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ABSTRACT

Magnetoatmospheric oscillations in the umbra of a typical sunspot are investigated. Using a stratification in
the umbral atmosphere, based upon the semi-empirical model of Maltby and coworkers, and assuming a verti-
cal homogeneous magnetic field, the normal eigenfrequencies are numerically determined for various values of
the horizontal wavenumber k and displayed in the form of a diagnostic diagram. The results indicate the
existence of several modes with periods in the 3 minute range. Furthermore, the analysis also demonstrates
that waves in the 5 minute range can be resonant modes of the umbra itself, if the spot is deep enough. A
noteworthy feature of the solutions is the existence of “avoided crossings,” similar to those found in global
oscillations. Apart from frequencies, eigenfunctions are also calculated, which allows the distribution of kinetic
energy density and polarization with height to be analyzed. It is found that many modes have dominant
kinetic energy in the photosphere, although there are also modes with appreciable energy in the chromosphere
as well. In general, it is not possible to classify the modes in terms of the elementary modes of a homogeneous
atmosphere. For large k, the modes resemble slow waves. However, for low values of k, corresponding to
observed umbral oscillations, a simple global classification is not possible. The oscillations in the low photo-
sphere and below are either fast-like or of the mixed kind, but above the temperature minimum they tend to
acquire a slow or acoustic character. Finally, a comparison is made with other theoretical models of umbral

oscillations.

Subject headings: hydromagnetics — Sun: atmosphere — Sun: magnetic fields — Sun: oscillations

I. INTRODUCTION

After the discovery of umbral flashes by Beckers and Tallant
(1969), numerous observations have confirmed the existence of
oscillations in the umbrae of sunspots (see reviews by Moore
1981, Moore and Rabin 1985, and Thomas 1985 for
references). The most commonly observed oscillations have
periods typically in the range 120-200 s and occur over a
height range extending from the photosphere to the transition
region. Umbral oscillations in the aforementioned period
range were observed in photospheric lines by Beckers and
Schulz (1972), Giovanelli (1972), Bhatnagar and Tanaka (1972),
Rice and Gaizauskas (1973), Thomas, Cram, and Nye (1984),
Balthasar and Wiehr (1984), Lites and Thomas (1985), Abdela-
tif, Lites, and Thomas (1984, 1986); in chromospheric lines by
von Uexkiill, Kneer, and Mattig (1983), Lites (1984, 1986), and
Gurman (1987); and in transition region lines by Gurman et al.
(1982). Furthermore, there are also simultaneous observations
of such oscillations in all three regions (Thomas et al. 1987).

In addition, oscillations with larger periods around 300-400
s are also observed in the photosphere (Bhatnagar, Livingston,
and Harvey 1972; Giovanelli, Harvey, and Livingston 1978;
Soltau, Schréter, and Wo6hl 1976; Thomas, Cram, and Nye
1982, 1984; Balthasar, Kiiveler, and Wiehr 1987). There is,
however, no indication for the presence of such oscillations in
the chromosphere and transition region (Thomas et al. 1987).

A number of theoretical investigations have been carried out
to explain umbral oscillations. Models for the 3 minute
(hereafter referring to the range 120-200 s) oscillations fall into
two broad categories. In the first model, the oscillations are
interpreted essentially as trapped fast modes in the photo-
sphere, which are driven by overstable convection in the sub-
photospheric layers (Uchida and Sakurai 1975; Antia and
Chitre 1979; Scheuer and Thomas 1981; Thomas and Scheuer
1982). Tunneling upward along the field lines allows the oscil-
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lations to penetrate into the chromosphere, where they resem-
ble acoustic waves (Thomas 1984). The waves suffer strong
reflection in the transition region, though some leakage of
wave energy into the corona also occurs (Scheuer and Thomas
1981; Schwartz and Leroy 1982). The alternative model pro-
posed by ZugZda, Staude, and Locans (1983, hereafter ZLS)
and by Gurman and Leibacher (1984) involves the excitation of
a slow-mode resonance in the chromosphere by broad-band
acoustic noise, impinging on the atmosphere from below. This
“white” noise produces transmission peaks at a number of
discrete frequencies, which are identifed with umbral oscil-
lations. The latter are mainly confined to a cavity bounded
from below by the temperature minimum and from above by
the transition region.

Both models have their attractive features. As pointed out by
Lites (1984, 1986), the existence of a number of closely spaced
peaks in the 3 minute range are a natural consequence of the
chromospheric resonance model, whereas in the detailed
theory of Thomas and Scheuer (1982, hereafter TS), this feature
does not appear to be present. On the other hand, the observa-
tion that the dominant energy of the oscillations is confined to
the photosphere supports the photospheric resonance model of
TS. Since the full set of equations are solved by TS, it appears
that the difference between the two models, from a mathemati-
cal point of view, is basically related to different boundary
conditions, particularly the location of the lower boundary.
Otherwise, it is hard to understand how the resonances in the
two models can be different, since, for a particular set of
boundary conditions and horizontal wavenumber (assuming
homogeneous conditions in the horizontal direction), the
normal modes of oscillation of the umbral atmosphere are
uniquely determined. The resonances occur at the normal-
mode frequencies of the atmosphere. As regards the interpreta-
tion of the observed waves, it is misleading to distinguish
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between the TS and ZLS models on the basis that in the former
the resonance is a fast mode, whereas in the latter it is a slow
mode. Indeed, as correctly pointed out by Thomas (1984), both
fast- and slow-mode oscillations are present in the TS model.
This is because a fast mode, excited in the subphotospheric
layers, changes character as it propagates upward owing to the
change in the ratio of the sound speed to the Alfvén speed with
height. In the chromosphere this mode becomes converted into
a slow mode. Thus, both the TS and ZLS models agree on the
interpretation that in chromospheric layers and above, the
mode is essentially an acoustic wave. The main disagreement
between the two models is on the character of the modes in the
photosphere.

As regards the interpretation of the 5 minute oscillations in
sunspot umbrae, Thomas, Cram, and Nye (1982) have argued
that these are driven by external p-modes. On the other hand,
Zugzda (1984) has pointed out that these oscillations could be
resonant modes of the spot itself. However, this hypothesis
remains to be demonstrated quantitatively.

The purpose of the present investigation is to try to resolve
some of the discrepancies between the two models and also to
shed further light on the properties of umbral oscillations. We
adopt the spirit of the TS calculation and determine the free
eigenmodes of a model umbra. There are, however, two major
differences between our respective calculations: first, we do not
vary the location of the lower boundary to seek agreement
with observation; second, we examine the behavior of the
oscillation frequencies with horizontal wavenumber k, i.e., we
generate a diagnostic diagram. The calculations of TS, which
yield a single mode in the 3 minute range, were made for a fixed
value of k. On the other hand, the ZLS model, which is capable
of producing a number of modes in the observed range, is
based upon the approximation of a strong magnetic field and
large k. In this limit there is no dependence of the solutions on
k. The results of the present analysis provide a more general
range of solutions by examining the variation of frequency
with k. As we shall see, this behavior reveals certain very inter-
esting properties. A positive feature of the present work is that
it demonstrates the existence of several modes in the 3 minute
range, with dominant kinetic energy in the photosphere.
Another new aspect of the analysis is an attempt to study the
nature of the modes by decomposing them into solenoidal and
irrotational parts.

The present investigation is a continuation of earlier work
on wave propagation in thick flux tubes. In a previous analysis,
using a rather simplified model for the umbra, Hasan and
Abdelatif (1989) determined its oscillation spectrum and exam-
ined some properties of the modes. They found that there were
several modes in the 3 minute range. The calculations were
generalized by Hasan and Sobouti (1989), to use a model atmo-
sphere for the umbra. However, for numerical reasons it was
only possible to treat a fairly small vertical extension of the
atmosphere. These difficulties have now been overcome by
making substantial modifications in the mathematical tech-
nique, so that the sharp temperature rise, both in the chromo-
sphere and in the convection zone, can be accommodated in
the mathematical treatment.

The plan of the paper is as follows: In § II an empirical
atmosphere for a sunspot umbra is described, which provides
the starting equilibrium model for the linear analysis. The lin-
earized equations are presented, followed by the method of
solution in § IV. In § V the results of the calculations are pre-
sented, followed by a discussion in § VL. The application of the
results to umbral oscillations is taken up in § VII, and a com-
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parison with the TS and ZSL models is made in § VIII. Finally,
a summary of the main findings and conclusions is presented
in§ IX.

II. MODEL ATMOSPHERE FOR A SUNSPOT UMBRA

In order to compute the wave modes in an umbra, an equi-
librium model is required, which mimics a real atmosphere in a
sunspot. Recently, an umbral model was published by Maltby
et al. (1986), which is an improvement on the reference model
atmosphere of Avrett (1981) for the deeper layers below the
photosphere. The chromospheric and higher portions in the
atmosphere are based upon the model of Lites and Skumanich
(1982) and Nicolas et al. (1981), respectively. Maltby et al.
(1986) provide a model for an “average” umbral core (model
M in their nomenclature). This model was extended beneath
the photosphere by matching it smoothly with the convection
zone model of Spruit (1977) (the combined model was kindly
provided by T. Abdelatif). Figure 1 shows the temperature
variation with z (height) in a sunspot. The convention used is
that z increases away from the Sun, and z = 0 corresponds to
optical depth unity.

Since the density p and pressure p are also tabulated in the
model of Maltby et al. (1986), the mean molecular weight 4 can
be determined by using the perfect gas law relation

_PRT
ﬂ b

where Z is the gas constant. Once the values of T and u are
known, the pressure is recalculated using the equation of
hydrostatic equilibrium,

)

dp
=P V)]

where g is the acceleration due to gravity. The integration of
equation (2) is carried out from z = 0 in both the upward and
downward directions. The density is determined once again,
using the perfect gas law.

III. LINEARIZED EQUATIONS

The treatment in this section is closely parallel to the one
found in Hasan and Sobouti (1987, hereafter Paper I).
However, for the sake of completeness and also since there are
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FiG. 1.—Temperature as a function of z in a sunspot umbra (based upon
the core umbral model M of Maltby et al. 1986).
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several important differences, we present the complete set of
equations. We assume that a uniform vertical magnetic field, of
strength B, is embedded in the model atmosphere, described in
the previous section. The normal modes can be determined by
linearizing the magnetohydrodynamic (MHD) equations,
which results in the following wave equation:

%
P oz =—FO, 3)
where
1

F§)=Vop—gop— - (VxB)xB, @)
op=—pV-£—-¢-Vp, )
op=—ypV-&—-¢-Vp, (6)
oB=V x (¢ xB), (7

_%
s ®

where dp, dp, 6B denote Eulerian perturbations in density,
pressure, and magnetic field, respectively; & is a small Lagrang-
ian displacement of a fluid element; v is the velocity; and v is
the ratio of specific heats. On multiplying equation (3) by &*
and intergrating over the volume of the umbra, it is possible to
show that (Paper I)

w—w?q=0, )]

where

W=de§* " F(9)

(.(%p*0p  .,..  OB*:6B
—de< pcsz +pNg ézéz_’_ 471:

+ f dA[(n - E9)op + 4i (n - E*\B - 5B)
T

1
~ 2 (B ng* -w)] : (10)
TT
q=fdx¢*-¢, (1)
_ ldp g
N —g(—,, dz ) (12

In deriving equation (10), we have assumed & to have a time
dependence of the form e . The second term, which rep-
resents a surface integral, arises due to integration by parts. We
denote by n the unit outward normal vector from the surface,
by ¢, = (yp/p)'/* the sound speed, and by N, the Brunt-Viisild
frequency. We shall consider only those perturbations for
which the surface integral vanishes. The volume integrals are
symmetric with respect to £ and &*, from which it follows that
? is real.

IV. METHOD OF SOLUTION

a) Decomposition of Displacements

It is useful to decompose the displacements & into irrotation-
al and solenoidal components using Helmholtz’s theorem. A
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similar analysis, based upon such a decomposition for the
linear displacements, was adopted by Aizenman and Smeyers
(1977) and Sobouti (1981) in the context of global oscillations,
and by Hasan and Sobouti (1987) for flux-tube oscillations. In
the present case, the standard Helmholtz decomposition is
used without the weighting factor 1/p used in Paper L.

Thus, according to Helmholtz’s theorem, & can be broken up
as follows

¢=&+&+¢&, (13)

where the various components can be expressed in terms of
scalar functions ¢,, ¢,, and ¢, as follows:

& =—-Vo¢,, (14a)
& =VxVzo), (14b)
E,=VxVxVzdo,), (14c)

where z is a unit vector in the z-direction. It is instructive to
rewrite equation (13) as

¢ =C8mag + &> (15)

where
gmag = cl + ét . (16)

It can be shown (Paper I), that §, and &, describe Alfvén and
magnetoatmospheric (MAG) waves, respectively. In fact, the
equations for these modes become decoupled. We shall, in the
present investigation, concern ourselves solely with MAG
waves, deferring the solutions for Alfvén waves to another
paper. Henceforth, only displacements of the type &,,,, will be
considered (the subscript “ mag” will hereafter be dropped).

b) Form of the Displacements

Let { denote a small displacement of a fluid element (note
that { need not satisfy eq. [9]). It is convenient to work in
cylindrical coordinates (r, 8, z) and choose ¢ as follows

£ = —Cpo(z) HnE) o (17)
dr

= —Co 2 B3 (k)™ (18)

(2 = — Cpyik{2(2) (k)™ (19)

where J,, denotes the Bessel function of order m, k is the radial
wavenumber, C,, is an arbitrary constant, and the superscript o
is an integer characterizing the vertical order of the mode. A
time dependence of the form e~ ** is implicit in equations (17)-
(19). Let us consider purely axisymmetric modes, for which
m = 0. Then {, = 0, and we have

L, = Cokl(2)] y(kr) , (20)
= —Coikl, Jo(kr), (21)
where the superscript o has been dropped. It is convenient to
choose
1

Co=——o—.
" Jmkalo(ka)

Following TS, let us assume that a sunspot umbra can be
treated as a cylinder of radius a and that the radial component
of the displacement vanishes at r = a. Then, k can take on only
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where
- S=1 _] *op.
7 045 WiAl) = _[dx 51"_2”1 , @7
u/l](z) = 61’: 5jzf dxpN: C: Cz 5 (28)
5 -
OB* - 6B;
Wi3) = f dx ZL22 (29)
4r

3l and
Sij= fdx pL¥; s (30)
1= 318 where op and 0B are given by equations (6) and (7) with ¢
N replaced by { and i,j = r, z. The structure of the matrices S and

| | L | | W is given in Appendices B and C, respectively.

1 3 5 7 9
a(Mm)
Fi1G. 2.—Cell width (4/2) and horizontal wavenumber k (on the right-hand

axis) as a function of the umbral radius g, for axisymmetric modes having a
node at r = a. The numbers denote the various order zeros of J ;.

discrete values, which are given by
ka=j,,, (s=12,...), (22)

where j, ; denotes the zero of order s of J;. Let us define a
horizontal wavelength 1 associated with the horizontal dis-
placements by the relation A = 2rn/k. Then 4/2 can crudely be
regarded as the width of a vertical element in the umbra.
Figure 2 shows the cell width (1/2) and k as a function of
umbral radius a for various s. Since the horizontal sizes are
typically greater than 1.5 Mm, the curves have not been
extended below this value. For instance, when s = 1 (which
corresponds to the first zero of J,), and a = 4.2 Mm, we find
from Figure 2 that k = 0.9 Mm™!. This value was used by
Uchida and Sakurai (1975) and TS. .

We also need to specify the form of £, and {,. In principle
any choice of functions which form a complete set, and which
also satisfy the boundary conditions, can be used. The precise
forms used in the present calculation are given in Appendix A.

¢) Variational Method

We now solve equation (9), using a variational technique.
The method essentially consists of expanding & in terms of the
trial functions ¢ as follows

(=270,
&= Z:02,

(23)
24

where Z? and Z? are referred to as the variational constants.
Substituting equations (23)+24) in equation (9), and using a
variational method to minimize the eigenvalues, yields a
matrix equation of the form (Sobouti 1977; see also Paper I)

WZ = SEZ , (25)

where E is a diagonal matrix whose elements are the eigen-
values w?, and Z = [Z;] (i = r, z) is a column vector containing
the variational constants. The elements of W and S are

Wi = Wil) + W) + W,3), (26)

The matrix of eigenvalues is by definition block diagonal,
with the following form:

E 0
E=<0 E)

where each block is itself a diagonal matrix. The column vector

Z has the structure
Z
Z=\|_"]).
2)

d) Boundary Conditions in the Vertical Direction

In order to find a unique set of solutions, we need to impose
boundary conditions. For the horizontal direction, we have
assumed that the radial component of the Lagrangian dis-
placement vanishes. Let us now consider the vertical direction.
Following TS, we impose rigid boundary conditions,

&=¢=0 at z=h_ (33)

where h, and h_ denote the top and bottom boundaries,
respectively. Since it is not a priori obvious where these bound-
aries should be located, one must appeal to physical intuition
to choose suitable levels. For i, TS argue that an appropriate
height is at the chromosphere-coronal transition region,
because, at this level, both the Alfvén and sound speeds are
very large, thus leading to downward reflection of waves prop-
agating from below. In the present calculation, it was found
that the choice h, = 2000 km sufficed, since raising it any
higher barely changed the frequency spectrum.

The choice of the lower boundary proved to be more diffi-
cult. TS adjusted this level to find modes with periods in the
range 140-185 s. This level turned out to be some hundred
kilometers below the surface for B = 2000 G. Physically, this
procedure was justified on the basis that forcing by overstable
convection would occur in a very narrow range of depths
(according to Uchida and Sakurai 1975, when v3/c? ~ 1),
which are not very different from the values of h _ found by TS.
However, the assumption of overstability being confined to a
very small layer may not be true (see § VIc), so that forcing
would occur over a much larger range of depths. An alternative
way to proceed might be to choose the lower boundary suffi-
ciently deep that the oscillation frequencies, at least in the
observed range, are somewhat insensitive to its precise loca-
tion. Assuming that h_ lies in the layers where v,/c, < 1, an
asymptotic analysis of the equations (ZugZda 1984) reveals the

€2))

(32)

and z=h, ,
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existence of basically two magnetoatmospheric modes. The
first mode is essentially an acoustic mode, which on propagat-
ing downward will suffer upward reflection owing to the rapid
increase of ¢, with depth. The other mode is essentially a
gravity-modified slow wave, which for vertical propagation is
mainly transverse (£, =0). Thus, the boundary conditions
given by equation (33) can be physically justified for all modes,
except for the horizontal displacement of the slow mode in the
deep layers. The condition ¢, = 0 at z = h_ for this mode can,
however, be crudely explained by arguing that the amplitudes
of the motions in the deeper layers is likely to be small, owing
to the large density of matter there. In the present calculation,
the choice h_ = — 500 km was selected iteratively.

e) Numerical Technique

We have already seen that the integral formulation of the
original wave equation finally reduces to the solution of equa-
tion (25). Details of the method can be found in Paper I
Briefly, the technique utilizes a Rayleigh-Ritz scheme to
approximate the linear series by a finite number of terms, say n.
The block matrices in W and § are of order n x n. Equation
(25) now reduces to a generalized eigenvalue problem, which
can be solved using standard numerical algorithms.

V. RESULTS

a) Diagnostic Diagram

Figure 3 shows the variation of the wave frequency v (where
v = w/2xn) with k (diagnostic diagram) for umbral oscillations,
for B = 2000 G (solid lines) and B = 3000 G (dashed lines). For
a fixed value of k, a number of solutions exist satisfying the
boundary conditions. These correspond to the normal-mode
frequencies or harmonics, which form a discrete spectrum. The
various numbers beside the solid curves denote the order n of
the solution for B = 2000 G. An interesting feature that can be
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discerned from the diagnostic diagram is the absence of acci-
dental degeneracy in the solutions of different orders. It is
found that when curves of adjacent orders draw close to one
another, an “ avoided crossing ” occurs. Physically, this phenom-
enon is related to coupling between modes confined to different
regions of the atmosphere (Leibacher and Stein 1981).
Although “avoided crossings” have been extensively investi-
gated in global oscillation studies (e.g. Osaki 1975; Aizenman
and Smeyers 1977; Christensen-Dalsgaard 1980), their exis-
tence in the connection of magnetoatmospheric waves appears
to have been noticed only recently (Hasan and Abdelatif 1989).

In an atmosphere, where the ratio of the sound to the Alfvén
speed changes over several orders of magnitude, caution is
needed when interpreting the waves in terms of the elementary
modes of a homogeneous atmosphere. The variable structure
of the atmosphere results in mode transformation, which is
particularly effective in layers where wH/v, ~ 1 (Zugzda 1984),
where H is the scale height of the atmosphere. Table 1 gives the
values of v,, ¢, and #n, where n = wH/v,, at various z for
B =2000 G and w = 3.49 rad s ! (corresponding to a period

TABLE 1

VALUES OF c,, v,, AND ) = wH/v, FOR DIFFERENT z

LN

CS
(kms™")

(km) (km's™) n
—500...... 10.42 2.81(4.21) 3.84(2.56)
—~300...... 9.61 3.63(5.45) 2.44(1.62)
—100...... 8.24 4.55(5.45) 1.16(0.77)

0...... 6.52 5.48(8.22) 0.59(0.40)

100...... 5.87 9.13(13.70)  0.29(0.19)

300...... 5.94 3482(5223)  0.08(0.05)

Note—H is the scale height and w the frequency;
B=2000 G and a wave period of 180 s are assumed.
Numbers in parentheses correspond to B = 3000 G.

V(mHz)

100

—{167

P(s)

—250

—500

0-0 1-0 2.0

3-0 4-0 5.0

k(Mm ')

F1G. 3.—Variation of v with k in the umbra of a typical sunspot for B = 2000 G (solid lines) and B = 3000 G (dashed lines), corresponding to v,/c,, = 0.84 and
Va0/Cso = 1.26, respectively, where the subscript zero corresponds to z = 0. The right-hand scale denotes the periods, and the numbers beside the curves correspond

to the order n of the solution, with respect to B = 2000 G.
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of 180 s). The numbers in parentheses give the values for
B = 3000 G. We find that the “transformation ” region occurs
deeper in the umbra for B = 3000 G. Thus, when attributing a
fast or slow character to a mode, it should be borne in mind
that this is a local property, and applicable in layers separated
from the “ transformation region.” Incidentally, decreasing the
frequency moves this region lower down into the atmosphere.
Let us now see whether it is possible to extract any informa-
tion on the nature of the models by looking at the diagnostic
diagram, keeping the aforementioned points in mind. An
examination of Figure 3 also shows that there are regions in
the diagnostic diagram where the frequency hardly varies with
k. These portions roughly correspond to modes which are
dominantly of the slow type. In the upper layers of the atmo-
sphere where 7 < 1, the slow-mode dispersion relation is
ork,c (34)

z>s

where k. is the vertical wavenumber. This relation shows that
the slow mode is essentially an acoustic wave, whose frequency
does not depend either on the horizontal wavenumber or on
the magnetic field. In practice, we find that the situation is
more complicated, owing to the fact that the modes also have
nonnegligible energy in the lower layers, where the Alfvén and
sound speeds are comparable, so that equation (34) is no
longer valid. However, in the limit of large k, the dispersion
relation for the slow mode is still given by equation (34), with ¢,
replaced with ¢,, where ¢, = c;v,/(c2 + v3)"/2. When k — oo,
w — oo for the fast mode, so that the two sets of modes are well
separated in frequency. Thus, for large horizontal wavenum-
ber, we expect the low-order modes to be of the slow type,
whose frequencies depend on B through the tube speed c,. The
magnetic nature of a mode can be seen by looking, in this limit,
at the shift in frequency, when the magnetic field is varied. We
find that the frequency of the n = 2 mode is unaffected by a
change in the field, suggesting that this mode is dominantly
acoustic in character. For the other modes, however, the fre-
quency increases with B, although the dependence on field
strength is fairly weak.

0-8—

0-6—

0.4 —

Vz

0.2 L

-600 -200 200 600 1000 1400 1800

z(km)
FIG. 4a
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b) Height Variation of the Velocity

Figures 4a and 4b depict the variation of v, and v, with z for
n <5, assuming B = 2000 G and k = 0.9 Mm ~!. Henceforth
this choice of parameters will be used, unless stated otherwise.
All amplitudes have been normalized with respect to the
maximum over the vertical extension and essentially refer to
the values on the axis of the flux tube. In order to compare the
relative values of v, and v_, the ratio | v, | ../ | ¥, sy iS also given
for each order n. We find that | v, | .y < |0, |mae> apart from the
n = 1 mode, for which the two are comparable.

It is observed that, in general, at large heights the vertical
and horizontal velocities increase and decrease, respectively,
with z. This behavior can be understood by examining the
asymptotic solutions of the equations of an isothermal atmo-
sphere in the limit of small 5, which have been discussed by
Ferraro and Plumpton (1958). Above z = 0, the isothermal
approximation is not very unreasonable, since ¢, does not
change greatly. A decrease of v, with height, for large z, is due
to the rapid increase of v, with z. On the other hand, v,
increases with z owing to the decline of density. The decrease in
v, close to the upper boundary, occurs because of the sudden
increase of c;.

Table 2 shows the number of nodes in v, and v, for various

TABLE 2

NUMBER OF NODES IN v, AND v,
FOR DIFFERENT ORDERS n*

NUMBER OF NODES

n v, v,
| D 0 1
2. 1 0
3o 1 1
4ol 1 1
Seiiii. 1 2

® Assuming B=2000 G and
k=09Mm™'

| ] ] 1 |
-600 ~-200 200 600 1000 1400 1800

z(km)

FiG. 4b

FIG. 4—Variation with z of (a) v, and (b) v, forn = 1,2, ..., 5, assuming B = 2000 G and k = 0.9 Mm~*. The values have been normalized with respect to the
maximum in the interval. The ratios | v, |p../| v, |max are 1.303, 3.845 x 1075,3.111 x 1073, 3.585 x 1073,and 7.186 x 10 %forn=1,2,..., 5, respectively.
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orders. Apart from n = 1, the higher order curves have one
node in v,, which occurs at z &~ —200 km. It should be noted
that classifying modes by the number of nodes in the horizon-
tal and vertical velocities is not meaningful in the present case,
because the problem under study is not of the standard Sturm-
Liouville type.

¢) Height Variation of the Kinetic Energy Density

It is interesting to examine the variation of the kinetic energy
density with height in the various modes, particularly because
of the observations of Abdelatif, Lites, and Thomas (1984) and
Lites and Thomas (1985), which claim that the bulk energy of
the 3 minute umbral oscillations is in the photosphere. Figure
S shows the height variation of E,;, [defined as E,;, =
p(v? + v2)/2] for n < 5. It may be observed that the energy of
the modes is not spread uniformly over the height range under
study, but rather confined to certain regions of the atmosphere.
The n =1 mode, for instance, appears to have negligible
kinetic energy above a height of some 200 km, whereas the
energy in the n =2 mode is large in the upper part of the
atmosphere. It can also be seen that for the n =3 and n =4
modes (corresponding to periods of 202 and 175 s), the domin-
ant contribution to E,;, comes from the photospheric and sub-
photospheric layers. Interestingly, the n = 5 mode (of period
150 s) has three peaks, which show that this mode has non-
negligible energy over practically the full vertical extension of
the atmosphere, with the largest contribution coming from the
middle chromosphere. Although, in general |v, |y > | V) lmaxs
with the maximum of v, occurring close to the top boundary, it
should be borne in mind that the density is very low in the
upper layers. In the photosphere and below, the main contri-
bution to E,;, is through v,, since v, is fairly small. The
occurrence of multiple peaks is due to the existence of nodes in
the velocity distributions.

d) Character of Displacements

In § IVc, Helmholtz’s theorem was used to decompose the
linear displacements into longitudinal (£)) and transverse (£,
components. These are related to the scalar potentials ¢, and

HASAN

Ekin

0 B
-600

-200 200 600
z(km)

Fi1G. 5—E,;, vs. zforn=1, 2, ..., S, assuming B = 2000 G and k = 0.9
Mm ™. The values have been normalized with respect to the maximum in the
interval.
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F1G. 6.—Variation of f [f= (|| —|§,|)/(|C,| +1&,1)] with z for n =1,
2,...,5, assuming B = 2000 G and k = 0.9

¢, through equations (14a) and (14b). In order to calculate ¢,
let us take the divergence of equation (14a), which yields

2
<;—2—kl>¢,——v~¢.

Similarly, operating by V x V on equation (14b) yields the

equation
az
(@ - "2)"" B

Equations (35) and (36) were solved, using standard techniques,
to determine ¢, and ¢,, from which & and &, were determined
using equations (14a) and (14b).

It is instructive to examine the “ polarization” of a mode at
different heights in the atmosphere. Similar to Hasan and
Abdelatif (1989), let us define a quantity f, which is a measure of
the longitudinal character of a mode, through the relation

&l —1&]
&l +1&1°

Thus, purely longitudinal and purely transverse modes corre-
spond to f= 1 and f= —1, respectively. Figure 6 depicts the
variation of f with z. Let us first consider the n = 1 mode. This
mode is transverse over the full vertical extension of the tube.
For the n > 1 modes, the situation is not so unambiguous.
These modes have comparable longitudinal and transverse
components in the lower part of the atmosphere. However,
with an increase in height, the modes tend to become predomi-
nantly longitudinal, with fincreasing with n.

Let us now see whether the aforementioned classification
has a physical relationship with the fast and slow modes of a
homogeneous medium. The n = 1 mode has significant energy
in regions for which z < 200 km. In the region 0 < z < 200 km
(where < 1), the magnetohydrodynamic (MHD) mode that is
transverse is the fast one. For the other modes, it is not possible
to establish a similar connection in the lower layers of the
atmosphere. However, higher up in the atmosphere, these
modes, which are predominantly longitudinal, have approx-
imately a slow or acoustic character.

(35)

1
—F(VxVxé)z. (36)

f=
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It should be pointed out that the simpler method of compar-
ing the vertical and horizontal velocities for determining the
polarization of a mode is not particularly useful in the present
context, since the direction of propagation of a wave changes
with height owing to the variable sound and Alfvén speeds.

VI. DISCUSSION

a) General Comments

The results presented in the previous section have high-
lighted several interesting features of wave propagation in the
umbral atmosphere. We have found that the oscillation spec-
trum covers a broad range of frequencies. Modes with fairly
close frequencies can have very different properties. The nature
of a mode can also change with horizontal wavenumber and
result in “avoided crossings,” between different order solu-
tions. The distribution of the kinetic energy density (in the
oscillations) exhibits peaks, which occur at different locations
for the various order modes. A global interpretation of the
solutions in terms of elementary MHD modes is not appli-
cable, owing to the sharp variation of  with height. However,
in certain limits a rough correspondence can be established,
in a local sense, in layers which are separated from the
“transformation region.”

In the previous section it was stated that in the limit of large
horizontal wavenumber, the lower order modes are of the slow
type. The assumption that is implicit here is that the magnetic
field is sufficiently large to suppress the instability arising due
to the superadiabatic temperature gradient in the convection
zone. However, if the sunspot is sufficiently deep, then insta-
bility in the form of overturning convection can occur. The
most unstable mode is one with large k and physically corre-
sponds to an almost incompressible displacement which pro-
duces negligible deformation of the field. Indeed, Moreno
Insertis and Spruit (1989) found that a spot with a field of 3000
G, extending to some 5000 km below the surface, is unstable to
convection. They calculated a growth time of about 18
minutes, with the maximum of the vertical velocity amplitude
occurring at a depth of some 2300 km. However, observations
suggest that spots, at least in the surface layers and above, are
stable. Thus, either convective instability does not occur or, if it
does, then it produces very little effect in the observable layers.
The instability can be suppressed by the field (2000-3000 G) of
the spot, if the latter does not extend too deep. At present, it is
difficult to distinguish between these possibilities. However,
even if convective modes are absent, the presence of thermal
diffusion gives rise to an overstable form of instability, which
persists even when B — oo (Syrovatskii and Zugzda 1968). We
shall return to this point later when the mechanism of mode
excitation is discussed.

b) Sensitivity of the Results to h _

It was mentioned in § IV that the results are not senstive to
the location of the upper boundary, if it is placed sufficiently
high. However, the choice of the lower boundary is more diffi-
cult to select. Although some heuristic arguments were given to
justify the choice h_ = — 500 km, it would be interesting to see
how the results would be modified when a different value of h_
is used. Table 3 gives the frequencies (periods in parentheses) of

various order modes for h_ = —500, —2000, and — 160 km,
for B = 2000 G and k = 0.9 Mm ™ !. The ordering of the modes
is with respect to h_ = —500 km. In the case h_ = —2000 km,

there are also modes (not tabulated) with periods larger than
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TABLE 3
FREQUENCIES AND PERIODS OF VARIOUS ORDER MODES
FOR DIFFERENT LEVELS OF LOWER BOUNDARY
v (MHz)
n h_ = —500 km h_ = —2000 km h_ = —160 km
| BT 2.59(387) 2.12(461)
2.61(383)
3.12(320)
3.33(300)
3.38(296)
3.86(259)
2 4.79(209) 4.78(209) 4.79(209)
3 4.95(202) 4.80(208) e
4.l 5.71(175) 5.59(179) 5.82(172)
. 6.34(158) 6.44(155)
S 6.66(150) 6.54(153) ...
7.12(140)
[ TP 7.75(129) 7.12(140)

NoTe—Periods are given in parentheses. B = 2000 G and k = 0.9
Mm ™! are assumed. The ordering is with respect to h_ = — 500 km.

P, (where the subscript denotes the mode order), with bulk
energy below the subphotosphere. A comparison of the three
sets of values shows fairly close agreement, apart from the
n = 1 mode. The insensitivity of the periods of the n > 2 modes
to the position of h_ is, possibly, a consequence of the fact that
these modes have very small amplitudes in the deep layers
below the surface. However, the situation is different for the
n = 1 mode, whose frequency is decreased, owing to the larger
distance over which the mode has significant amplitude. It
should be borne in mind that increasing the depth of the lower
boundary to —2000 km also introduces extra modes, such as
those with periods between P, and P,. There are also interme-
diate modes—for example, those with periods near P5. The
close frequencies of the two modes get resolved when the lower
boundary is sufficiently deep. For similar reasons the mode
corresponding to n = 3 is absent when h_ = —160 km. It thus
appears that the periods of the modes in the 3 minute range are
somewhat independent of h_, so long as it is located far from
the “transformation ” region.

¢) Mode Excitation

Although we do not consider the question of mode excita-
tion in the present analysis, it is still worthwhile to comment
briefly on it. As discussed in § VIb, it is possible to have over-
stable oscillations excited in the superadiabatic layer below
z = 0. The possibility of overstable oscillations in sunspots was
first examined by Danielson (1961), based on the treatment of
Chandrasekhar (1961). This mechanism has subsequently been
extensively investigated using linear theory (Danielson 1965;
Musman 1967; Savage 1969; Syrovatskii and Zugida 1968;
Zugida 1971; Moore 1973; Mullan and Yun 1973; Anita and
Chitre 1979). The overstable mode is essentially a slow wave
constrained to move along the field. Approximate calculations
of Moore (1973) and Mullan and Yun (1973) indicate that waves
with periods in the observed range can be excited by oscil-
latory convection. However, these analyses were made in the
Boussinesq approximation and should be viewed with caution.
Regarding the extension of the overstable region, Meyer et al.
(1974) calculated a value of some 2000 km (below z = 0) by
considering the relative values of thermal and magnetic diffusiv-
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ities. There are at present no quantitative calculations of the
periods and eigenfunctions of overstable modes for a sunspot
stratification. It would be desirable to have these, in order to
ascertain whether there are overstable oscillations in the
observed range of frequencies in the umbral atmosphere.

The other possibility is the suggestion of ZSL, according to
which mode excitation occurs through selective transmission
of a broad-band spectrum of acoustic waves, incident at the
lower boundary of the spot. In this picture, the upward-
propagating waves undergo mode conversion in the
“transformation zone.” A physical description of the processes
occurring in this zone has been given by %ugida (1984). Essen-
tially, the upward-transmitted wave flux consists of both fast
and slow modes. In addition, there is a downward-reflected
slow mode. Standing modes are set up owing to wave reflec-
tions, as already described. The umbral atmosphere essentially
acts as a filter in which the transmitted spectrum has peaks at
the resonant frequencies.

On the basis of the present model, it is difficult to choose
between the two processes, since our calculations do not rely
on any specific excitation mechanism. A theory for umbral
oscillations, in which the mode excitation mechanism is incor-
porated in a self-consistent manner, could possibly throw light
on this question. However, this would involve nonlinear calcu-
lations, which are beyond the scope of this investigation.

VII. UMBRAL OSCILLATIONS

a) Oscillations in the 3 Minute Range

Let us first consider the application of the results to 3 minute
oscillations. As already pointed out, these actually refer to
oscillations with periods in the range 120-200 s. From Table 3
we find that there are several modes with periods in the
observed range. For example, Thomas, Cram, and Nye (1984)
found peaks in the power spectrum at periods of 197, 171, and
155 s, which correspond to the modes (P,/P3), P,, and P5. The
close frequencies of the n = 2 and n = 3 modes will probably
show up as a single mode in the observations. Table 4 gives the
frequencies of the modes observed by Gurman (1987) in active
regions AR 4598 and AR 4629, using the chromospheric line
Mg 11 K, formed near the temperature minimum. A compari-
son of these frequencies with modes of order 4, 5, and 6 in the
present calculation again shows reasonable agreement.

b) Oscillations in the 5 Minute Range

We also find that there are normal modes of the umbra,
which falls in the 5 minute range. From Table 3 one discerns
the presence of several modes with periods in the range
250-500 s (for h_ = —2000 km). For h_ = —500 km, only a

TABLE 4

FREQUENCIES OF UMBRAL
OsCILLATIONS OBSERVED BY
GURMAN 19872

FREQUENCY (mHz)

AR 4598 AR 4629
5.49 5.29
6.46 6.42
743 7.55

* Using the Mg K line.
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single period in this range is present, and when h_ = —160
km, there are no modes in the 5 minute range. Thus, the deeper
the spot, the denser is the spectrum of modes. However,
increasing the depth below 2000 km produces minor changes
in the spectrum in the aforementioned range. Despite the
uncertainties of the present model, let us compare the periods
(for h_ = —2000 km) with the observations of Thomas, Cram,
and Nye (1984). The photospheric power spectrum obtained by
them exhibited peaks at periods of 366, 301, 270, and 197 s. It is
somewhat fortuitous that these periods agree fairly well with
those calculated here. Even if the agreement is coincidental, the
present model does, however, demonstrate that oscillations
with periods near 5 minutes can also be resonant modes of the
sunspot itself, unless the latter is very shallow.

VIII. COMPARISON WITH THE TS AND ZSL MODELS

The spirit of the present calculation is very similar to the one
adopted by TS. Essentially, the main difference between our
papers is the location of the lower boundary, apart from the
equilibrium atmosphere model for the umbra. This fact should
be borne in mind when comparing the results of the two
models. In the TS model, the lower boundary is taken to be
some hundred kilometers deep (e.g., h_ = —153.4 km corre-
sponds to a period of 185 s, for B=2000 G and k=09
Mm '), which is justified on the grounds that it is precisely in
these layers that forcing by overstable convection occurs. We
have seen that the assumption of overstability existing only in
a very narrow range of depths may not be valid. This does not,
however, rule out mode excitation by overstability; rather, it
implies that the question of the depths over which it occurs has
to be examined carefully. The TS calculations reveal the pre-
sence of only a single mode (for fixed k) in the 3 minute range.
On the other hand, we find that there are multiple modes with
frequencies in the 3 minute range, which are not greatly sensi-
tive to the exact location of the lower boundary. Many of the
modes have large kinetic energy density in the photosphere,
which is in agreement with the TS model and the observations
of Abdelatif, Lites, and Thomas (1984) and Lites and Thomas
(1985). The two models, however, disagree on the interpreta-
tion of 5 minute oscillations. According to the TS model, there
are no normal modes in this range. In the present investigation,
we find that, if the spot is sufficiently deep, there can also be
resonant modes in this range. The possibility of 5 minute oscil-
lations from the external photosphere penetrating into the
umbra, as suggested by Thomas (1982) (see also Thomas,
Cram, and Nye 1982; Abdelatif 1985), cannot be entirely dis-
counted, although the observations of Balthasar, Kiiveler, and
Wiehr (1987) cast some doubt on this.

The ZSL model essentially involves calculating the reson-
ance periods at which the transmission coefficient of wave
energy through the photosphere and chromosphere has a
maximum, for a broad-band acoustic flux incident from below.
These calculations were made under the strong-field assump-
tion (i.e., v,/c; > 1), valid only in the upper photosphere and
above. The transmission of acoustic waves is calculated for
waves, incident from below, at a boundary in this region. The
model provides a reasonable representation for the chromo-
spheric resonances, but is not accurate for treating modes,
which have large energy in the lower layers. Another approx-
imation inherent in the ZSL model is the limit kK — co, which
removes any k dependence and effectively eliminates the fast
mode. From the diagnostic diagram (Fig. 3), we find that for
certain modes the frequency does not vary strongly with k, so
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that this limit can give an approximate estimate of these fre-
quencies. However, the physical nature of the modes can
depend sensitively on k. For instance, Hasan and Abdelatif
(1989) find that the behavior of the eigenfunctions, the kinetic
energy density distribution, and the polarization of the modes
change with k. The kinetic energy density in the ZSL model, in
general, appears to be larger in the chromosphere than in the
photosphere, whereas we find that this is not always true. It is
not possible to compare the phase relationships published by
ZSL, since we have not made any allowance for wave leakage
at the upper boundary. Regarding the 5 minute oscillations,
Zugzda (1984) points out that these can be present in a sub-
photospheric cavity in the ZSL model, which is in qualitative
agreement with the findings of the present analysis.

IX. SUMMARY AND CONCLUSIONS

The main purpose of the present investigation was to focus,
in a quantitative way, on the nature of umbral oscillations. A
realistic model for the sunspot stratification was used, based
upon a published empirical model atmosphere. Approximating
the sunspot as a thick flux tube of circular cross section, the
axisymmetric normal modes of MAG waves were determined
and a diagnostic diagram was generated for different field
strengths. A noteworthy feature that could be discerned from
this diagram was the existence of avoided crossings in the solu-
tions of MAG modes in a sunspot atmosphere. Eigenfunctions
were also determined, from which the distribution of kinetic
energy density could be examined. For many of the modes, E,
is higher in the photosphere. But there are also modes for
which E,; can be high in the upper layers, or distributed over a
large height range in the upper photosphere and lower
chromosphere. By decomposing the displacements into trans-
verse and longitudinal parts, the “polarization” of a mode
could be studied as a function of height in the atmosphere. In
the limit of large k, the low-order modes resemble slow waves.
However, for low values of k (corresponding to umbral
oscillations) a global identification with the elementary MHD
modes does not appear possible. In the photosphere and
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below, the modes are either fast-like or mixed, but in the
chromosphere they acquire a slow or acoustic character.

An application of the results to 3 minute oscillations showed
that the multiple peaks in the observed power spectrum could
be roughly identified with the computed normal modes. These
results were not found to be sensitive to the precise location of
the lower boundary. The theoretical analysis also indicated
that oscillations in the 5 minute range can be resonant modes
of the umbra.

A positive feature of the present analyses (like that of TS) is
that it solves the full system of equations, without the limi-
tations inherent in the ZSL treatment. Our investigation, in
principle, allows both photospheric and chromospheric reso-
nances to be treated. The analysis does not rely upon any spe-
cific mechanism of mode excitation; it is compatible with both
forcing by overstability and forcing by broad-band acoustic
noise. Results of the calculations are in reasonable agreement
with observations.

From a theoretical point of view, it is fairly encouraging to
note that despite a number of uncertain parameters, the results
compare favorably with observations. However, the model has
scope for development. The adiabatic assumption and the
neglect of leakage of wave energy at the upper boundary could
be relaxed as a next step. Mathematically, this would make the
eigenvalue problem non-self-adjoint and render the fre-
quencies complex. It would be possible to determine phase
relationships between various quantities, which could mean-
ingfully be compared with observations. Another feature which
eventually should be incorporated in a self-consistent way is
the excitation mechanism. It is hoped that these refinements
will be made in forthcoming investigations.

I am grateful to Y. Sobouti for the use of his subroutine
package to solve generalized eigenvalue problems, to T. Abde-
latif for providing an umbral atmospheric model, to J. Thomas
and B. Roberts for discussions and helpful comments, and to
M. H. Gokhale for kindly reading the manuscript.

APPENDIX A

FORMS OF THE TRIAL FUNCTIONS {° AND

From equations (20) and (21), we have

(0= CokleJ (kr),
{2 = —Coik{2Jo(kr),

where C, = [n'/?kaJ y(ka)] ~*. Let us choose

f§ = —i\/’5 sin [—on(z — h_)jl s
p d

(A1)

where d = h, — h_. Henceforth, the caret above { will be dropped. The function {, satisfies the boundary conditions given by
equation (33). Although a similar form for {, could be used, it was found that, in practice, faster convergence was obtained by

choosing , as a solution of the following equation:

d? 2
(zz‘f"

>C:’ = ka’(z) ,

(A2)
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where
02 d g
0 I lro A
v(2) = (dz cf) z2 (A3)

subject to the boundary conditions given by equation (33). Equation (A2) can be derived from equation (3) in the limit v,/c, > 1.
It is easy to see that equation (A2) has the solution

1 z h+ .
0 =— sinh k(h, —z) | dz’ sinh k(z' — h_)e’(z) + sinh k(z — h_) | dz’ sinh k(h, — z)oz"(z’):l . (Ad)
sinh kd b 2
APPENDIX B
MATRIX ELEMENTS OF §
It is easy to see that §'is block diagonal with the following structure:
S 0
S=|" . B1
< 0 s,,> ®Y
Explicit expressions for the block elements of .S are
Sy = J dzp(P*(y (B2)
Sy = J dzpl3*Ly . (B3)
The integrals in equations (B2) and (B3) can be evaluated numerically.
APPENDIX C
MATRIX ELEMENTS OF W
The block structure of the W matrix is
W.(1 wW..(3 w.,(1
W=< 1) + W, 3) (D) ) -
W.[(1) W..(1) + W..(2)
Explicit expressions for the block elements of W are
W) = k? f dzyp(*(y (€2
(1) = —ki f &z wC"*( C L2 c,> , ©3)
dz 124
, AR C
wern = |G+ Do )G+ B ) (4
dz dz
Wz(2) = J dzpNj(*, (C5)
B[ (deer dg
weQ3 d k2poxe C6
) = 4nj<dd+cc) (o)
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