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Abstract. We present a relativistic model for the motion of charged particles in rotating magnetic field lines projected onto a
plane perpendicular to the rotation axis. By making an approximation that the projected field lines are straight, an analytical
expression is obtained for the particle trajectory. The motive behind developing this model is to elucidate some of the effects
of rotation in pulsar profiles. There is significant contribution to the curvature of a particle trajectory due to the rotation of
the pulsar, which is in addition to the inherent curvature of the field lines. The asymmetry in the observed pulse shapes can
be explained by considering the aberration-retardation effects. The single sign circular polarization observed in many pulsars
might be due to the relative orientation of sight line with respect to the particle trajectory plane.
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1. Introduction

The wide diversity in the radiation characteristics of pulsars
makes it difficult to fully understand the emission process in
the light of models that have been developed with some sim-
plifying assumptions. Among all the many emission mecha-
nisms, curvature emission has emerged as the most probable
choice (Sturrock 1971; Ruderman & Sutherland 1975, here-
after RS75; Lyne & Manchester 1988; Gil & Snakowski 1990).
In order to explain the high brightness temperature observed
in pulsars, coherent emission by bunched particles has been
postulated (Karpman et al. 1975; RS75; Buschauer & Benford
1977). Other models based on plasma effects have also been
proposed for pulsar radiation (e.g., Melrose & Gedalin 1999;
Asséo & Rozele 2000; Gil et al. 2004).

Most of these models emphasise explaining the high bright-
ness temperature of pulsars, but leave the polarization poorly
explained. However, polarization observations such as the po-
larization angle swing favors curvature radiation. It has been
considered as a natural emission process for pulsars, though
there are unresolved problems like bunch formation, orthog-
onal polarization modes, etc. (e.g., Stinebring et al. 1984;
Gangadhara 1997; Gil et al. 2004).

It is imperative to understand the influence of rotation when
closely studying the curvature emission mechanism. The ideal-
ized case of particle acceleration was discussed by Machabeli
& Rogava (1994, hereafter MR94), who considered particles
moving freely along an infinitely long, rigidly rotating straight
tube and derived an expression for the trajectory of a parti-
cle. Gangadhara & Lesch (1997) proposed a model for the
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particle acceleration in rotating magnetosphere in the context
of active galactic nuclei (AGN). Reiger & Mannhiem (2000)
also discussed particle acceleration along the rotating straight
magnetic field lines in AGN, by assuming that the angular ve-
locity of particles is the same as that of AGN.

In the case of pulsars, Gold (1969) was the first to propose
a pulsar emission mechanism based on rotation. This model
was taken up further by many authors and found to encounter
difficulties in explaining the interpulses (e.g., Sturrock 1971).
Blaskiewicz et al. (1991) have studied the effects of corota-
tion velocity on the pulsar radio emission by assuming a con-
stant emission height. Hibschhman & Arons (2000) extended
their work to include the first order effects to study delays
in the phase of polarization angle sweep due to aberration.
Later, Peyman & Gangadhara (2002) improvised the model of
Blaskiewicz et al. (1991) by relaxing the assumption of con-
stant emission height, and then analyzed the effect of rotation
on the morphology of pulsar profiles and polarization.

Gangadhara (1996, hereafter G96) derived the equation of
motion of a charged particle in pulsar magnetosphere, and con-
sidered the straight field lines, which are projected onto a two
dimensional (2D) plane placed perpendicular to the rotation
axis. The dominant forces, which act on a particle moving
along rotating the field lines, are the magnetic Lorentz force,
centrifugal force, and coriolis force. The rotational energy of
the pulsar is transferred to the corotating plasma as it moves
along the field lines. The magnetic Lorentz force acts as a
constraining force and drags the plasma along the field lines.
Because of the inclination of the magnetic axis relative to ro-
tation axis, corotating plasma tends to rotate with an angular
velocity that is less than that of pulsar on some field lines.
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The difference in the angular velocities of particle and pulsar
had been already pointed out in RS75.

In the present work, a follow-up to G96, we consider the
same 2D geometry and analyze the dynamics of a charged par-
ticle. Since the field line curvature radii of open field lines are
comparable to the light cylinder radius, over a significant radial
distance, we can approximate them to be straight lines.

In super strong magnetic fields, the drift velocity becomes
negligible compared to the velocity parallel to the field lines.
The Larmour radius of gyration becomes quite small, and
hence particles almost stay on the same field lines all along
their trajectories. This motion is considered as the bead-on-
wire approximation. The particles are accelerated because of
the unbalanced centrifugal force, and thus extract the rotational
energy of the pulsar. The single particle emission is considered
in this model, and we plan to consider the collective effects in
later work. We take the non-uniform angular velocity of parti-
cles into consideration, which can be less than the pulsar angu-
lar velocity on field lines that are inclined with respect to the
meridional plane. Since the particle trajectories are found to
be curved, we estimate the curvature emission and analyze the
effects of rotation on the radiation characteristics. In Sects. 2
and 3, we solve the equation of motion of a relativistic charged
particle and find its trajectory. We compute the characteristic
frequency of curvature radiation in Sect. 4. In Sect. 5 we esti-
mate the polarization parameters and plot them with respect to
different parameters.

2. Charged particle dynamics

We assume that the dipolar magnetic field lines are projected
onto a plane perpendicular to the rotation axis. Consider an in-
ertial Cartesian coordinate system as shown in Fig. 1, where the
“z” axis is parallel to the rotation axis (Ω̂) of pulsar. The pro-
jected magnetic axis on the x–y plane coincides with the x-axis
at time t = 0. The equation of motion for a charged particle
moving along a rotating magnetic field line is given by (G96),

d
dt

(
m

dr
dt

)
= mΩ∗2r, (1)

where m = m0γ is the relativistic mass, γ the Lorentz factor, m0

the rest mass, Ω∗ the angular velocity and r the radial position
of a particle.

Let Vr = dr/dt and Vφ = rΩ∗ be the components of particle
velocity, then

β =
1
c

(Vrêr + Vφêφ), (2)

where c is the speed of light. We define the unit vectors in the
radial and azimuthal directions as

êr = (cosφ, sinφ, 0), (3)

êφ = (− sinφ, cosφ, 0), (4)

where φ is the angle between the radial vector to particle and
the x-axis. Then the Lorentz factor of particle is given by

γ =
1√

1 − β2
=

1 −
(

1
c

dr
dt

)2

−
(

rΩ∗

c

)2
−1/2

· (5)
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Fig. 1. The coordinate system in which the particle motion is consid-
ered. The curve BQ represents the particle trajectory in the x–y plane.

Then consider a particle injected at the point B onto a magnetic
field line which is inclined by an angle φp with respect to the
x-axis at time t = 0. Let d0 = OB be the distance between B
and the rotation axis. The effective angular velocity (G96) of a
particle is given by

Ω∗ = Ω


r2 − d2

0 cos2 θ0 − d0 sin θ0
√

r2 − d0
2 cos2 θ0

r
( √

r2 − d0
2 cos2 θ0 − d0 sin θ0

)


= Ω

√
1 − b2

r2
, (6)

where Ω is the angular velocity of pulsar, b = d0cosθ0 and
θ0 = (π/2) − φp is the angle between the field line tangent and
êφ at B. Using the relation for Ω∗, we can write γ as

γ =

1 + D2 −
(

1
c

dr
dt

)2

−
(

rΩ
c

)2
−1/2

, (7)

where D = Ωd0 cos θ0/c. Thus, using the expression for γ, we
rewrite Eq. (1):

γ
d2r
dt2
+

dγ
dt

dr
dt
= Ω2

(
1 − b2

r2

)
γ r. (8)

By multiplying Eq. (8) by r/(γc2), and defining a dimension-
less variable

s =
Ω

c
r√

1 + D2
, (9)

we obtain

s
d2s
dt2
+

[
2s2 − D2/

(
1 + D2

)]
1 − s2

(
ds
dt

)2

− s2Ω2 + Ω2 D2

1 + D2
= 0.

(10)
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Since θ0 is close to π/2 for the field lines, which are close to
the x-axis, we find D2 � s2 for d0 < r. Therefore, we re-
duce Eq. (10) by dropping the terms containing D2/1+D2, and
obtain

d2s
dt2
+

2s
1 − s2

(
ds
dt

)2

− sΩ2 = 0. (11)

To find the solution of Eq. (11), we follow the method proposed
by Zwillinger (1989). By choosing f = (ds/dt)2, we can reduce
it to the following form:

d f
ds
+ f

4s
1 − s2

= 2sΩ2. (12)

Its solution is given by

f = Ω2
(
1 − s2

)
+C

(
1 − s2

)2
, (13)

where C is the integration constant. To find C we use the initial
condition that at t = 0, it follows from Eq. (9) that s0 = s(0) =
r0Ω/(c

√
1 + D2) and ṡ0 = ds/dt|t=0 = v0Ω/(c

√
1 + D2),

where r0 and v0 are the particle’s initial position and velocity.
Therefore, we obtain C = −Ω2k2 and

k2 =
1

1 − s2
0

1 − ṡ0
2

(1 − s2
0)Ω2

 · (14)

Hence Eq. (13) reduces to the following form

ds
dt
= Ω

√
(1 − s2) − k2(1 − s2)2 (15)

whose solution is given by

s = cn(λ −Ωt), (16)

where cn(z) is the Jacobian Elliptical cosine function
(Abramowicz & Stegun 1972), and

z =

sn(z)∫
0

dw√
(1 − w2)(1 − k2w2)

, (17)

λ =

φ0∫
0

dζ√
1 − k2sin2 ζ

, (18)

φ0 = arccos

(
r0Ω

c

)
· (19)

Using the expression for s given by Eq. (9), we find the radial
position of the particle:

r =
c
√

1 + D2

Ω
cn(λ − Ωt). (20)

The radial position of the particle according to Eq. (20) as a
function of time is plotted in Fig. 2. It shows that the particle
position increases with time and reaches a maximum at the dis-
tance of light cylinder radius rL = Pc/2π,where P is the pulsar
period. Next, the particle returns back to origin, due to the re-
versal of the centrifugal force. This type of oscillatory motion
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Fig. 2. Radial position of the particle as a function of time. Used
γ0 = 100, d0 = 106 cm and θ0 = 90◦.

of a particle in an infinitely long, straight and rigidly rotating
tube has been discussed by MR94.

Though we have extended the calculation of r of a single
particle all the way up to light cylinder, it may not be realistic
in the case of plasma motion. Near the light cylinder, plasma
inertia causes the field lines to sweep back and break down of
the rigid body motion. The Lorentz factor of a particle, which
follows from Eqs. (7), (15), and (16), is given by

γ =
1

k
√(

1 + D2
)
sn2(λ −Ωt)

· (21)

3. Particle trajectory and its radius of curvature

In Fig. 3 we consider a particle moving along the field line BQ.
The point A represents the particle injection point at time t = 0
that is at a distance d0 from the rotation axis. The particle co-
ordinates can be defined as

(x, y) = r(t) (cosφtot, sin φtot) , (22)

where φtot is the angle between the radial vector to the particle
and the x-axis. Based on Fig. 3, we define

φtot(t) = Ωt ± φ′(t), (23)

where

φ′(t) = cos−1

cosφp

√
1 − d0

2

r2
sin2 φp +

d0

r
sin2 φp

 . (24)

For d0 � r, we find

|φ′(t)| � |φp|. (25)

The ± signs in Eq. (23) correspond to the sign of the angle φp.
In Fig. 4 we have plotted the trajectories of the particles moving
along different magnetic field lines, which are marked with φp.
It shows that the trajectories are curved toward the direction of
pulsar rotation. The particles moving in those trajectories are
accelerated, and thus emit curvature radiation. The curvature
radii of those trajectories slightly differ from one another, as
the particle angularΩ∗ is different for each field line.

To derive the curvature radii of the particle trajectory, we
approximate cn(λ − Ωt) and r(t) using the formalism given by
Pearson (1974):

cn(z, k) = cos z +
k2

4
(z − sin z cos z) sin z + O(k4). (26)
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Fig. 3. The geometry of motion of a particle along a rotating field line
BQ. The angles are ∠XOM = Ωt, ∠MBQ = φp and ∠MOQ = φ′, and
the radius OA = OB = d0.
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Fig. 4. Particle trajectories during the time interval 0 ≤ t ≤ 0.02 s in
laboratory frame. We considered the field lines which lie in the range
of −15◦ ≤ φp ≤ 15◦ with an interval of 5◦. Assumed neutron star
radius Rn ≈ 10 Km.

In the limit of t � 1 and k � 1, the series expansion of r(t) is
given by

r(t) = a0 + a1t + a2t2 + a3t3 + a4t4... (27)

where a0, a1, a2, a3, a4... are the expansion coefficients (see
Thomas & Gangadhara 2005).

For v0 ≈ c, Eq. (14) implies k ≈ 0. Therefore, using
Eqs. (16)–(19), we find λ = π/2 and sn z = sin z. Thus, we
have

r(t) ≈ c
√

1 + D2

Ω
sin (Ωt). (28)

Using the expression for r(t) in Eqs. (22) and (25), we find the
curvature radius of particle trajectory:

ρ =

[
(dx/dt)2 + (dy/dt)2

]3/2

(dx/dt)(d2y/dt2) − (dy/dt)(d2x/dt2)

≈ 1
2

rL

√
1 + D2. (29)

It shows that the curvature radius of a particle trajectory is ap-
proximately rL/2 for θ0 = π/2. However, for other values of
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Fig. 5. The power emitted by a particle as a function of φp. The
parameter W0 = 25.6q2Ω2/(3ck0

4), and k0 = k at D = 0.

θ0, we find ρ becomes slightly larger than rL/2. Note that these
values of ρ are comparable to the intrinsic curvature radii of
dipolar field lines in the emission region given by Gangadhara
(2004). We find in the conal emission regions that the intrinsic
curvature radii of field lines are comparable to the curvature ra-
dius induced by rotation on the particle trajectory. If the core
emission is believed to come from the field lines that are close
to the magnetic axis, then it becomes difficult to explain the
core emission due to the intrinsic curvature of field lines. This
is because the field lines that are very close to the magnetic
axis have very large curvature radii, and for the magnetic axis
it is infinity. Therefore, in the absence of rotation, we cannot
expect any significant curvature emission from the particles or
plasma moving along the field lines that are close to the mag-
netic axis. However, from the observations we do see many
pulsars emitting strong cores. In our model we show that if we
consider pulsar rotation the core emission can be explained,
because the rotation induces significant curvature into the tra-
jectory of particles which move along the field lines that are
close to the magnetic axis.

4. Radiation emitted by a particle

When the particles move along curved trajectories, they emit
curvature radiation. The characteristic frequency of the curva-
ture radiation is given by (RS75)

ωc =
3
2
γ3

(
c
ρ

)

≈ 3Ω
1 + D2

k3
[
1 + D2 − (r/rL)2

]3
· (30)

By knowing the γ and ρ from Eqs. (7) and (29), we can esti-
mate ωc. The total power emitted by a particle is given by

W =
2
3

q2

c
γ4

(
c
ρ

)2

≈ 8 q2

3 c
Ω2(1 + D2)

k4[1 + D2 − (r/rL)2]4
, (31)

where q is the particle charge. In Fig. 5, we plotted W as a
function of φp at r = 0.5 rL.We find maximum power is emitted
by the particles that move along the field line with φp = 0 as
D = 0, compared to those on the other field lines (φp � 0).
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5. Polarization of radiation

The radiation electric field is given by (e.g., Jackson 1972;
Gangadhara 1997)

E(ω) = C f

+∞∫
−∞

n̂ × (n̂ × β) exp{ iω(t − n̂ · r/c)} dt, (32)

where C f = −iω q eiωS 0/c/
√

2πS 0c, S 0 is the distance from the
origin to observer, ω the radiation frequency and n̂ the sight
line. To solve the integral, we shall express n̂ × (n̂ × β) (see
Appendix A) and the argument of exponential as series expan-
sions in time t. Consider the sight line which makes an angle θ
with the 2D plane, and η with the x-axis:

n̂ = (cos θ cos η, cos θ sin η, sin θ). (33)

To describe the polarization state of the emitted radiation, we
define orthogonal unit vectors (see Fig. 1):

ε̂‖ = (− sin θ cos η, − sin θ sin η, cos θ), (34)

ε̂⊥ = (− sin η, cos η, 0). (35)

The unit vectors (n̂, ε̂‖, ε̂⊥) form an orthogonal triad:

n̂ × ε̂⊥ = ε̂‖. (36)

Let t0 be the time at which β aligns with n̂, and the observer
receives radiation. We transform the time variable t to t + t0
such that Ωt0 stands for an initial phase. Thus, we find

r(t + t0) = a′0 + a′1t + a′2t2 + a′3t3 + a′4t4 ... (37)

based on Eqs. (26) and (27). The expansion coefficients
a′0, a′1, a′2, a′3, a′4 ... are same as a0, a1, a2, ... except λ replaced
by λ −Ωt0.

Using Eqs. (20) and (22), we find the series expansion of
the exponential argument in Eq. (32) and keep the terms up to
the order of t3:

ω

[
(t + t0) − n̂.r

c

]
=

ω
[
t + t0 − r

c
cos θ (cos η cosφtot + sin η sinφtot)

]
,

= N0 + N1t + N2t2 + N3t3 ... (38)

where N0, N1, N2 ... are series expansion coefficients (see
Appendix C in Thomas & Gangadhara 2005). The series ex-
pansion of exponential argument is converging, and it is quite
obvious from Eqs. (20) and (26). In the limit of k ≈ 0, the
series expansion of r behaves like the trigonometric sine func-
tion. Since the angular width of emission beam is ≈2/γ, the
time taken by the particle to cross the angular width of the or-
der of emission beam is ≈2ρ/cγ. Thus the truncation of higher
order terms introduces a negligible error in our calculations.
Since we intend to reduce the integral in Eq. (32) to a known
form, we limit the series expansion terms up to the order of t3.

Using the transformation given by Buschauer & Benford
(1976), we find the electric field components (see Appendix B):

E‖ =
1
c

(
V‖0B0 + V‖1B1 + V‖2B2

)
C f eiN0 sin θ, (39)

E⊥ =
1
c

(V⊥0B0 + V⊥1B1 + V⊥2B2) C f eiN0 . (40)

Next, we define the Stokes parameters as

I = E‖E∗‖ + E⊥E∗⊥,
Q = E‖E∗‖ − E⊥E∗⊥,

U = 2

(
E∗‖E⊥

)
,

V = 2�
(
E∗‖E⊥

)
. (41)

The linear polarization is given by

L =
√

Q2 + U2. (42)

In observations, pulsar polarization is normally expressed in
terms of L and V . So, in our model, we call L and V polarization
parameters.

5.1. Polarization parameters of radiation emitted
by many particles

We consider a set of field lines on the 2D plane, and estimate
the total emission by particles accelerated along them. During
pulsar rotation, the sight line stays at a particular θ with re-
spect to the 2D plane. Since the emission from each particle
is relativistically beamed in the direction of velocity β, the ob-
server tends to receive the radiation from all those particles, for
which β falls with in the angular width of ±1/γ with respect
to n̂.

First we estimate the polarization parameters of the radia-
tion emitted by a single particle at the instant t0 ≤ tmax. The
instant t0 is the time at which n̂ · β = 1 for a given initial φp. As
the rotation progresses, new t0 is computed for the advanced
rotation phase by again solving n̂ ·β = 1 and computing the po-
larization parameters. This procedure is continued till t0 ≈ tmax,
where tmax is the time at which the particle goes out of radio
emission zone (d0 ≤ r ≤ 3 × 103 Km). Since the radiation is
emitted over a range of r, and due to the aberration and retar-
dation, the radiation beam gets shifted to the leading side of
the pulse. The role of retardation and aberration phase shifts
has been discussed by e.g., Phillips (1992) and Gangadhara &
Gupta (2001).

In order to compute the total polarization parameters with
respect to the rotation phase, we first the polarization parame-
ters due to single particles into groups of phase bins and add
them. In the following steps, we give the details of the proce-
dure followed:

1. fix the observer’s sight line at a specific θ with respect to
the 2D plane;

2. select a set of field lines in the range of −5◦ ≤ φp ≤ 5◦ with
a successive line spacing of 0.1◦;

3. solve n̂ · β̂ = 1 to find t0 at the point of emission on the
trajectory corresponding to each field line, and estimate the
polarization parameters at those points;

4. subtract the retardation phase shift Ω(tmax − t0) from η as-
signed for each of the emission beam, and estimate the ef-
fective rotation phase;

5. rotate the sight line by 0.1◦ to a new phase, and repeat the
procedure (1–4) over the range of −12◦ ≤ η ≤ 12◦;

6. finally, sort the array of polarization parameters into groups
of phase bins, and add to get the total pulse profile.



542 R. M. C. Thomas and R. T. Gangadhara: Radio emission by particles due to pulsar spin

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1(a) (b)= 0θ θ = - 0.05o o

φ (deg) φ (deg)

I L 

I 

V 

In
te

ns
ity

Fig. 6. The simulated profiles: panel a) for θ = 0◦ and panel b) for
θ = −0.05◦. The parameter φ is the rotation phase. Used γ0 = 100 and
d0 = 10 Km.

In Fig. 6, we give the total polarization parameters computed
from the emissions by many particles as functions of rotation
phase. In Panel (a) we have plotted the profile that is obtained
when the sight line lies in the 2D plane, and Panel (b) for the
case when the sight line is inclined by −0.05◦. The profiles in-
dicate that the peak emissions are shifted to the earlier phase as
a consequence of the aberration-retardation effect.

6. Discussion

For simplicity we considered the dipole field lines projected
onto a 2D plane. The relativistic particles are assumed to be
streaming outward along such a field configuration with an ini-
tial Lorentz factor in the range of 102 ≤ γ0 ≤ 103. Since our
aim is to understand the rotation effects on particle dynamics
and pulse profile, we consider the single particle emission and
leave the collective plasma emissions to later works. We are in-
terested in the region which extends from a few stellar radii to
a radial distance well within the light cylinder, where the radio
emission is expected to occur and the bead-on-wire approxi-
mation holds. Though we have approximated the particle mo-
tion to 2D, we are able to investigate the influence of rotation
on pulsar profiles. Our model is more relevant for those cases
where the inclination angle α of the magnetic axis relative to
rotation axis is large enough. In such cases, the projected field
lines may be approximated to be straight lines over a significant
radial distance. We derived an expression for the radial position
of a particle (Eq. (20)), which shows an oscillatory behavior, as
shown in Fig. 2. A similar case of particle motion in an in-
finitely long, straight, and rigidly rotating tube, was discussed
by considering a gedanken experiment by MR94, who show
that due to the centrifugal force reversal, the particle returns
back to the rotation axis after reaching a maximum distance
at which the rotation velocity reaches the speed of light. This
turns out to be an oscillatory motion in the radial direction.
Gangadhara (1996) showed that the particle angular velocity
cannot be same as the field line angular velocity if the magnetic
axis is inclined with respect to the rotation axis. We considered
this effect in our treatment of particle motion, and found the
particle trajectories and their curvature radii vary with field line
orientation.

Since the magnetic field is very strong, the Larmour radius
of gyration and drift velocity of the charged particles become
very small. So, the particles are assumed to follow the same
set of field lines all along their trajectories. In the case of sin-
gle particle dynamics, the magnetic field dominates so that the
rigid body motion may be extended all the way up to the light
cylinder. But in reality plasma corotates with the neutron star,
and we must take the plasma inertia into account in the region
close to the light cylinder. Therefore, it is possible that the mag-
netic field lines will sweep back and can lead to the generation
of toroidal magnetic field. Hence the oscillatory motion that
our solution predicts cannot be achieved in a real physical sit-
uation like pulsars, and the particle which reaches the vicinity
of the light cylinder cannot come back, but escapes from the
magnetosphere as a pulsar wind.

We find the energy of particle increases due to the centrifu-
gal force, as indicated by the Eq. (7) for Lorentz factor γ. In
this way the rotational energy of neutron star gets transferred
to the particles via the magnetic field lines.

We find that the radius of curvature of particle trajectory
is approximately rL/2, which is comparable to the inherent ra-
dius of curvature of dipolar field lines (Gangadhara 2004). We,
therefore believe that curvature emission due to the rotational
motion of particles should be comparable to the actual curva-
ture emission in a corotating frame. Both the Lorentz factor
and the characteristic frequency reach the maxima in the re-
gion close to light cylinder. Our model thus indicates that high
frequency radiation (e.g., X-ray, γ-ray) may be emitted in the
regions close to light cylinder.

In a later work, Rogava et al. (2003) show that if a particle
moves freely along a tube with an arbitrary curvature, the cen-
trifugal force does not always reverse. They show that the parti-
cles move in the tube with a variable angular velocity. This sup-
ports our result that the particles’ angular velocity on some field
lines differs from that of pulsar’s; that is, the particles moving
along the field lines with φp = 0 rotate with the angular veloc-
ity that is same as the pulsar angular velocity. But those moving
along other field lines, for which φp � 0, rotate with the angu-
lar velocity which is smaller than the pulsar angular velocity.
The particles moving along the field lines with φp ∼ 0 tend
to emit more power than those moving along other field lines,
such that the profile in Fig. 5 shows a peak at φp ∼ 0. Also,
it is evident from observations that the peak of pulsar profiles
(core) is, probably, emitted from the field lines with φp ∼ 0.

We have reproduced a simulated pulse profile (Fig. 6)
adding the radiation emitted by particles accelerated on a set of
field lines, by taking aberration-retardation into account. The
sign of φ has been flipped to match with the phase sign conven-
tion followed in pulsar profiles. The roughness in the curves
of Fig. 6 are due to the increments of 0.1◦ in φp and η. This
choice was made based on the limitation in computing time.
However, the smoother profiles can always be generated by
choosing smaller increments and opting for longer computing
time. Since we consider uniform plasma flow along the field
lines, our profiles do not have subpulse components.

Our model shows effects, such as aberration and retarda-
tion, which make the pulse profiles to become asymmetric
about the pulse center. This phenomenon has been observed
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in most of the pulsar profiles (e.g., Gangadhara & Gupta 2001;
Gupta & Gangadhara 2003).

In our model, we find that if the sight line is at a fixed an-
gle (θ = −0.05◦, see Fig. 6) to the particle trajectory plane,
the observer tends to receive a single sign circular polarization,
as observed in many pulsars (e.g., Han et al. 1998). As a fol-
lowup to this work, we plan to consider the full 3D dynamics
of plasma in a rotating dipolar magnetic field, and estimate the
coherent radiation.

7. Conclusion

By considering projected dipolar magnetic field lines on a
plane perpendicular to the rotation axis, we have developed
a 2D model for the particle dynamics in a pulsar magneto-
sphere. The motive behind developing this model was to eluci-
date some of the rotational effects induced in the pulsar profiles.
We obtained the analytical expressions for the particle trajec-
tory and its curvature radius. The energy of particles increase
at the expense of the neutron star’s rotational energy. We find
the sight line orientation relative to the particle trajectory plane
might determine the sign of circular polarization. The asymme-
tries observed in the pulse profiles can be explained by consid-
ering the aberration-retardation effects.
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Appendix A: To find a series expansion
for the factor n̂× (n̂×β) that appears in Eq. (32)

Consider β in Cartesian co-ordinates:

β =
1
c

(Vxx̂ + Vyŷ), (A.1)

where x̂ and ŷ are the unit vectors along the x and y-axes, re-
spectively, (Fig. 1). Then it follows from Eq. (2) that

Vx = Vr cos

(
φtot(t + t0)

2

)
− Vφ sin

(
φtot(t + t0)

2

)
, (A.2)

and

Vy = Vr sin

(
φtot(t + t0)

2

)
+ Vφ cos

(
φtot(t + t0)

2

)
· (A.3)

Using Eq. (37), we derive the series expansions for radial ve-
locity Vr and rotation velocity Vφ:

Vr =
dr
dt
, (A.4)

Vφ = rΩ∗. (A.5)

By substituting Vr and Vφ into by Eqs. (A.2) and (A.3), we
obtain

Vx = Vx0 + Vx1t + Vx2t2,

Vy = Vy0 + Vy1t + Vy2t2 .... (A.6)

The expressions of Vx0, Vy0, Vx1, Vy1 ... in the above expan-
sions are lengthy (see Thomas & Gangadhara 2005). Using the
triple vector identity and the definitions of n̂, ε̂|| and ε̂⊥, we
obtain

n̂ × (n̂ × β) = −(β. ε̂||) ε̂|| − (β. ε̂⊥) ε̂⊥, (A.7)

where

β · ε̂|| = − sin θ
c

(
Vy sin η + Vx cos η

)
, (A.8)

β · ε̂⊥ = 1
c

(Vy cos η − Vx sin η). (A.9)

Using the series expansions of Vx and Vy, we write

n̂ × (n̂ × β) =
1
c

[
ε̂|| sin θ

(
V|| 0 + V||1t + V|| 2t2

)

+ε̂⊥(V⊥0 + V⊥1t + V⊥ 2)
]
, (A.10)

where

V|| i = Vyi sin η + Vxi cos η, (A.11)

V⊥ i = Vxi sin η − Vyi cos η, (A.12)

and i = 0, 1, 2.

Appendix B: Transformations for solving Eq. (32)

Using the method of Buschauer & Benford (1976), we make
the following transformations in order to solve the integral in
Eq. (32).

Consider
∞∫
−∞

exp
[
i
(
N1t + N2t2 + N3t3

)]
dt =

1

N1/3
3

eiCn

∞∫
−∞

exp[i
(
zτ + τ3

)
] dτ, (B.1)

where

τ =
1

N1/3
3

(
t +

N2

3N3

)
(B.2)

is a dimensionless variable, and

z =
1

N1/3
3

N1 −
N2

2

3N3

 · (B.3)

By differentiating the Eq. (B.1) with respect to N1 and N2, we
obtain
∞∫
−∞

t exp[i(N1t + N2t2 + N3t3)] dt =

1

N2/3
3

eiCn

[ ∞∫
−∞
τ exp

[
i
(
zτ + τ3

)]
dτ − Cl

∞∫
−∞

exp
[
i
(
zτ + τ3

)]
dτ

]

(B.4)

and
∞∫
−∞

t2 exp
[
i
(
N1t + N2t2 + N3t3

)]
dt =

1

N1/3
3

eiCn

Cm

∞∫
−∞

exp
[
i
(
zτ + τ3

)]
dτ

+Cp

∞∫
−∞
τ exp

[
i
(
zτ + τ3

)]
dτ

. (B.5)

We define

L1(z) =

∞∫
−∞

exp
[
i
(
zτ + τ3

)]
dτ

=
2
3

√
z K1/3

[
2(z/3)3/2

]
, (B.6)

L2(z) =

∞∫
−∞
τ exp

[
i
(

zτ + τ3
)]

dτ

= i
2√
27

z K2/3

[
2(z/3)3/2

]
, (B.7)

B0 =
1

N1/3
3

eiCn L1(z), (B.8)
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B1 =
1

N2/3
3

eiCn [L2(z) −ClL1(z)], (B.9)

B2 =
1

N1/3
3

eiCn
[
CmL1(z) − CpL2(z)

]
, (B.10)

where

Cl =
N2

3N2/3
3

, (B.11)

Cn =
N2

3N3

2N2
2

9N3
− N1

 , (B.12)

Cm =

2N2
2

9N2
3

− N1

3N3

 , (B.13)

Cp =
2N2

3N4/3
3

· (B.14)


