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Abstract

This review article deals with some case studies of relativistic and correlation effects in atomic
systems. After a brief introduction to relativistic many-electron theory, a number of applications
ranging from correlation energy to parity non-conservation in atoms are considered. There is a special
emphasis on relativistic coupled-cluster theory as most of the results presented here are based on it.
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1 Introduction

One of the most important milestones in the development of theoretical atomic physics has been the
formulation and application of theories that can simultaneously treat relativistic and correlation effects
in atoms. Following the early work of Swirles on relativistic Hartree-Fock or Dirac-Fock (DF) theory [1],
Grant made pioneering contributions to the numerical and angular momentum aspects of this theory [2]
which paved the way for further advances in the field. Multi-configuration Dirac-Fock (MCDF) [3], 4] and
relativistic many-body perturbation theory (RMBPT) [B] codes were developed in the mid 1970s and
early 1980s calculations based on them soon followed [, [Z, 8, 9]. During the 1980s and 1990s, these two
theories were applied to a wide range of atoms and ions to study a variety of properties [10] [TT], T2, [T3].
The extension of coupled-cluster theory to the relativistic regime during the last decade is indeed a very
significant development [14]. Linear and non-linear versions of this theory have been successfully used
in performing high precision calculations of a number of different atomic properties [IA, [T6l, [, [T]].

The present review is by no means comprehensive; it mainly highlights some of the work on relativis-
tic and correlation effects in atoms undertaken in our group. Unlike molecules, a number of different
relativistic many-body calculations have been carried out on atoms using a variety of methods. Rela-
tivistic many-body calculations on atoms are currently much more advanced than those on molecules
[19, 20, 211, 22]. In addition to the inclusion of the Breit interaction, certain types of QED effects have
also been included in atomic calculations. It will take several years before molecular calculations reach
this level of sophistication. Relativistic many-body calculations of parity and time reversal violations in
some atoms have been performed to an accuracy of better than 1%. These calculations in combination
with accurate experiments are now poised to test the Standard Model (SM) of particle physics. It is not
clear at the present time whether it would be possible to achieve something comparable from studies on
discrete symmetry violations of molecules.

The organization of the paper is as follows : Section ] deals with the Dirac-Coulomb approximation
and the section following it (section Bl), touches upon the Breit interaction and QED effects. Section
| is an overview of relativistic coupled-cluster theory which has been used in the majority of the cal-
culations considered here. In section Bl we present the basic ideas underlying two physical effects that
are relativistic in origin — fine-structure splitting and permanent electric dipole moment of atoms arising
from the electric dipole moment of an electron and have given the results of some representative cal-
culations. The enhancement of relativistic effects in heavy atoms along with the influence of electron
correlation is discussed in section Bl with reference to correlation energy, hyperfine interactions and parity
non-conservation in atoms. In the last section we make some concluding remarks.
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2 The Dirac-Coulomb Approximation

For an N-electron atom, the relativistic Hamiltonian is given by
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H:Z cd; - Py + fmc? + Vn(rs) —1—2— (1)

i=1 i<j Tij
. 0 o; I 0 . .
where a and 3 are given by a; = o 0 and 8 = 0 7 ) oi are the Pauli matrices and I
i _

represents the unit matrix. Vy(r;) is the nuclear potential at the site of the ith electron and the last
term is the Coulomb interaction between the electrons. H defined above is known as Dirac-Coulomb
Hamiltonian which is clearly not covariant.

This Hamiltonian can also be written as

H= Zho +Z—2 (2)

The electron-electron interaction can be approximated by an average potential where each electron
moves independently in an average field caused by the nucleus and the other electron. This is the
independent particle model which is the starting point of most atomic physics calculations. This can be
put into a mathematical footing by partitioning the full Hamiltonian in the following way :

H=Hy+ Ve, (3)

where

N
Hy =Y ho(i) (4)

is a sum of the one electron operators,
ho(i) = cay - p; + Bmc? + U(ry). (5)

It is customary to assume U as the Dirac-Fock potential [23] and

ZUn +Z— (6)

T
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can be treated as a perturbation if there are no strongly interacting configurations in the system. The
many-body atomic state |¥(T", J, M)) is an eigen function of the Dirac-Coulomb Hamiltonian and satisfies
the equation,

H|U(T, J,M)) = E|Y(T,J,M)), (7)

where J, M are the total angular momentum quantum numbers and I' is the quantum number which dis-
tinguishes each of the atomic states. These states are expanded in terms of the determinantal wavefunc-
tions which in turn are built from the single particle orbitals. If |®(T, J, M))’s denote the determinantal
wavefunctions, then,

[U(L,J, M) = Cul@x(T, J, M)). (8)

k

The coefficients Cys are determined by the choice of the theory. The single particle orbitals are the
two-component, Dirac spinors,

L[ Pun(r)Xem
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where n and m are the principal quantum number and magnetic quantum number respectively. & is a
quantum number given by

l forj:l—%
K= . , (10)
{—(H—l) forj=1+1%

where [ is the orbital angular momentum and j is the total angular momentum of an electron.
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Figure 1: Positive and negative energy states

The solutions of the Dirac equation admit both positive and negative energy states [2‘5] and this is
shown in figure [l For a free particle, only continuum states exist above mc?and below —mc?. However,
electrons in an atom that are acted on by a relativistic mean-field potential in addition to continuum
states above mc? and below —mc?bound states do exist in the interval —mc? and mc?. The variational
principle fails due to the presence of negative energy states [24]. The radial parts of the large and small
components of the Dirac spinor are expanded in terms of Gaussian functions [25] as follows

Pnn( ) Zcmg/ﬂ( )

Qun(r Z Crlini(r) (11)

where S and L stands for small and large component respectively and the ¢g’s are Gaussian type functions
of the form

gxi(r) = Cxr"™~ exp(—agr?). (12)

In the case of finite basis set expansions the condition of kinetic balance is applied to prevent the
variational collapse [26]. The kinetic balance condition [24} 27, 28] gives the relation between the large
and small component of radial wave function as follows :

r

d kK
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r
In Eq. (@) and @) CL and C¥ are the normalization factors for the large and small components
respectively.
3 Beyond the Dirac-Coulomb Approximation
The electron-electron interaction can be treated relativistically, by including corrections to the Coulomb

interaction. The leading relativistic correction to the Coulomb interaction is the Breit interaction [29],
where the interaction Hamiltonian is given by,

L2 Z aiay Tij)g(aj Tij) (14)

re.
i<j v

Here the matrices oy, «; are built from the Dirac matrices and 7;; is the inter-electronic distance. The
magnitude of the Breit interaction is smaller than that of the Coulomb interaction by a factor o, where
« is the fine structure constant and it can be included perturbatively or self consistently [30]. In addition
to the Breit interaction, inclusion of QED effects like the self-energy and the vacuum polarization [31]
may be necessary for an accurate quantitative description of certain properties where relativistic effects
are important.

The process involving the emission and absorption of a virtual photon by the same electron is known
as self-energy. According to Dirac’s theory, the vacuum consists of a homogeneous sea of negative-energy
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Figure 2: Corrections to Coulomb interaction

electrons. A bound electron in the atom can interact with an electron in the Dirac sea, thereby changing
the charge distribution of the negative energy electrons compared to the free-field case. This results in
the creation of electron-positron pairs and hence the vacuum behaves as a polarizable medium. This
process is known as vacuum polarization. FigureBillustrates the self-energy and the vacuum polarization
processes [32].

Ounly a few calculations of self energy and the vacuum polarization (which together give rise to the
Lamb shift) have been performed on many electron atoms. As the Coulomb interaction due to the
nucleus is much stronger than the electron-electron interactions in the inner shells of heavy atoms, it
is reasonable to calculate the Lamb shift for such systems using the hydrogenic or screened hydrogenic
approximation [33]. More sophisticated calculations of QED effects have been carried out in the past
few years. The details of these calculations can be found in a review article by Shabaev [34].

4 Relativistic Coupled Cluster Theory : An overview

In this section we will briefly introduce the relativistic coupled cluster theory; one of the most pow-
erful and accurate relativistic many-body theories. It is equivalant to all order relativistic many-body
perturbation theory and has the virtue of being size-extensive [35]. Most of the work described in the
subsequent section are based on this theory.

We start with the DF state |®) built out of four component orbitals given by Eq. (@), as the Fermi
vacuum, and then the normal ordered Hamiltonian can be expressed as

Hy=H - (®|H|®) = H — Epp, (15)

where H is the Dirac-Coulomb Hamiltonian.

If we project (®|exp(—T) from the left we obtain the correlation energy (AFE) and if we project
any of the excited determinant (®*|exp(—T') we additionally get a set of equations which are used to
obtain the T amplitudes. Using the normal ordered dressed Hamiltonian H y = exp(—T)Hy exp(T) the
corresponding equations for correlation energy and amplitudes become

(P[Hy |P) = AE, (16)

and

(| H ) = 0. (17)

Here the state |®*) may be singly excited |®7) or double excited |®7¢) and so on. The indices a,b, - - -
refer to holes and p, g, - - - to particles. We have considered the coupled cluster single and double (CCSD)
approximation, where the cluster operator 7" is composed of one- and two-body excitation operators, i.e.
T =Ty + T5, and are expressed in second quantization form

T=T+1T, = Z {a;;aa} th+ % Z {aLa];abaa} thl. (18)
ap

abpq

Contracting the ladder operators [36] and rearranging the indices, the amplitude equations can be
expressed in the form

A+ B(T)-T =0, (19)



where A is a vector consisting of the matrix elements (®*| Hy |®) and T is the vector representing the
excitation amplitudes and B(T') is the matrix which depends on the cluster amplitudes so that Eq. (I9)
——

—~
is solved self-consistently. For example, a typical contribution to the term HyTs T is

1 TS
B =3 > Vagesthytod. (20)
dgrs

Here Vygrs is the two-electron Coulomb integral and tﬁ; is the cluster amplitude corresponding to a
simultaneous excitation of two electrons from orbital a and d to p and r respectively. Diagrammatic
techniques are used to obtain all the terms which contribute to this specific contribution.

For an atom with one valance electron we first compute the correlations for the closed shell system,
i.e. singly ionized atom using the closed shell coupled cluster approach. The reference state for the open
shell system is

[®3) = af @) (21)

with the particle creation operator az. Then by using the excitation operators for both the core and

valance electron the exact state is defined as [37]:

(W) = exp(T) {exp(Si)} |27 +). (22)

Here {exp(Sk)} is the normal ordered exponential representing the valance part of the wave operator.
Here

Sy = Sik + So = Z {a;‘jak} sh+ Z {aLagabak} shi (23)
k#p bpq
where k stands for valance orbital. Sj contain the particle annihilation operator aj, and because of
the normal ordering it cannot be connected to any other valance electron excitation operator and so
{exp(Sk)} automatically reduces to (1 + Sk).
Then we can write the Eq.([22) as

(W) = exp(T) (14 Sp) |23 +), (24)
and obtain a set of equations [36]
(@ Hy (14 8) [@F7) = Hegy (25)
and
(O T (14 81 [@) 1) = Hepy (@541 (14 51) [0 +1). (26)

The Eq.([28) is non-linear in S because Hqyy is itself a function of Si. Hence, these equations have to
solved self-consistently to determine the S amplitudes. N
The normalized transition matrix element (i — f) due to an operator O is given by

5. ey
fi \/<\pzfv+1| \szv+12<\pﬁv+1| TRED)
_ (@Y {1481} exp(T1)O exp(T) {145} @ )
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(27)

)

whereas the expectation value of any operator O can be written as the normalized form with respect to
the exact state [V +1) as

5\ — (N O[EN+Y) (N1 {1+ ST} exp(TH) O exp(T) {1 + S} [@V+1) )
< >_ (PNFI@NHL) - — (@NFL{1+ SThexp(TT) exp(T) {1 + S} [@NFT) (28)



Table 1: Fine structure intervals for B-like ions in em ™.

Z Dirac-Fock (DF) Dirac-Coulomb (DC) Breit QED  Total Experiment

20 37581.8 38119 -1616 124 36627 36615(30)
22 57678.6 58319 -2241 180 56258 56243(4)

24 84973.2 85715 -3015 251 82951  829926(20)
26 121045.8 121898 -3958 341 118281 118266(20)
28 167653.8 168635 -5092 451 163994  163961(50)
30 226739.4 227889 -6437 586 222038

5 Purely relativistic effects

5.1 Fine-Structure splitting

The fine-structure splitting is relativistic in origin, but is influenced by electron correlation. It occurs
between the states having same values of the total orbital quantum number L, total spin quantum
number S and different total angular momentum .J. There have been many attempts to calculate this
quantity for a variety of atoms in their ground and excited states [38]. We present here the interesting
case of the ground state fine structure splitting of boron which has been calculated by different relativistic
approaches [39, (), AT]. Boron is an open-shell atom with the configuration 1s%2s%2p!. The relativistic
configuration interaction method (CI) was used by Das et ol [41]. The single particle orbitals used in
the calculations there were obtained by the application of the variational principle. Consider an energy
functional given by

e=> a (P, |H|D,) (29)

where H is the Dirac-Coulomb Hamiltonian, |®,)is the rth configuration state function (CSF) and a,. is

given by
2 +1

R SNCY ARSI

Jr and Js being the total angular momenta of the rth and sth CSFs respectively. Minimization of ¢ with
respect to the single particle orbitals ¢;,

(30)

Oe

901 0 (31)
yields a set of differential equations which were solved self-consistently by using an appropriate numerical
method [42]. In this calculation, all relativistic configurations arising from 1s22s?2p!, 1s%2s%2p?and
15%2p® were considered. The Breit interaction and QED effects (self-energy and vacuum polarization in
the hydrogenic approximation) were treated as first order perturbations. We give below the results of the
calculation. The electron correlation contributions (difference of Dirac-Coulomb+Breit and Dirac-Fock)
vary from —1078.8 to —5287.4 for Z = 20 to Z = 30. It is the evident from tablelll that the Breit
interaction and the QED effects play an important role and their inclusion is critical in obtaining good
agreement with experiments.

5.2 Electric Dipole Moment of the electron

The presence of a non-zero electric dipole moment (EDM) on a non-degenerate physical system would
be a direct evidence of Parity (P) and Time-reversal (T') symmetry violations. An atom can have a non-
zero EDM due to a non-zero EDM of it’s constituent electron, under certain conditions. According to a
theorem by Schiff, in 1963 [43], the EDM of an atom vanishes even if it’s constituents have non-vanishing
EDMs. This theorem was based on the following assumptions :

1. the constituents of the atoms are non-relativistic particles,
2. the interactions between the particles in an atom are electrostatic,

3. the EDM distribution of each atomic constituent coincides with its charge distribution.



By considering the relativistic effects in atoms, Sandars showed that an atom can have a non-zero EDM
[Z4]. If an electron has a non-zero EDM d., the relativistic interaction of d. with the internal electric
field of the atom, is given by,

Hp = - Z defid; - E™, (32)

where F™" is the electric filed inside the atom; &; are Pauli matrices and 3 is Dirac matrix defined in
section Bl This reduces to,

Hy=—Y d.d;- E" (33)

in the non-relativistic limit. It is possible to express the relativistic form of H; in terms of an effective
one particle Hamiltonian, given by [#5]

H = 2icBivps (34)

where c¢ is the velocity of light, 75 = iv97172ys and +; = Ba;. The Schrédinger equation for the
unperturbed state |\IJ((10)> is

Ho|w0) = EQw ), (35)

where |\IJ&O)> = exp(T(O))|<I>£yo)> in coupled-cluster theory and Hy is the Dirac-Coulomb Hamiltonian.
In the presence of EDM interaction, which is treated as a perturbation, the Schrédinger equation
becomes

H|\Ija> = Ea|qja> ) (36)

where H = Hy + AH; and |¥,) = exp(T© + )\T(l))|<I>EIO)). Here T(®and TMare the unperturbed and
perturbed cluster amplitudes and the perturbation parameter, A = d.. The T(®and T™Wamplitudes are
determined from the following equations :

(O*|Hn|®) =0 (37)
and
(@°| [Hn, TO] [00) = — (@ 7|2, (38)
The atomic EDM is given by,
(Va|D|Wa)
dgp =————"—=0 (39)
(Wa|Wa)

for non-relativistic case. D is the electric dipole operator. The enhancement factor R is given by,

0) A1, (1 1) R (0
o o _ (WD) + (05| 5|wi”) ¥
T d. 05 ® (40)
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Following Coupled Cluster theory the equation (Eq. Ell) reduces to
@o|TW'D + DTW|

(@o|®o)

An alternative Coupled Cluster approach to EDMs is given by Shukla et al [46]. The values of d.
predicted by various models of particle physics are given in table

The current best limit on the electron EDM comes from the 7' measurement [d7]. The enhancement
factor atomic thallium to the electron EDM R = —585, which is based on relativistic coupled-cluster
calculation [48]. Comparing with experiment, the limit on the electron EDM is

de < 1.6 x 107 *"e-cm. (42)

The enhancement factor for atomic C's (Z=55) has been obtained as R = 130.5 from a method combining
RMBPT and the MCDF approach [A9]. The calculation done by Martensson et al [B0] gives R =
114(1 £ 0.03) for Cs.



Table 2: Value of d, predicted by various models of particle physics

Model dein e — cm
Standard Model < 10738
Supersymmetric 10726 — 10728

Multi-Higgs 10726 —10-28

Left-right asymmetric 10726 — 1028

Figure 3: Diagrams contributing to correlation energy

6 Relativistic enhancements

6.1 Correlation energy

In the frame work of coupled-cluster theory, the expression for the correlation energy of an atom is given
by, -
Ecorr = (P|HN|D), (43)

where Hy = e~ T HyeT where H is the Dirac-Coulomb Hamiltonian described in section

The diagrams given in figure Bl contribute to the correlation energy, where the dotted lines represent
the coulomb interaction between the electrons, the solid line corresponds to the cluster operator 7" and
the circle represents the one-electron operator.

We have computed the above expression for the correlation energy using the coupled-cluster wave-
functions for the closed-shell atoms, Xe*, Y57 and Hg®. The results are shown in table

From the above results it is clear that with the increase in the atomic number (Z), the relativistic
effects become more prominent. The absolute magnitude of the Dirac-Fock contribution hence increases
and that of the correlation energy decreases for xenon, ytterbium and mercury.

The orbitals used in the calculation are expanded in terms of Gaussian functions of the type [B1]

Fix(r) = % exp(—a;r?), (44)

with £ =0,1,2--- for s,p,d, - - - type functions, respectively. The exponents are determined by the even
tempering condition [52]

Table 3: Comparison of correlation and Dirac-Fock energy

Atom Dirac Fock energy OFEcorr

XePt  -0.74474960061E+04 -0.71694286411
Y570 -0.14069217432E+05 -0.56956394691
Hg®  -0.19650686115E+05 -0.44792843655




Table 4: Details of the basis used in the calculation

symmetry  Total basis in ~ No. of excited «ap and § used

each symmetry orbitals
5172 13 8 0.00725 ; 2.725
Di/2 11 7 0.00755 ; 2.755
P3/2 11 7 0.00755 ; 2.755
ds /2 8 2 0.00775 ; 2.765
ds /2 8 2 0.00775 ; 2.765
I5/2 5 5 0.00780 ; 2.805
J7/2 5 5 0.00780 ; 2.805
97/2 3 3 0.00785 ; 2.825
9o/2 3 3 0.00785 ; 2.825
a; = ool (45)

The values of apand S for different symmetries are given in table Hl

6.2 Hyperfine interaction

A nucleus may possess electromagnetic multipole moments, which can interact with the electromagnetic
field produced by the electrons at the site of the nucleus . The interaction between various moments
of the nucleus and the electrons of an atom are collectively known as hyperfine interactions [37]. This
interaction produce shifts of the electronic energy levels which are usually much smaller than those
corresponding to the fine structure splittings.

The non-vanishing moments are the magnetic multipole moments for odd & and electric multipole
moments for even k. The most important of these moments is the magnetic dipole moment (k = 1)
which is associated with the nuclear spin. The interaction of this particular moment with the electron is
known as magnetic dipole hyperfine interaction.

In general the hyperfine interaction is given by [53]

Hype =Y MW .TH), (46)
k

where M®*) and T*) are spherical tensors of rank %, which corresponds to nuclear and electronic parts
of the interaction respectively.
For the magnetic dipole hyperfine interaction [54]

TO =310 = 3 iey [Ty O,

q q e 3 7,2_ 1q (Tj)a (47)
q J J

where @ is the Dirac matrix and Y,i‘q is the vector spherical harmonics. In Eq.[ ) the index j refers

to the j-th electron of the atom and e is the magnitude of the electronic charge. The magnetic dipole

hyperfine constant A is defined as

(&) (I TO|T) (48)
I/ \/I(T+1)(2]+1)
where pv is the nuclear Bohr magneton, p; is the nuclear magnetic moment, I is the nuclear spin, J is
the total electronic angular momentum.

In Eq.@D) t™M) is the single particle reduced matrix element of 7). The reductions of the single
particle matrix element into angular factors and radial integral can be obtained by using the Wigner
Eckart theorem. This single particle reduced matrix element is given by

P){QK’ + QRPKI)
7»2

(]| D |6") = — (k]| O |I) (K+H')/dr( ; (49)
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Figure 4: Goldstone diagrams for pair correlation (a,b) and core-polarization effects (c,d). Here a denotes
a hole whereas v denotes valance orbital and p, ¢, r... denote virtual orbitals (particles). The superscripts
refer to the order of perturbation and the dashed lines correspond to the Coulomb interaction. Particles
and holes (labeled by a) are denoted by the lines directed upward and downward respectively. The
double line represents the O (the hyperfine interaction operator) vertices. The valance (labeled by v)
and virtual orbitals (labeled by p,q,r..) are depicted by double arrow and single arrow respectively,
whereas the orbitals denoted by @ can either be valance or virtual.

where (k| C™®) ||x’) is the reduced matrix element of the Racah tensor and is equal to

kg

R TEmcTEa] (E R EI )

NS,
N| =

with

o[ 1 ifl+k+1 even
W(l,k,l)_{ 0 otherwise

Here the single particle orbitals are expressed in terms of the Dirac spinors with P; and @; as large and
small components respectively.

In the calculation for Ba*we have used hybrid basis functions which are partly numerical and partly
analytical [55]. The analytical orbitals have the form of Eq. (). In table Bl the values of the magnetic
dipole hyperfine constant (A) is given in MHz for 2 Mg*[56] and *"Ba™ [57] for ground and one low
lying excited state. In tablefl we have presented the contributions from Dirac-Fock (DF), pair correlation
(PC) and core polarization (PC) effects.

It can be seen from this table (table Bl) that for Mg the CP contribution is larger than the PC in
magnitude for both the states. It is important to note that the former contribution includes the hyperfine
interaction of all the core orbitals while only a specific valence orbital is involved in this interaction for the

10



Table 5: Values of magnetic dipole hyperfine constant (A) in MHz for 2 Mg*and 37 Ba™

Atom Theory Experiment Others

Mgt States

3512 592.86  596.25 602(8) 58]
597.45 [29]
3pi2  101.70 103.4 [59]
137Ba+
6512  4072.83 4018 4203.200 [60)

6p12  736.98  742.04

Table 6: Contribution of pair correlation (PC) and core polarization (CP) effect in magnetic dipole
hyperfine constant (A) in MHz

Atom Dirac-Fock PC CP

BMg*rp6| States
3s1/2  468.819 39.713  77.767

3p1/2 77.975 7.293 15.153
137Ba+ [57]

6510 2929.41 663.20 465.91

6pijy  492.74 126.53  98.98

latter (see Fig. H)). However, the hyperfine constant A for Ba™ exhibits exactly the opposite behaviour.
Even though Ba™t has more core electrons than Mg™, the relativistic enhancement of the valence (6s)
magnetic dipole hyperfine interaction results in the value of PC exceeding that of CP.

In table [ we present the values of A for 6p2P; /2 and 6p 2p, /2 states of Pb*. The Dirac-Fock values
for these two states deviate from their experimental values in opposite direction, suggesting that the signs
of the correlation contributions are opposite for the two cases. This is evident from the result of our
second order relativistic many-body perturbation theory (RMBPT(2)) calculation. Electron correlation
is dramatic in the case of the 6p2P; /2 state because of the large and negative core polarization (-840.6
MHz). However, the value of A at this level differs from experiment by 48%. After carrying out a
RCCSD(T) calculation this discrepancy reduces to less than 7% . The agreement of the ground state
value of A with experiment is about 0.7%. These calculations highlight the power of the relativistic
coupled-cluster theory to account for the interplay of relativistic and correlation effects in systems with
strongly interacting configurations [62].

6.3 Parity non-conservation in atoms to neutral weak interaction

The parity transformation can be expressed as ¥ — —7 and the action of the parity operator Pis
given by

PY(T) =(=T), (50)
where (7)) is the wavefunction of a physical system. Parity conservation means that the system is

invariant under parity transformation and the Hamiltonian H commutes with the parity operator, i.e. if
Hp is the parity transformed Hamiltonian

11



Table 7: Magnetic dipole hyperfine constant for 6p states of Pb™: a strongly interacting system.
RMBPT(2) stands for second order RMBPT. Both RMBPT and RCCSD calculations are performed
by our group.

States 6p2Py/s 6p2Pso
Dirac-Fock 11513.5 9184
RMBPT(2) 15722.5  302.9
RCCSD(T) 12903.7 623.2

Experiment [61] 13000 583(21)

and therefore

[H, 15} ~0. (51)

Hence it clearly implies that parity non-conservation (parity violation) means that its Hamiltonian does
not commute with the parity operator P.

Parity non-conservation (PNC) was discovered in the beta decay of ©°Co by Wu and co-workers in
1957 following the prediction by Lee and Yang a year earlier [63]. This lack of mirror symmetry has now
been observed in several systems and even in atoms which is an important phenomenon to study. The
latest measurement of parity non-conservation in cesium with unprecedented accuracy (0.35%) has led
to the discovery of the nuclear anapole moment [64].

The dominant contribution to PNC in atoms comes from the neutral weak current (NWC) interaction
between the electron and the nucleus [63]. The effective Hamiltonian describing the interaction consists
of two parts, one of which is nuclear spin independent (NSI) [65] and the other is nuclear spin dependent
(NSD) [66l 67]. In this review article we will concentrate on NSI parity non-conservation in atoms. The
NSI effective Hamiltonian is expressed as

Grp .
Hpnc = 2—\/§QW 2@:’75,0(7"3)7 (52)
with

Here Z and N are the number of protons and neutrons respectively and Cj, and C, are the vector
(nucleon) - axial vector (electron) coupling coefficients whereas G is the Fermi coupling constant and
p(re) is the normalized nucleon number density. The matrix element of Hpxc scales as Z2 and it has
been treated as a perturbation. It is primarily because of this reason that the heavy atoms are considered
to be the best candidates for PNC experiments. The total Hamiltonian is now represented by

H=Hy+ Hpnc. (54)

This perturbation causes the wavefunction to take the form [¥) = |¥(®) + [¥()) where |¥(®) and
|\IJ(1)> are the unperturbed and the perturbed part of the wave function respectively.

The quantity that is measured in such an experiment depends on the interference of a parity non-
conserving electric dipole transition amplitude (Elpyc) and an allowed transition amplitude corre-
sponding to two atomic states of the same parity [68]. From the theoretical point of view an accurate
calculation of Flpyc must be based on a suitable and accurate relativistic many-body theory. In a
recent review, Ginges and Flambaum [69] have presented the current status of atomic PNC calculations
and experiments. A number of many-body theories have been applied to calculate E1pyc matrix ele-
ments. The results of these calculations in combination with the most accurate PNC experiment on C's
is in agreement with the Standard Model (SM) of particle physics [69].
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Table 8: E1pyc matrix elements for C's and Ba™

Atom Transition Elpnc(ieag(Qw/ — N))
Cs 65251/2 — 75231/2 0.910 x 10~
Bat 65251 ,5 — 5d*D5 2.05 x 10~ 11

We have formulated a new approach to PNC in atoms based on relativistic CC theory in an attempt to
go beyond the existing calculations. In this formulation the excitation operators (both T and S) contain
an unperturbed (superscript 0) and a perturbed part (superscript 1). For a single valence systems like
cesium the wavefunction can be written as

10 = exp(T° + TD) {1 +50 4 S<1>} |By,) . (55)

This equation follows from Eq.(23) and can be derived easily [70]. The equations for determining 7(Yand
S amplitudes are the following :

(@*| [Fn, T [@0) + (2| Hpwe [@0) =0, (56)

and

(@5 HySH = AEDSM |0,) + (@k| Hy {TO + TOSOY + Hpyo {1450} @) =0, (57)

The parity non-conserving electric dipole transition amplitude between atomic states |¥;) = ‘\IJEO)> +
‘\Ilgl)> and |Wyf) = ’\IJ;O)> + ‘\IJE})> is given by

Blpno — ——2f D) (58)
VAT [Tg) (P [T5)

The preliminary results we have obtained using this approach are given in table® These calculations
have been carried out in the Dirac-Coulomb approximation with an universal Gaussian basis consisting
of 13s, 12p, 11d and 7f function for Cs and 13p, 12p, 11d and 8f functions for Ba™. Our results for
C's is in reasonable agreement with linear relativistic CCSD(T) calculation [Z1] which yields Elpnc =
0.0908(9) x 10~ in the same units as our calculation.

7 Conclusion

It is clear that considerable progress has been made during the past three decades on the relativistic
many-body theory of atoms. However there are some open problems in this field. Perhaps the two areas
that deserve most attention is the future are :

(i) Relativistic multi-reference theories to treat a wide variety of open shell heavy atoms including
rare-earths. Work in this area is in its infancy [72].

(ii) Incorporation of QED effects in a systematic way in the framework of relativistic many-body
theory.

One can indeed look forward to exciting new developments in relativistic electronic structure of atoms
in the coming decade.
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