hall-MHD found ratification in the solar turbu-
lence, the 1/3 kinetic energy spectrum could not be tested
due to lack of observations on those scales. Although the 1/3
spectrum has been theoretically derived invoking the conser-
vation of the total energy flux5 in a given volume, we show
that the Hall-MHD with its new features offers a better al-
ternative.

The HMHD system consists of3

] V j

] t
− = 3 fsU j − m jV jd 3 V jg = 0, wherej = 1,2,

V1 = B, V2 = B + = 3 V,

U1 = V − = 3 B, U2 = V, s1d

where m’s are scale parameters. The magnetic fieldB, the
velocity V, the space and time scales are, respectively, nor-
malized to an arbitrary fieldBo, the Alfvén speedVA

=Bo/Î4pMn, the ion-skin depthli =c/ s4pne2/Md1/2, and
the cyclotron timetc=Mc/eBo.

In this model, inertialess electrons are frozen to the mag-
netic field lines; the ions, on the other hand, are not frozen in
due to their additional vortical motion. Note that in Eq.(1),
obtained by taking the curl of the ion force balance equation,
the pressure gradient term=P/n has disappeared because it
has been assumed to be a perfect gradient[by invoking an
equation of stateP=Psnd, for example]; the pressure has not
been neglected.

The three quadratic invariants of the Hall-MHD system
are found to be

total energyE =
1

2
E sV2 + B2dd3x =

1

2o
k

uVku2 + uBku2,

s2d

magnetic helicityHM =
1

2
E A ·Bd3x

=
1

2o
k

i

k2sk 3 Bkd ·B−k, s3d

generalized helicityHG =
1

2
E A + V · sB + = 3 Vdd3x

=
1

2o
k
F ik 3 Bk

k2 + VkG
· fB−k − ik 3 V−kg, s4d
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whereA is the vector potential. Note thatHG−HM is a com-
bination of the kinetic and the cross helicities.

We split the fields9 into their ambient and the fluctuating
parts(there is no ambient flow),

B = ês + b; V = v, s5d

and substitute in Eq.(1) to get

] b

] t
= = 3 fsv − = 3 bd 3 ês+ sv − = 3 bd 3 bg, s6d

]

] t
sb + = 3 vd = = 3 fv 3 s= 3 v + bd + v 3 êsg. s7d

The nonlinear problem represented by Eqs.(6) and (7) is
converted to a set of linear problems(the time honored
method for solving nonlinear equations) by imposing the fol-
lowing conditions:

v − = 3 b = ab, s8d

b + = 3 v = bv, s9d

where a and b are like the separation constants. With the
nonlinearities so taken care of, we are left with the remaining
time-dependent linear equations

] b

] t
= a = 3 fb 3 êsg, s10d

]

] t
svd = s1/bd = 3 fv 3 êsg. s11d

Apparently we have traded a close nonlinear system(six
equations for six variables) for an overdetermined linear sys-
tem (8)–(11) with 12 equations in six variables. Acceptable
solutions, therefore, will be possible only under some par-
ticular conditions that will remove the overdetermination. To
seek them, we first note that(10) and (11) admit

b = bk exp fik ·x + iasês ·kdtg, s12d

v = vk expSik ·x + i
1

b
sês ·kdtD . s13d

If the exponential solutions(12) and (13) are to satisfy the
linear equations(8) and (9), we must requireb=1/a. In
addition, substituting Eqs.(12) and(13) into Eqs.(8) and(9)
leads to

vk − ik 3 bk = abk, s14d

vk + ik 3 vk =
1

a
vk s15d

which, after simple manipulation, yield

vk − abk = iak 3 vk, s16d

vk − abk = isk 3 bkd, s17d

with the consequences

bk = avk s18d

relatingbk andvk, and

k 3 vk = − i
1 − a2

a
vk = − ilvk. s19d

The first of these establishes the HMHD equivalent of the
Alfvénic condition for MHD sb= ±vd, and the second, the
Fourier transform of a Beltrami equations=3G=lGd, has
to be solved to complete the story; the solvability constraint
will end up relatinga with k giving the “dispersion relation”
a=askd, anda is determined by

a± = F−
k

2
± Sk2

4
+ 1D1/2G s20d

and

l = ± k. s21d

Thus the fluctuations are more in the nature of nonlinear
waves as discussed in detail in Ref. 9. In order to derive the
spectral energy distributions we resort to the Kolmogorov
hypotheses according to which the spectral cascades proceed
at constant rates«E, «H, and«G, respectively, for the energy,
the magnetic helicity, and the generalized helicity governed
by the eddy turnover timeskvkd−1.

When Hall current and the fluid vorticity effects are
dominant, the three spectra for the velocity and magnetic
field fluctuations9 reduce to, in thek@1 regimea+→1/k,

WEskd = s2«Ed2/3f1 + k−2g−2/3k−5/3, MEskd = k−2WEskd,

s22d

WHskd = s2«Hd2/3k1/3, MHskd = k−2WHskd, s23d

WGskd = s2«Gd2/3f1 + k2g−4/3k1/3, MGskd = k−2WGskd.

s24d

If the turbulence is, in addition, dominated by velocity field
fluctuationssvk

2@bk
2d, the spectral expressions under the joint

dominance of the Hall term and the velocity fluctuationssk
@1d further simplify to

WE1a
skd = s2«Ed2/3k−5/3, ME1a

skd = s2«Ed2/3k−11/3, s25d

WH1a
skd = s2«Hd2/3k1/3, MH1a

skd = s2«Hd2/3k−5/3, s26d

WG1a
skd = s2«Gd2/3k−7/3, MG1a

skd = s2«Gd2/3k−13/3. s27d

For the second root ofa.k, k@1, we find the following
spectra:

WE1b
skd = s2«Ed2/3k−3, ME1b

skd = s2«Ed2/3k−1, s28d

WH1b
skd = s2«Hd2/3k−7/3, MH1b

skd = s2«Hd2/3k−1/3, s29d

WG1b
skd = s2«Gd2/3k−7/3, MG1b

skd = s2«Gd2/3k−1/3. s30d
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In the opposite case whereink!1, one obtains the stan-
dard Alfvénic state withvk=bk, and the corresponding spec-
tra are(suffixes 1a and 1b are used for the Hall-dominated
and 2 for the Alfvén limit)

Mskd = Wskd, s31d

WE2
skd = s«Ed2/3k−5/3, s32d

WH2
skd = s2«Hd2/3k−1, s33d

WG2
skd = s«Gd2/3k−1. s34d

The rationale as well as the modality for stringing to-
gether different spectral branches originates in the hypothesis
of selective dissipation. It was, first, invoked in studies of
two-dimensional hydrodynamic turbulence.10 The idea is that
in a givenk range, the particular invariant which suffers the
strongest dissipation, controls the spectral behavior(deter-
mined, in turn, by arguments of Kolmogorov). Thus if thek
ranges associated with different invariants are distinct and
separate, we have a straightforward recipe for constructing
the entirek spectrum in the extended inertial range. In two-
dimensional hydrodynamic turbulence, for instance, the en-
strophy invariant, because of its strongerk dependence(and
hence larger dissipation) compared to the energy invariant,
dictates the largek spectral behavior. Therefore, the entire
inertial range spectrum has two segments—the energy domi-
nated lowk, and the enstrophy dominated highks~k−3d. The
procedure amounts to placing the spectrum with the highest
negative exponent at the highestk end, and the one with the
lowest negative exponent ofk at the lowestk end.

The magnetic spectrumMskd and the kinetic spectrum
Wskd, constructed by following the procedure delineated
above, is shown in Figs. 1(a) and 1(b), and (Fig. 2) for the
Hall-dominated regime, Eqs.(26)–(31) [Alfvénic state, Eqs.
(32)–(34)].

We thus observe that the spectral branchk1/3 of the ki-
netic energy spectrum originates from the magnetic helicity
invariantHM under the dominance of the Hall effectsk@1d
as well as that of the kinetic energysvk@bkd for a+→1/k,
and it should operate in large spatial scale regime as dictated
by the hypothesis of selective dissipation. In the Alfvén re-
gime (k!1) the corresponding spectral branchWH2

skd

~ sk−1d. There are two breaks in the spectra displayed in Figs.
1(a) and 1(b) and one break in Fig. 2. They are due to the
change of the controlling invariant: atk1, the control is trans-
ferred from magnetic helicityHM to the total energyE and at
k2, from the total energyE to the generalized helicityHG.
Within the framework of the Kolmogorov hypothesis com-
bined with the selective dissipation hypothesis, the positions
of the spectral breaks indicate the scales of energy injection.
The energy injected atk2, e.g., will cascade towards smallk
as k−5/3 and towards largek as k−7/3. Similarly, the energy
injected atk1 will cascade towards largek as k−5/3 and to-
wards smallk as k1/3. This is also in agreement with the
conclusions of the papers 1 and 2. Thek1/3 spectrum in paper
1 is derived by invoking the constancy of the total energy
flux in the entire volumesk−3d, i.e., dimensionally,skvkd
3svk

2dsk−3d=const. In contrast, our derivation relies on the
global invariantHM. Although the two approaches are di-
mensionally identical, the underlying physics is very differ-
ent. Additionally, our small spatial scale spectra also show,
the steepenedk−7/3 branch comparable to the spectral
branchesA, B, andC of paper 1.

We propose that the measurement of the concomitant
magnetic energy spectrum which should carry much less en-
ergy than the kinetic spectrumsvk@bkd may shed light on
the type of the controlling invariant.

FIG. 1. (a) Schematic magneticsMd
and kinetic sWd spectra in the Hall
state for a+→1/k sk@1d. (b) Sche-
matic M and W spectra in the Hall
state fora−→−k sk@1d.

FIG. 2. Schematic magneticsMd and kineticsW;Md spectra in the Alfvén
statesk!1d.
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