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Exact solution of the incompressible Hall magnetohydrodynamics
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ABSTRACT
The Alfvén wave is known to be an exact solution of the ideal magnetohydrodynamics (MHD),
and this has found use in modelling astrophysical turbulence. In this paper we show that the
Hall MHD also submits itself to an exact solution in the incompressible limit. We compare
the linear and the non-linear modes of the Hall MHD and comment on their probable role in
describing turbulent fluctuations in different astrophysical situations.
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1 I N T RO D U C T I O N

The exact solution of the incompressible ideal magnetohydrody-
namics (MHD), the non-linear Alfvén wave, has served as an
essential reference point for all studies of Alfvénic turbulence
in various space and astrophysical situations (Walen 1944a,b;
Alfvén & Fälthammer 1963; Parker 1979; Shebalin, Matthaeus &
Montgomery 1983). The essence of this arbitrary amplitude wave
lies in the relation b = ± v, the requirement that the velocity and
the magnetic field fluctuations are either parallel or anti-parallel and
have the same magnitude [the magnetic (velocity) field is normalized
to the uniform ambient field B0 (the Alfvén speed VA = B0/

√
4πρ,

where ρ is the uniform mass density)]. When b and v are so related,
the non-linear terms in the time-dependent MHD vanish; it is this
effective linearization that yields the waves

b = ±v, (1)

b = b̂ exp[ik⊥ · x⊥ ± i(kss + ks t)], (2)

with an effective frequency ω = −(+)ks, propagating in a direction
antiparallel (parallel) to the ambient field B0 = ês . Notice that
ks = k · ês is the projection of the wave vector along the direction
of the field line, and ⊥ is perpendicular to ês . In equation (2), time
and space variables are, respectively, measured in units of the ion
gyroperiod ω−1

ci = m ic/eB0 and the ion skin depth λi = c/ωpi, where
ωpi = (4πe2 n/m i)1/2 is the ion plasma frequency and n is the plasma
density.

The importance of the non-linear Alfvénic state for MHD prompts
one to speculate if a similar kind of an exact solution exists for
Hall MHD (HMHD), a system which encompasses MHD, but can
sustain a much richer spectrum of plasma states not accessible to
MHD (Mahajan & Yoshida 1998; Wardle 1999; Mahajan et al. 2001;
Ohsaki et al. 2001; Balbus & Terquem 2001; Ohsaki et al. 2002;
Ohsaki & Mahajan 2004). In the framework of the HMHD, a plasma
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is treated as a two-fluid system. The electrons are assumed to be
inertialess and the electric field is determined from the equation of
motion of the electron fluid. This electric field is then substituted in
the magnetic induction equation and the equation of motion of the
ion fluid. As a result the magnetic field remains frozen to the electron
fluid but not to the ion fluid. This is the essence of the HMHD which
is an extension of the ideal MHD into the dispersive range. The Hall
extension affects the transport of energy and magnetic induction
without affecting the transport of ion momentum. Most of the effort
in HMHD, so far, has been in what may properly be described as
electron HMHD where the ion fluid has been assumed to be at rest.
A tutorial on HMHD, along with a detailed list of references on
applications in the structuring of plasma expansions, magnetic field
transport and magnetic reconnection, can be found in Huba (2003).
In this Letter we demonstrate that HMHD in the incompressible
limit, indeed, admits an exact non-linear wave solution which in the
long-wavelength limit (k � 1) reduces to the non-linear shear and
compression waves (degenerate in the large plasmaβ limit) of MHD,
while, for k � 1, one branch goes over to the ion cyclotron mode
while the other branch becomes the whistler mode. The general
solution spans the entire k range for which the HMHD equations
are valid. Naturally the MHD relation between the velocity and
the magnetic field perturbations is fundamentally transformed; it
becomes a function of the wavevector k.

2 N O N - L I N E A R H A L L M H D

In the Alfvénic units defined above, the dimensionless equations

∂B
∂t

= ∇ × [(V − ∇ × B) × B] (3)

and

∂(B + ∇ × V)

∂t
= ∇ × [V × (B + ∇ × V)] (4)

constitute the HMHD in the incompressible limit (∇ · V = 0) along
with the condition for divergence-free magnetic field (∇ · B = 0).
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Equation (4) is obtained by adding the induction equation and curl
of the equation of motion of the ion fluid. To look for wave-like
solutions we split the fields into their ambient and fluctuating parts
(there is no ambient flow),

B = ês + b; V = v, (5)

and substitute in (3)–(4),

∂b
∂t

= ∇ × [(v− ∇ × b) × ês + (v− ∇ × b) × b], (6)

∂

∂t
(b + ∇ × v) = ∇ × [v× (∇ × v+ b) + v× ês]. (7)

The non-linear problem represented by (6)–(7) is converted to a set
of linear problems (the time-honoured method for solving non-linear
equations) by imposing the conditions

v− ∇ × b = αb (8)

and

b + ∇ × v = βv (9)

to eliminate the non-linear terms. Hereα andβ are like the separation
constants. With the non-linearities so taken care of, we are left with
the remaining time-dependent linear equations

∂b
∂t

= α∇ × [b × ês] (10)

and
∂v

∂t
= (1/β)∇ × [v× ês]. (11)

Apparently we have traded a close non-linear system (six equations
for six variables) for an over-determined linear system (8)–(11) with
12 equations in six variables. Acceptable solutions, therefore, will
be possible only under some particular conditions that will remove
the over-determination. To seek them, we first notice that (10) and
(11) admit

b = bk exp[ik · x + iα(ês · k)t] (12)

and

v = vk exp[ik · x + i
1

β
(ês · k)t]. (13)

If the exponential solutions (12) and (13) are to satisfy the linear
equations (8) and (9), we must require β = 1/α. In addition, sub-
stituting (12) and (13) into (8) and (9) leads to

vk − ik × bk = αbk (14)

and

bk + ik × vk = 1

α
vk (15)

which, after simple manipulation, yield

vk − αbk = iαk × vk,

vk − αbk = i(k × bk).

Two consequences immediately follow:

bk = αvk, (16)

relating bk and vk, and

k × vk = −i
1 − α2

α
vk = −iλvk . (17)

The first of these establishes the HMHD equivalent of the Alfvénic
condition for MHD, and the second shows that the Fourier transform

of a Beltrami equation (∇ ×G = λG) has to be solved to complete
the story; the solvability constraint will end up relating α and k,
giving the dispersion relation ω = −α(k)(ês · k).

The solutions of (17) are well-known and we could just quote
them. For completeness, however, we recapitulate a few steps in the
process. Suppressing the indices for a simplified notation, we derive
from (17) that (i) dotting with v yields v · v = v2

r − v2
i + 2ivr · vi

= 0 implying v i = ± v r and vr · vi = 0, and (ii) and dotting with
k gives k · v = 0 ⇒ k · vr = 0 = k · vi. Clearly the subscript r(i)
denotes the real(imaginary) part. Crossing (17) with k and using
k · v = 0, we obtain (remembering that λ is a function of α)

λ = ±k. (18)

Keeping track of the ± may be notationally complicated. Since the
physics is the same, we will investigate the option v i = v r and λ

= k. For this choice, it is straightforward to show that v̂r, v̂i and k̂
form a right-handed orthogonal triad of unit vectors.

Let us first choose v̂r, v̂i and k̂ to be êx , êy and êz respectively.
This choice dictates the following expressions for the velocity and
the magnetic fields (k = kêz , and A0 is a constant amplitude):

b = αv, (19)

v = A0[êx + iêy] exp [ikz + iαk(êz · ês)t] , (20)

with α determined by

k = λ = 1 − α2

α
, (21)

α± =
[
− k

2
±

(
k2

4
+ 1

)1/2
]

. (22)

From (20) and (22), we extract the effective frequency of the circu-
larly polarized wave,

ω± = −k

[
− k

2
±

(
k2

4
+ 1

)1/2
]

(êz · ês), (23)

a result which is valid over a wide range of k from k � 1 at the
MHD end to the k � 1 in the Hall-dominated regime.The k de-
pendence of the separation constant, implying a k-dependent rela-
tionship between b and v, is one of the defining and distinguishing
characteristics of the new broad-band fully non-linear wave.

Let us examine the two extreme limits of the general result, equa-
tion (23). For k � 1,

α± → ±1, ω± → ∓k(êz · ês), (24)

reproducing the k-independent MHD Alfvénic relationship for both
the co- and the counter-propagating waves. In the k � 1 regime,
however,

α+ → 1/k, α− → −k, (25)

with

ωN+ → −êz · ês, ωN− → (êz · ês)k2. (26)

In order to make contact with the familiar, we recall the lin-
ear dispersion relation for HMHD (Ohsaki & Mahajan 2004) for
k = kêz, B0 = êz and the normalizing length-scale λi so that ε =
1:

(ω2 − k2)[ω4 − (1 + β)k2ω2 + βk4] = k4ω2(ω2 − βk2). (27)
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In the β →∞ limit which corresponds to the non-linear incompress-
ible HMHD solution considered here, we find the linear modes for
k � 1, ωL + = ± k2

z and ωL − = ±1.
It is easy to recognize that the ωN+ mode for parallel and an-

tiparallel propagation is the magnetosonic–cyclotron branch ωL−,
while the ωN− represents the shear–whistler mode ωL+. In this
limit the magnitudes of the velocity and magnetic fields can vastly
differ (they still remain aligned). The respective relationships are

v → kb (28)

for the ωN+ branch, and

b → kv (29)

for the ωN− branch; the compressional–whistler mode has an abun-
dance of turbulent magnetic energy over the turbulent kinetic en-
ergy, while in the shear–cyclotron mode ωN+, the kinetic energy
dominates. The non-linearly correct relationship of (28) strongly
strengthens the results of Krishan & Mahajan (2004) where exactly
these relationships were invoked to model the observed solar gran-
ulation spectrum.

To construct the three-dimensional solution, we note that the triad
v̂r = êx , v̂i = êy and k̂ = êz could be replaced by two other inde-
pendent cyclic combinations. Since (17) is linear, the solutions can
be added. The most general three-dimensional solution, therefore,
may be written as

v = B(êx + iêy) exp [ikz + iαk(êz · ês)t]

+ C(êy + iêz) exp [ikx + iαk(êx · ês)t]

+ A(êz + iêx ) exp[iky + iαk(êy · ês)t]. (30)

It is straightforward to verify that (30) exactly solves the original
system (10), (11), (8) and (9) with β = 1/α,

∂b
∂t

= α∇ × [b × ês], (31)

∂v

∂t
= α∇ × (v× ês), (32)

b = αv (33)

and [λ = (1 − α2)/α]

∇ × v = λv. (34)

Since the defining equations consist of only real variables, either
Imv or Rev could be a solution. Let us write down the imaginary
part,

v = êx [A cos(ky + αkêy · ês t)

+ B sin(kz + αkêz · ês t)]

+ êy[B cos(kz + αkêz · ês t)

+ C sin(kx + αkêx · ês t)]

+ êz[C cos(kx + αkêx · ês t)

+ A sin(ky + αkêy · ês t)]. (35)

This is the time-dependent generalization of the famous ABC so-
lution of ∇ × G = k G. This comes as no surprise because the
original system (10), (11), (8) and (9) can be cast as a single Bel-
trami equation with a new ∇ defined in terms of the time-translated
‘coordinates’ Xi = xi + αkêxi · ês .

3 C O N C L U S I O N

Exact time-dependent three-dimensional solutions to interacting
field theories are quite rare. To the best of our knowledge, this is the
only time-dependent, three-dimensional exact and fully non-linear
wave solution to a physical system of as great an interest and com-
plication as the Hall MHD. It is to be noted that the HMHD does not
submit to an exact solution in the presence of density fluctuations
(∇ · V �= 0). However, pressure fluctuations through temperature
fluctuations are admissible within the system described here. One
recalls that the pressure force has not been neglected in the equation
of motion of the ion fluid. It does not appear explicitly in equa-
tion (4) because it is the curl of the equation of motion of the ion
fluid. The importance of knowing an exact non-linear solution can
never be overestimated. It is expected to provide a reference solu-
tion for a variety of investigations, analytical as well as numerical,
relating to plasma turbulence, in particular, for the enquiries that
probe into the short-scale domain of the turbulent spectrum. More
specifically, our preliminary work on the turbulence on the solar
atmosphere (Krishan & Mahajan 2004) shows that a scale-
dependent relationship between the velocity and the magnetic field
is absolutely essential in order to account for the observed spectra.
The exact solutions provide a basis for building quantitative mod-
els of turbulence, in the identification of the nature of fluctuations
and their interactions. The usual and valid objection to the identifi-
cation of turbulent fluctuations with linear modes can now be laid
to rest. The exact solutions offer correct representations of turbu-
lent fluctuations with the added advantage of the possibility of their
identification in the familiar terminology.
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